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1. INTRODUCTION

Numerical methods for solving optimal control
problems, in the theory, allow the dimensions
of state and control variables to be arbitrary.
But when implementing these methods for solving
real problems system order may play a crucial
role. High dimension is a main characteristics of
large-scale systems and is a basic obstacle for
application of common numerical methods for
solution of such problems.

For large-scale systems decentralized control is
often the only method of control since employ-
ment of a single centralized controller may be eco-
nomically or computationally unfeasible or even
result in the ”curse of dimensionality”. Many
significant contributions has been made to the
development of decentralized control theory for
large-scale dynamic systems since the 70s (see,
(Sandell et al., 1978; Siljak, 1991; Lunze, 1992)
and references therein). Recently, main attention
has been devoted to the stabilization of linear and
nonlinear large-scale systems by both state and
output feedback controls (see, e.g. Yan et al., 1998,
2003; Labibi et al., 2002).
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In this paper the linear time-varying system model
is in input-output decentralized form (Lunze,
1992), i.e. the interconnections between subsys-
tems are only due to the self dynamics of the
group. Each subsystem operates under paramet-
ric bounded disturbances and its states are not
fully available, instead some linear combinations
of them are measured with bounded errors. All
subsystems have a collective goal to steer the
group to a target set in fixed time providing
maximum value to a linear performance index.
The aim of the paper is to describe a method
of on-line decentralized feedback construction im-
plemented for each subsystem via an estimator
processing the measurements of subsystem states
and a controller generating current control func-
tions for each sampling period. Interconnections
between subsystems allow the delayed exchange of
information about the optimal behaviour selected
in the past.

The paper follows the constructive approach in
(Gabasov et al., 2000a,b; 2002; Balashevich et al.,
2002) for optimal control and observation of linear
and nonlinear dynamical systems in real-time and
develops the results on decentralized control of
large-scale determined system with fully available
states studied in (Gabasov et al., 2005).



2. DYNAMICAL SYSTEMS UNDER
UNCERTAINTIES

Consider a group of q control subsystems, where
the i-th subsystem on the interval T = [t∗, t∗] is
modeled by a linear differential equation of the
form

ẋi = Ai(t)xi +
q∑

j=1,j 6=i

Aij(t)xj (1)

+Bi(t)ui + Mi(t)wi.

Here Aij(t) ∈ Rni×nj , (Aii(t) = Ai(t)), Bi(t) ∈
Rni×ri , Mi(t) ∈ Rni×pi , t ∈ T, i, j ∈ I =
{1, 2, . . . , q}, are piecewise continuous functions,
xi = xi(t) ∈ Rni is a state of the i-th subsystem
at the instant t; ui = ui(t) ∈ Ui ⊂ Rri is a
value of a discrete control of the i-th subsystem:
ui(t) ≡ ui(τ), t ∈ [τ, τ + h[, τ ∈ Th = {t∗, t∗ +
h, . . . , t∗ − h}, (h = (t∗ − t∗)/N is a sampling
period, N > 0), Ui = {ui ∈ Rri : u∗i ≤ ui ≤ u∗i }
is a bounded set of admissible values of the i-
th control; wi = wi(t) ∈ Rpi , t ∈ T , if a finite
parametric disturbance: wi(t) = Λi(t)vi, where
Λi(t) ∈ Rpi×li , t ∈ T , is known piecewise contin-
uous function, vi ∈ Rli is an unknown parameter
of the disturbance with values from a bounded set
Vi = {vi ∈ Rli : w∗i ≤ vi ≤ w∗i }.
Let the initial states xi(t∗) ∈ Rni , i ∈ I, of the
subsystems be unknown and represented in the
form

xi(t∗) = x0i + Gizi,

where x0i ∈ Rni , Gi ∈ Rni×ki are known vector
and matrix; zi ∈ Zi ⊂ Rki is an unknown
parameter from a bounded set Zi = {zi ∈ Rki :
d∗i ≤ zi ≤ d∗i }.
Sets Zi, Vi, Γi = {γi = (zi, vi) : zi ∈ Zi, vi ∈ Vi},
i ∈ I; Γ = {γ = (γi, i ∈ I) : γi ∈ Γi, i ∈ I} are
called a priory distributions of parameters of the
initial state, the disturbance, i-th subsystem (1)
and the group, respectively.

