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Abstract: In this paper, the basic aspects concerning image analysis and interpretation for 
signature analysis are presented. The first part of this paper analyses the most useful sets 
of region- and boundary features for shape description; such descriptors allow mapping 
the object space into the feature space which will be used in statistical pattern recognition 
for cluster building and pattern identification. Standard intrinsic features are predefined 
global functions applicable to any class of objects; they are extended with local and 
global measurements which are applied to particular classes of objects. Measurements are 
based on vision tools, like windows region of interest (WROI), linear and arc rulers, and 
point-, line- and arc finders; they can be integrated in complex signature measurements 
for shape analysis. The paper is devoted to object measurement and recognition by 
signature analysis. Copyright © 2005 IFAC 
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1. INTERNAL DESCRIPTORS OF A REGION  

 
Part measurement and recognition are basic functions 
in merged Guidance Vision for Robots (GVR) and 
Automated Visual Inspection (AVI) tasks. Internal 
features describe a region in terms of its internal 
characteristics (the pixels comprising the body). An 
internal representation is selected either for the 
recognition of simple shapes based on sets of 
standard intrinsic features (number of holes, area, 
perimeter, compactness, eccentricity, invariant 
moments, etc) or when the primary interest is on 
reflectivity properties of the object's surface or by 
statistical, structural or spectral approaches).  
 
 
1.1 Scalar features of the region 
 
Internal scalar transform techniques generate shape 
descriptors based on the region shape.  

One of the most frequently used methods is that of 
moments. The standard moments pqm of order 

)( qp +  of an image intensity function ),( yxf  are:  
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A uniqueness theorem states that if ),( yxf  is 
piecewise continuous and has nonzero values only in 
a finite part of the visvis y,x  plane, moments of all 
order exist and the moment sequence )( pqm  is 

uniquely determined by ),( yxf . Conversely, )( pqm  

uniquely determines ),( yxf . 
 
In the discrete domain of digital images, equation (1) 
is transformed and the sum is carried out over the 
entire sub-image within which the shape of interest 
lies, to get the standard moments of )( qp +  order of 
an object O: 
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where: 

• )(mpq O   is the moment of )qp( +  
order of object O; 

• YX ,   are the yx,  coordinates 
of the analysed pixel of object O; 
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• yx NN ,  are the maximum values 

respectively for the YX ,  image 
coordinates, e.g. 480 ,640 == yx NN .  

 
However, because these moments are computed on 
the basis of the absolute position of the shape, they 
will vary for a given shape O depending on its 
location. To overcome this drawback, one can use 
the central moments of order )( qp + : 

 

∑∑
= =

=−−=
x yN

X

N

Y

qp
pq qpYXfYYXX

0 0

... ,2 ,1 ,0,     ),()()()( OOµ   

(3) 
 
where 00010010 / ,/ mmYmmX ==  are the 
coordinates of the shape's centroid. Thus, these 
moments take the centroid of the shape as their 
reference point and hence are position-invariant. 
 
For binary images of objects O, 00m  is simply 
computed as the sum of all pixels within the shape. 
Assuming that a pixel is one unit area then 00m  is 
equivalent to the area of the shape expressed in raw 
pixels. 
 
If the binary image of the object was coded using the 
run-length coding technique, let us consider that kir ,  

is the thk  run of the thi  line and that the first run in 
each row is a run of zeros. If there are im  runs on the 

thi  line, and a total of M  lines in the image, the area 
can be computed as the sum of the run lengths 
corresponding to ones in the image:  
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Note that the sum is over the even runs only.  
 
Similarly, 10m  and 01m  are effectively obtained 
respectively by the summation of all the x-
coordinates and y-coordinates of pixels in the shape. 
 
The central moments up to order three are given as 
expressed in (5): 
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102020 mXm −=µ  10
2
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The central moments can be normalized, defining a 
set of normalized central moments, pqη , and having 

the expression k
pqpq )(/)()( 00 OOO µµ=η , where 

... 3, ,2  ,12/)( =+++= qpqpk .  
 

Moment invariants are preferred for shape 
description as they generate values which are 
invariant to translation, rotation, and scale changes. 
Equation (6) describes a set of seven invariant 
moments which are derived from the second and third 
normalized central moments. 