Suppose that in the course of the control pro-
cess the exact states of the subsystems are not
available, the information about them is given by
signals

yi(θ) = Ci(θ)xi(θ) + ξi(θ), θ ∈ Th, (2)

of the measurer. Here Ci(θ) ∈ Rmi×ni , are values
of a piecewise continuous function at discrete
instants θ ∈ Th; ξi(θ) ∈ Rmi , θ ∈ Th, are
errors of the measurer satisfying the inequalities
ξ∗i ≤ ξi(θ) ≤ ξ∗i , θ ∈ Th; 0 < ‖ξ∗i − ξ∗i‖.
Assume that a centralized control of the group,
when one controller generates all control functions
ui(t), t ∈ T , i ∈ I, as described in (Gabasov
et al., 2000a), is impossible due to some reasons,

e.g. high expenses. The purpose of this paper is
to present a decentralized control scheme, when
every i-th subsystem at every instant τ ∈ Th

calculates its own control, based on signals of
the measurer and some information about the
behaviour of other subsystems. In this paper it
is supposed that interconnections between the
subsystems allow the exchange of prospective be-
haviour constructed at the previous instant τ −h.

3. CLASSICAL FEEDBACK CONTROL
PRINCIPLE

Following the classical closed-loop control prin-
ciple, discrete decentralized control of the group
is performed as follows. At the instant t = t∗
the controller of the i-th subsystem receives the
output signal yi(t∗) from its measurer, and con-
trol signals uj(t∗ − 0), j ∈ Ii = I \ i, from the
other controllers about their supposed behaviour,
formed before the control process starts. Using
this information, the i-th controller chooses value
ui(t∗) = ui(t∗, yi(t∗); uj(t∗ − 0), j ∈ Ii) ∈ Ui

according to some prescribed in advance rules,
and feeds the control function ui(t) = ui(t∗), t ∈
[t∗, t∗ + h[, to the input of its subsystems. Under
these controls and disturbances wi(t), t ∈ [t∗, t∗+
h[, i ∈ I, the group at the instant t∗ + 2h is
driven into a new state x(t∗ + h) = (xi(t∗ +
h), i ∈ I), and measurers (2), i ∈ I, calculate
signals yi(t∗ + h), i ∈ I. At an arbitrary instant
τ ∈ Th the i-th controller basing on output signals
yi(τ) and control signals uj(τ−h), j ∈ Ii, chooses
ui(τ) = ui(τ, yiτ (·); uj(τ − h), j ∈ Ii) ∈ Ui, where
yiτ (·) = (yi(θ), θ ∈ Th(τ)), Th(τ) = {t∗, . . . , τ}.
The control function ui(t) = ui(τ), t ∈ [τ, τ + h[,
is fed to the input of the i-th subsystem.

As a result of described operations functions
ui(τ) = ui(τ, yiτ (·); uj(τ − h), j ∈ Ii), τ ∈ Th,
i ∈ I, depending on signals yiτ (·) are obtained.

Let Yi(τ) be a totality of all signals yiτ (·) of the
i-th measurer (2), which can be obtained by τ .

Definition. A function

ui = ui(τ, yiτ (·); uj(τ − h), j ∈ Ii), (3)

yiτ (·) ∈ Yi(τ), uj(τ − h) ∈ Uj , j ∈ Ii, τ ∈ Th,

is said to be a (discrete) decentralized feedback of
the i-th subsystem, a totality u = (ui, i ∈ I) is
called a decentralized feedback of the group.

Let X∗ = {(xi ∈ Rni , i ∈ I) : g∗ ≤
∑
i∈I

Hixi ≤ g∗}
be a prescribed target set with Hi ∈ Rm×ni ,
g∗ < g∗; and X∗(u) be a set of all terminal
states x(t∗) = (xi(t∗), i ∈ I) of the group closed
by feedback u, which are consistent with signals
yit∗(·), i ∈ I.



Definition. A decentralized feedback of the group
is said to be admissible if X∗(u) ⊂ X∗.

Let the quality of an admissible decentralized
feedback of the group be described by a functional

J(u) = min
X∗(u)

∑

i∈I

c′ixi,

where ci ∈ Rni , i ∈ I, are given vectors.

Definition. An admissible decentralized feedback
u0 is said to be optimal if J(u0) = maxu J(u),
where maximum is calculated over all admissible
feedbacks (3), i ∈ I.

The optimal decentralized feedback provides a
guaranteeng result, being the best control under
the worse conditions.

According to the definitions the classical closed-
loop control principle implies the calculation of
the optimal decentralized feedback before the
control process starts. If it is constructed, the
group under disturbances can be controlled in
real-time with no additional calculation costs. Un-
fortunately, the synthesis problem for subsystems
under uncertainty is intractable if not unsolvable
even for low dimensions. Therefore the idea of
construction the optimal decentralized feedback
in classical sense as described in this section is
abandoned and real-time control is employed. The
real-time control means that the control function
u(t), t ∈ [τ, τ + h[, is calculated in the course
of the control process for each sampling instant
τ ∈ Th after information about the realized signal
y(τ) becomes available. Describing on-line opti-
mal feedback construction we follow the ideas of
(Gabasov et al., 1995), where centralized controls
are considered. On-line calculation of current con-
trol actions is also a core of the popular model pre-
dictive control methodology (Mayne et al., 2000).

4. ON-LINE DECENTRALIZED FEEDBACK
CONTROL PRINCIPLE

Before the control process starts an optimal open-
loop control u0(t) = (u0

i (t), i ∈ I), t ∈ T , for the
group is constructed (see below the problem which
is to be solved). Information u0

j (·) = (u0
j (t), t ∈

T ), j ∈ I, Qi
b is transmitted to the i-th subsystem.

For an arbitrary subsystem i ∈ I describe the
concrete control process, where parameters z∗, v∗

and errors ξ∗(θ), θ ∈ Th, have realized. At the
start of the process the optimal open-loop control
u0

i (t), t ≥ t∗, is fed to the input of the i-th sub-
system and it obtains from its measurer the signal
y∗i (t∗). Using this signal and previously received
information u0

j (·), j ∈ Ii, the controller of the
i-th subsystem calculates the optimal open-loop
control ud

i (t|t∗, y∗i (t∗), u0
j (·), j ∈ Ii), t ∈ [t∗, t∗]

(see below the problem which is to be solved).

Both optimal open-loop control and optimal sup-
port is communicated to the other subsystems
of the group and the control function fed to the
input of the i-th subsystem is switched to u∗i (t) =
ud

i (t|t∗, y∗i (t∗), u0
j (·), j ∈ Ii), t ≥ t∗ + si(t∗), where

si(t∗) < h is time spent to calculate the optimal
open-loop control.

Let the control process is carried out till the
instant τ ∈ Th, which means that: 1) the con-
trol u∗i (t), t ∈ [t∗, τ [, has been fed to the input
of the i-th subsystem before τ , 2) the i-th con-
troller has received the optimal open-loop controls
udτ−h

j (·) = (ud
j (t|τ − h, y∗jτ−h(·), udτ−2h

k (·), k ∈
Ij), t ∈ [τ − h, t∗]), j ∈ Ii, of other subsystems,
constructed at the previous moment τ − h; 3)
it also knows its own optimal open-loop control
ud

i (t|τ−h, y∗iτ−h(·), udτ−2h
j (·), j ∈ Ii), t ∈ [τ−h, t∗]

from the previous moment; 4) at the instant τ the
measured signal y∗i (τ) is obtained.