 

02201 η+η=φ  
2

11
2

02202 4)( η+η−η=φ  
2

0321
2

12303 )3()3( η−η+η−η=φ  
2

0321
2

12304 )()( η+η+η+η=φ  

])()(3)[)((3         

])(3))[()(3(
2

0321
2

123003210321

2
0321

2
1230123012305

η+η−η+ηη+ηη−η

+η+η−η+ηη+ηη−η=φ

))((4         
])())[((

0321123011

2
0321123002206

η+ηη+ηη
+η+η−η+ηη−η=φ

  (6) 

])()(3)[)((3         

])(3))[()(3(
2

0321
2

123003213012

2
0321

2
1230123003217

η+η−η+ηη+ηη−η

−η+η−η+ηη+ηη−η=φ

 
Shape descriptors based on moment invariants 
convey significant information for simple objects but 
fail to do so for complicated ones. Since we are 
dealing with internal scalar transform descriptors, it 
would seem that these moments can only be 
generated from the entire region. However, they can 
also be generated from the boundary of the object by 
exploiting the theorems of Stoke or Green, both of 
which relate the integral over an area to an integral 
around its contour (Ams, 2002). 
 
The simplest internal scalar feature of a region to be 
identified in robot-vision tasks is its area, defined as 
the number of pixels contained within its boundary. 
Compactness and roundness can also be considered 
as scalar region descriptors, as their formulae contain 
the blob's area. Compactness is a dimensionless 
feature and thus is invariant to scale changes. 
 
The principal axes of a region are the eigenvectors of 
the covariance matrix obtained by using the pixels 
within the region as random variables.  
 
One solution adopted frequently to overcome this 
difficulty is to use as an internal scalar transform 
descriptor the ratio of the large to the small 
eigenvalue. Other simple internal scalar descriptors 
based on the region's area are: 



 

     

• The ratio of the areas of the original blob to that 
of its convex hull. 

• The ratio of the area of the original blob to that 
of its circumcircle. 

• The ratio of the area of the original shape to the 
area of the minimal bounding rectangle. This is 
a measure of rectangularity and is maximized for 
perfectly rectangular shapes. 

• The ratio of the area of the original blob to the 
square of the total limb-length of its skeleton. 

Topological properties are used for global 
descriptions of regions. Such properties are not 
affected by any deformation (e.g. stretching). Note 
that, as stretching affects distances, topological 
properties do not depend on the notion of distance or 
any properties implicitly based on the concept of 
distance measure. A widely used topological 
descriptor is the number of holes in the region, which 
is not affected by stretching or rotation 
transformations (Fogel, 1994; Ghosh, 1988). 
 
The number of holes H and connected components C 
in a region can be used to define another topological 
feature – the Euler number E of a region: 

 
  HCE −=            (7) 

 
Recall that a connected component of a set is a 
subset of maximal size such that any two of its points 
can be joined by a connected curve lying entirely 
within the subset. Fig. 1 exemplifies the above 
defined topological descriptors for the blob image of 
a carburettor flange:  
 

 
 

Fig. 1. Topological descriptors of a region: number 
of holes, 7=H , number of connected 
components, 1=C , and Euler number, 6−=E . 

 
 

2. SPACE DOMAIN DESCRIPTORS OF 
BOUNDARIES: THE SIGNATURES 

 
External space domain features describe the spatial 
organization of the object's boundary. 
One frequently used technique is the use of syntactic 
descriptors of boundary primitives, e.g. atomic edges 

(lines and arcs), and corners. Thus, the list of shape 
descriptors (or string of primitive shapes) must 
follow given rules: the shape syntax or grammar. 
 
Signatures are 1-D functional representations of 
boundaries and may be generated in various ways, 
for example as polar radii signatures or linear offset 
signatures. Regardless of how a signature is 
generated, however, the main idea approached in the 
present research devoted to real-time visual analysis 
of parts handled by robots is to reduce the boundary 
representation to a 1-D function, which is easier to 
describe than the original 2-D boundary (Borangiu 
and Calin, 1996; Camps, et al., 1991). 
 
A polar radii signature, encoding the distance from 
the shape centroid to the shape boundary as a 
function of angle θ , is shown in Fig. 2. 
 

 
 

Fig. 2 Angular radii signature of a shape. A 15-
element vector ],...,,[ 1521 RRR  is defined, where 

15,...,1 , =iRi  is the distance from the centroid to 
the edge of the blob, measured at an angle of 

)24( 0 i+θ  degrees, and 0θ  is the orientation 
derived from the greatest radius, 1R . 

 
Such polar radii signatures are invariant to 
translation, but they do depend on rotation and 
scaling. To rend such signatures invariant to rotation, 
there must be found a method to select the same 
starting point to generate the signature, regardless of 
the shape's orientation. One possibility is to choose 
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the starting point as the point on the boundary 
farthest from the blob's centroid, but only if this 
point is unique and independent of rotational 
aberrations for each class of objects of interest. 
Another solution is to select the starting point on the 
axis of least inertia farthest from the centroid. This 
method requires more computation, but is more 
rugged because the direction of the major eigen axis 
is determined from the covariance matrix, which is 
based on all boundary points.  
 