Using information 1)-4) the optimal open-loop
control ud

i (t|τ, y∗iτ (·), udτ−h
j (·), j ∈ Ij), t ∈ [τ, t∗],

for a current moment τ are to be constructed.
The following analysis is empoyed to elabo-
rate the algorithm for constructing the functions
ud

i (t|τ, y∗iτ (·), udτ−h
j (·), j ∈ Ij), t ∈ [τ, t∗].

Firstly, note that the signal y∗i (τ) can be repre-
sented in the form y∗i (τ) = Ci(τ)(x∗i (τ)+x0i(τ))+
ξi(τ), where x0(t) = (x0i(t), i ∈ I), t ∈ [t∗, τ ], is a
trajectory of a determined control group

ẋi = Ai(t)xi + Bi(t)ui +
∑

j∈Ii

Aij(t)xj , (4)

xi(t∗) = xi0, ui(t) ≡ u∗i (t), t ∈ [t∗, τ [, i ∈ I;

and x∗(t) = (x∗i (t), i ∈ I), t ∈ [t∗, τ ], is a
trajectory of a nondeterministic group without
control

ẋi = Ai(t)xi +
∑

j∈Ii

Aij(t)xj + Mi(t)wi, (5)

xi(t∗) = Gizi, wi(t) = Λi(t)vi, t ∈ [t∗, τ ], i ∈ I,

for the parameters zi = z∗i , vi = v∗i , i ∈ I.

Using known control functions u∗j (t), t ∈ [τ−h, τ ],
j ∈ Ii, calculate a state x0i(τ) and subtract this
known term from the signal y∗i (τ):

y∗i0(τ) = y∗i (τ)− Ci(τ)x0i(τ).

Since this operation has been performed at every
moment t∗, t∗ + h, . . . , τ − h, by the instant
τ the signals y∗i0τ (·) = (y∗i0(t), t ∈ Th(τ)) are
at hand. These signals coincide with the output
measurer (2) would have produce for group (5) in
the observation process with realized parameters
zi = z∗i , vi = v∗i , i ∈ I.

Secondly, introduce sets Γ̂(τ) and Γ̂i(τ).



Definition. A set Γ̂(τ) is called a current distri-
bution of the group parameter γ = (γi, i ∈ I),
i ∈ I. It consists of vectors γ ∈ Γ, consistent with
the signal y∗0τ (·) = (y∗i0τ (·), i ∈ I), i.e. such that
there exist an initial state xi(t∗) = Gizi, i ∈ I,
zi ∈ Zi, and a disturbance wi(t) = Λi(t)vi,
t ∈ [t∗, τ [, i ∈ I, vi ∈ Vi, together with possible
measurement errors ξi(t), t ∈ Th(τ), i ∈ I, able to
generate the signal y∗0τ (·) = (y∗i0τ (·), i ∈ I).

Definition. A set Γ̂i(τ) is said to be the i-th
approximation of Γ̂(τ). It consists of vectors γ ∈
Γ, able to produce the signal y∗i0τ (·).
Obviously, Γ̂(τ) =

⋂
i∈I Γ̂i(τ).

Let X̂∗i(τ) be the i-th approximation of the
current distrubution of the terminal state of the
group, which is a set of all terminal states of group
(5) with parameters from Γ̂i(τ).

Thirdly, in what follows estimates of the set
X̂∗i(τ) are used. These estimates are the projec-
tions of X̂∗i(τ) on the system of directions given
by the rows h(k), k ∈ K = {1, 2, . . . , m} of the
matrix H = (Hi, i ∈ I):

αi
k(τ) = max h′(k)x, x ∈ X̂∗i(τ), k ∈ K, (6)

βi
k(τ) = min h′(k)x, x ∈ X̂∗i(τ), k ∈ K.

Problems (6) are called current optimal observa-
tion problems of the i-th subsystem.

Suppose that by the instant τ the i-th subsystem
obtained the estimates αj

k(τ−h), βj
k(τ−h), k ∈ K,

j ∈ Ii, calculated by all other subsystems for the
previous instant τ−h. Values ᾱi(τ) = (ᾱi

k(τ), k =
1,m), β̄i(τ) = (β̄i

k(τ), k ∈ K):

ᾱi
k(τ) = min{αi

k(τ), αj
k(τ − h), j ∈ Ii}, k ∈ K,

β̄i
k(τ) = max{βi

k(τ), βj
k(τ − h), j ∈ Ii}, k ∈ K,

are said to be the i-th coherent estimates of the
distribution X̂∗(τ) =

⋂
i∈I X̂∗i(τ) of the terminal

state of the group.

Finally, the optimal current program is defined.

Definition. A discrete control ui(t), t ∈ [τ, t∗], is
said to be a current open-loop control (current
program) if at the instant t∗ it steers the group

ẋi = Ai(t)xi +
∑

j∈Ii

Aij(t)xj + Bi(t)ui,

xi(τ) = x0i(τ),

ẋj = Aj(t)xj +
∑

k∈Ii

Ajk(t)xk

+Bj(t)ud
j (t|τ − h, y∗iτ (·), udτ−2h

k (·), k ∈ Ij),

xj(τ) = x0j(τ), j ∈ Ii,

to the set

X̄∗i(τ) = {(xj ∈ Rnj , j ∈ I) :

g∗ − β̄i(τ) ≤
∑

j∈I

Hjxj ≤ ḡ∗ − ᾱi(τ)}.

Quality of the current program ui(t), t ∈ [τ, t∗], is
given by a value Ĩ(ui) = min

∑
j∈I c′jxj(t∗), where

minimum is calculated over all γ ∈ Γ̂i(τ).

Definition. An optimal current program
ud

i (t|τ, y∗iτ (·), udτ−h
j (·), j ∈ Ii), t ∈ [τ, t∗], is

defined by the equality Ĩ(ud
i ) = max Ĩ(ui), where

maximum is calculated over all current programs.

The optimal current program is a solution to the
following problem

∑

j∈I

c′jxj(t∗) → max, (7)

ẋi = Ai(t)xi +
∑

j∈Ii

Aij(t)xj + Bi(t)ui,

xi(τ) = x0i(τ),

ẋj = Aj(t)xj +
∑

k∈Ii

Ajk(t)xk

+Bj(t)ud
j (t|τ − h, y∗iτ (·), udτ−2h

k (·), k ∈ Ij),

xj(τ) = x0j(τ), j ∈ Ii,

g∗ − β̄i(τ) ≤
∑

j∈J

Hjxj(t∗) ≤ g∗ − ᾱi(τ),

ui(t) ∈ Ui, t ∈ Th(τ),

which is called a current optimal control problem
of the i-th subsystem.

Controls ud
i (t|τ, y∗iτ (·), udτ−h

j (·), j ∈ Ii), t ∈ [τ, t∗];
ud

j (t|τ − h, y∗iτ−h(·), udτ−2h
k (·), k ∈ Ij), t ∈ [τ, t∗],

j ∈ Ii, steer the group to the terminal set with
guaranty (for all possible parameters) and delivers
a maximum value to the guaranteeing cost Ĩ(ui).
Controls ud

i (t|τ, y∗iτ (·), udτ−h
j (·), j ∈ Ii), t ∈ [τ, t∗],

i ∈ I, which are used in the control process do
no sutisfy the same property. However, for small
h they differ a little from the above guarantee-
ing controls and can be called suboptimal. The
resulted difference in the trajectories generated
by optimal and suboptimal current programs can
be treated as an additional disturbance in the
dynamical systems.