Based on the assumption of uniformity in scaling 
with respect to both axes and that sampling is taken 
at equal intervals of θ , changes in size of a shape 
result in changes in the amplitude values of the 
corresponding signature. One simple way to 
normalize for the result is to scale all functions so 
that they span the same range of values, e.g. ]1,0[ . 
The advantage of this method is simplicity, but the 
potential drawback is that scaling of the entire 
function depends on only two values: the minimum 
and the maximum. If the shapes are noisy, this 
dependence can be a source of error from one object 
class instance to the other. 
 
A more robust approach is to divide each sample by 
the variance of the signature, assuming that the 
variance is greater than a residual value and hence 
does not create computational difficulties. Use of the 
variance yields a variable scaling factor that is 
inversely proportional to changes in the shape's size.  

 
A linear offset signature, encoding the distance from 
the axis of least inertia to the shape boundary as a 
function of distance d, is also a space descriptor of 
the contour. The shape in Fig. 3 has contour 
segments parallel to its major eigen axis. 
 

 
 

Fig. 3 Linear offset signature of a lathe-turned shape. 
An 8-element vector ],...,,[ 821 DDD  is defined, 
where 8,...,1 , =iDi  is the twice the distance from 
the minimum inertia axis to the edge of the blob, 
measured respectively at 8,...,1, =idi  mm from 
the "small lateral" edge of the shape. 

 

It can be observed that in this case sampling is not 
taken at equal intervals of d , i.e. 

8 ..., 1,  const,1 =≠− − idd ii .  
 
External space domain descriptors based on 
signatures are generally simple, and require reduced 
storage capability. 
 
More complex space domain descriptors are often 
based on the Fourier series expansion of a periodic 
function derived from the boundary. For example, 
the boundary could be traversed at the angle plotted 
between a line tangent to the boundary and a 
reference line as a function of position along the 
boundary. 
 
Consider, for example, the shape depicted in Fig. 4. 
The rotation angle θ  of the tangent at the boundary 
of the object varies between 0 and π2  radians as the 
boundary is traversed. In particular, θ  will vary with 
the distance s  around the perimeter and can be 
expressed as a function, )(sθ , called slope of the 
boundary. 

 
 

Fig. 4 The slope is obtained by rotation of tangent to 
the boundary of the shape.  

 
If L  is the length of the boundary of the shape, 

0)0( =θ  and π−=θ 2)(L . However, the function 
)(sθ  is not periodic, and consequently it cannot be 

expressed in terms of a Fourier series expansion. An 
alternative formulation, suggested by Zhan and 
Roskies (1972), defines a new function, )(tφ : 

 

  tLtt +
π

θ=φ )2()(           (8) 

 
Now, 0)2()0( =πφ=φ , and the function )(tφ  is 
invariant to scaling, translation and rotation of the 
shape; hence, the low-order coefficients of its Fourier 
expansion can be used as features for translation, 
rotation, and scaling in shape recognition.  
 
A variation of this approach is to use the so-called 
slope density function as a signature. This function is 
simply a histogram of tangent-angle values. As a 
histogram is a measure of concentration of values, 
the slope density function highlights sections of the 
boundary with constant tangent angles (straight or 
nearly straight segments) and has deep valleys in 
sections producing rapidly varying angles (corners or 
sharp inflexions). 
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The curvature is defined as the rate of change of the 
slope. In general, obtaining reliable measures of 
curvature at a point in a digital boundary is difficult 
because the boundaries tend to be locally "ragged". 
A solution consists into using the difference between 
the slopes of adjacent atomic boundary segments 
(e.g. represented as straight lines) as a descriptor of 
curvature at the point of intersection of the segments. 

 
 
3. EXPERIMENTAL RESULTS 

 
The reported research was directed towards 
integrating a set of efficient, high-speed vision tools: 
Windows Region of Interest (WROI), point-, line-, 
and arc finders, and linear and circular rulers into an 
algorithm of interactive signature analysis of classes 
of mechanical parts tracked by robots in a flexible 
production line. To check the geometry and identify 
parts using the signature, you must follow the steps: 
 
1. Train an object 

The object must represent very well its class – it  
must be "perfect". The object is placed in the 
plane of view and then the program which 
computes the signature is executed; the position 
and orientation of the object is changed and the 
procedure is repeated for a few times. 
 
The user must specify for the first sample the 
starting point, the distances between each ruler 
and the length of each ruler. For the example in 
Fig. 5 of a linear offset signature, one can see 
that the distances between rulers (measurements) 
are user definable. 
 

 
 

Fig. 5 The linear offset signature of a lathe-turned 
shape 

 
If we want to compute a polar signature the 
user must specify the starting point and the angle 
between each measure. 
 
During the training session, the user can mark 
some edges (linear or circular) of particular 
interest that will be further searched and 
analysed in the recognition phase. For example 

if we want to verify if a linear edge is inclined at 
a certain angle with respect to the part's Minimal 
Inertia Axis (MIA), the start and the end point of 
this edge will be marked with the mouse of the 
IBM PC terminal of the robot-vision system.  In 
a similar way, if a circular edge must be 
selected, we will mark the start point, the end 
point and a third point on that arc-shaped edge. 
 