Let si(τ) be time needed to complete cal-
culations of the optimal open-loop control
ud

i (t|τ, y∗iτ (·), udτ−h
j (·), j ∈ Ii), t ∈ [τ, t∗]. On the

interval [τ, τ + si(τ)], since the current control
function is not known yet, the previous optimal
program ud

i (t|τ − h, y∗iτ−h(·), udτ−2h
j (·), j ∈ Ii),

t ∈ [τ, τ + si(τ)], is fed into the input of the i-th
subsystem. Starting with instant τ + si(τ) a con-
trol function is u∗i (t) = ud

i (t|τ, y∗iτ (·), uj(·), j ∈ Ii),
t ≥ τ + si(τ). The presence of the delays also
results in suboptimality of the constructed current



programs. As above they can be considered as
disturbances.

At the beginning of this section optimal open-
loop control u0(t) = (u0

i (t), i ∈ I), t ∈ T ,
was introduced. To construct them one has to
solve an optimal centralized control problem (time
expenses are not essential as this procedure is
performed before the real control process starts)

∑

i∈I

c′ixi(t∗) → max, (8)

ẋi = Ai(t)xi +
∑

j∈Ii

Aij(t)xj + Bi(t)ui,

xi(t∗) = x0i, i ∈ I,

g∗ − β(t∗) ≤
∑

i∈J

Hixi(t∗) ≤ g∗ − α(t∗),

ui(t) ∈ Ui, t ∈ T, i ∈ I,

where α(t∗) = (αk(t∗), k ∈ K), β(t∗) =
(βk(t∗), k ∈ K);

αk(t∗) = max h′(k)x, x ∈ X∗(t∗), k ∈ K, (9)

βk(t∗) = min h′(k)x, x ∈ X∗(t∗), k ∈ K,

and X∗(t∗) is a set of all terminal states of (5),
i ∈ I, corresponding to zi ∈ Zi, vi ∈ Vi, i ∈ I.

Thus, the algorithm for calculating the optimal
current control u∗i (t), t ≥ τ at any instant τ ∈
Th is the following: 1) solve 2m optimal ob-
servation problems (6), obtaining the estimates
αi

k(τ), βi
k(τ), k ∈ K; 2) find the coherent estimates

ᾱi(τ), β̄i(τ); 3) solve optimal control problem (7).

Definition. A device solving an optimal observa-
tion problem from (6) and calculating the esti-
mates ᾱi(τ), β̄i(τ), is called an optimal estimator;
a device solving optimal control problem (7) is
called an optimal controller.

Let se
i (τ) be time needed by 2m estimators work-

ing in parallel to obtain the estimates ᾱi(τ), β̄i(τ);
and sr

i (τ) be time required for the optimal con-
troller to solve the current optimal control prob-
lem. If si(τ) = se

i (τ) + sr
i (τ) < h, i ∈ I, then the

optimal estimators and the optimal controller are
said to perform real-time optimal decentralized
control of the group under uncertainties.

Any common method for solving extremal prob-
lems (6–9) may be used. For the inequalities
si(τ) < h, i ∈ I, to hold, problems (6), (7) at
the moment τ ∈ Th are suggested to be solved
by dual methods from (Gabasov et al., 2000b;
2002) These methods were elaborated for dynam-
ical problems such as optimal observation and op-
timal control problems. The peculiarities of these
problem originated from their dynamic nature are
taken into account to justify algorithms for on-line
applications. Their ability to solve problems (6),

(7) at the instant τ ∈ Th quickly is due to the
fact that switching instants of the optimal open-
loop control ud

i (t|τ − h, y∗iτ−h(·), uj(·), j ∈ Ii),
t ∈ [τ − h, t∗], differ just a little from those of
ud

i (t|τ, y∗iτ (·), uj(·), j ∈ Ii), t ∈ [τ, t∗]. It is rea-
sonable to take solution of problems (6), (7) for
the instant τ − h as initial approximation for the
solution of (6), (7) for the instant τ .