The program computes one type of signature 
according to the object's class. The class is 
automatically defined by the program from the 
numerical values of a computed set of standard 
scalar internal descriptors: compactness, 
eccentricity, roundness, invariant moments, 
number of bays, a.o.  
 
After the training the object has associated a 
class, a signature, a name and two parameters: 
the tolerance and the percentage of verification. 

 
2. Setting the parameters used for recognition 

• The tolerance: each measure of the 
recognized object must be into a range: 
(original measure ± the tolerance value). 
The tolerance can be modified anytime by 
the user and will be applied at run time by 
the application program. 

• The percentage of verification: specifies 
how many measures can be out of range 
(100% – every measure must be in the 
range, 50% – the maximum number of 
rulers that can be out of range is ½ of the 
total number). The default value of the 
percentage of verification proposed by the 
application is 95%. 
 

3. The recognition stage 

The sequence of operations used for measuring 
and recognition of mechanical parts includes: 
taking a picture, computation of the class to 
which the object in the WROI belongs, and 
finally applying the associated set of vision tools 
to evaluate the particular signature for all trained 
objects of this class. 
 
The design of the signature analysis program has 
been performed using specific vision tools on an 
Adept Cobra 600 TT robot, equipped with a GP-
MF602 Panasonic camera and AVI vision 
processor. 
 
The length measurements were computed using 
linear rulers (VRULERI), and checking for the 
presence of linear and circular edges was based 
respectively on the finder tools VFIND.ARC 
and VFIND.LINE (Adept, 2001).  
 

The pseudo-code below summarizes the principle of 
the interactive learning during the training stage and  
the real time computation process during the 
recognition stage. 
 



 

     

i) Training 

1. Picture acquisition 
2. Selecting the object class (from the 

computed values of internal descriptors:  
compactness, roundness,...) 

3. Suggesting the type of signature analysis: 
3.1. Linear Offset Signature (LOF) 

3.1.1. specify the starting point and 
the  linear offsets 

3.2. Polar Signature (PS) 
3.2.1. specify the starting point and 

the incremental angle 
4. Specify the particular edges to be verified 
5. Improve the measurements? 

5.1. Compute repeatedly only the signature 
(the position of the object is changed 
every time) 

5.2. Update the mean value of the signature.  
6. Compute the recognition parameters 

(tolerance, percentage of verification) and 
name the learned model. 

7. Display the results and terminate the 
training sequence. 

ii) Run time measurement and recognition 

1. Picture acquisition  
2. Identifying the object class (using the 

compactness, roundness,... descriptors) 
3. Computing the associated signature 

analysis for each class model trained. 
4. Checking the signature against its trained 

value, and inspecting the particular edges  
(if any) using finder and ruler tools 

5. Returning the results to the AVI program or 
GVR robot motion planner (the name of the 
recognized object, or void). 

6. Updating the reports about inspected and/or 
manipulated (assembled) parts; sequence 
terminated. 

Fig. 6 and Table 1 show the results obtained for a 
polar signature of a leaf-shaped object. 

 
 
Fig. 6. Computing the polar signature of a blob. 

 
Table 1 Statistical results for the polar radii signature 

of the leaf-shaped object. 
 

Statistics
[mm]

 
Parameter 

Min 
value 

( min )

 

Max 
value 

( max )

Mean 
value 

( avg ) 

Dispersion

( disp ) 

Number 
of 

ruler 
tools 
used 

1R  68.48 70.46 68.23 1.98 1 
2R  56.59 58.44 57.02 1.85 1 
3R  26.68 28.42 27.41 1.74 1 
4R  32.24 34.03 33.76 1.52 1 
5R  44.82 45.92 45.42 1.10 1 
6R  54.07 55.92 54.83 1.85 1 
7R  51.52 52.76 52.05 1.24 1 
8R  50.39 51.62 50.98 1.23 1 
9R  49.15 51.18 49.67 2.03 1 

RA  25.41 26.98 26.22 1.57 1 
RB  47.41 48.68 47.91 1.27 1 
RC  53.71 55.30 54,64 1.59 1 
RD  57.79 59.51 58.61 1.72 1 
RE  35.69 37.39 36.80 1.70 1 
RF  35.42 36.72 36.17 1.30 1 

 
The dispersion was calculated for each parameter 

101 ,...,i,Pi =  as: )Pmin()Pmax()P(disp iii −= , 
and is expressed in the same units as the parameter 
(millimetres or degrees).  The min/max values 
are: )Pmin(min i= , )Pmax(max i= . The 

expression of the mean value ∑=
i

iPavg
10
1 .  
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