Papers (Gabasov et al., 2000b; 2002) operate
with a special structure called a support. Roughly
speaking a support is a totality of some switch-
ing points of the control ensuring some general
constraints of the problem are active. The rest of
the switching instants is recovered from the ele-
ments accompanying the support. In this terms,
the initial supports for problems (6), (7) at the
instant τ ∈ Th are the optimal supports of the
corresponding previous problems. Note, that op-
timal support may be communicated between the
subsystems instead of the current programs.

5. NUMERICAL EXAMPLE

On the interval T = [0, 7] consider the system

ẋ1 = x3, ẋ2 = x4 (10)

ẋ3 = −11x1 + x2 + u1 + w1,

ẋ4 = 0.25x1 − 10.25x2 + u2 + w2,

with x1(0) = 0.2, x2(0) = −0.2 and unknown
x3(0) = z1, x4(0) = z2: (z1, z2) ∈ Z = {z ∈ Z :
−0.4 ≤ z1 ≤ 0, 0 ≤ z2 ≤ 0.1}, and disturbances of
the form w1(t) = v1 sin(3t), w2(t) = v2 cos(5t)/4,
t ∈ T : (v1, v2) ∈ V = {v ∈ R2 : |vi| ≤ 0.04, i =
1, 2}.
Let the measurer at moments t ∈ Th =
{0, h, . . . , 7− h}, h = 0.07, returns values

y1 = x1 + ξ1, y2 = x2 + ξ2,

where ξi = ξi(t), |ξi(t)| ≤ 0.05, t ∈ Th, are
bounded errors.

The aim of the control process is to steer system
(10) at the moment t∗ = 7 to the set X∗ = {x ∈
R4 : |xi| ≤ 0.1, i = 1, 4}; by bounded controls
0 ≤ ui(t) ≤ 0.4, i = 1, 2, t ∈ T ; minimizing the
functional J(u) =

∫ 7

0
(u1(t) + u2(t))dt.

Let in a concrete control process the following
values has realized:

z∗1 = −0.3; z∗2 = 0.07; v∗1 = 0.02; v∗2 = −0.02;

ξ∗1(t) = 0.03 sin(5t), ξ∗2(t) = 0.04 cos(7t), t ∈ Th.

Both centralized and decentralized feedbacks has
been constructed for the problem in question,
where two subsystems has been considered: the
first subsystem is

ẋ1 = x3, ẋ3 = −11x1 + x2 + u1 + w1,



with a measurer y1 = x1 + ξ1; the second is

ẋ2 = x4, ẋ4 = 0.25x1 − 10.25x2 + u2 + w2,

with y2 = x2 + ξ2.
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0.2

0.4
u1

1 2 3 4 5 6 7
t

0.2

0.4
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Fig. 1. Optimal centralized feedbacks.
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Fig. 2. Optimal decentralized feedbacks.

Centralized feedbacks are presented in Fugure 1;
decentralized in Figure 2. Figure 3 shows the
projections on the phase planes x1x3 and x2x4 of
the optimal trajectories under optimal centralized
(dash curve) and decentralized feedbacks (solid
curve). The value of the cost function during
centralized control turned out to be equal to
1.62281; in decentralized — 1.66793.
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Fig. 3. The projections of the optimal trajectories.

Above the delay si(τ), i = 1, 2, τ ∈ Th, was
not taken into account. The effect of the delays
is was studied assuming si(τ) = h/2, i = 1, 2,
τ ∈ Th. For this case the value of the cost function
increased. For centralized control it turned out to
be equal to 1.63768; in decentralized — 1.68985.

CONCLUSION

In this paper, optimal decentralized control of a
group of interconnected linear dynamical systems
under uncertainties was investigated. A general
scheme of optimal decentralized feedback control
in real-time was described. This scheme allows
hard interconnections between the subsystems in
the group which resulted in the fact that only
control dimensions were reduced when distribut-
ing the control functions among the controllers
of subsystems. Authors believe that weak inter-
connections will also reduce the state dimensions
in problems (7). This idea is subject to further
research as is a development of the method for
nonlinear large-scale problems.
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