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Abstract: In this paper, we present an overview performance analysis of Kalman-
based filters and particle filters for Non-Linear/Non-Gaussian Bayesian tracking.
The simulation results show that the particle filters have superior performance than
the Kalman-based filters. Although the particle filters are time consuming, but in
many situations such as the low data rate, low signal-to-noise ratio situations, the

superior performance is very attractive. Copyright
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1. INTRODUCTION

Many problems in statistical signal processing,
automatic control, applied statistics or economet-
rics are in nature non-linear and non-Gaussian,
which can be seen as Bayesian filtering problem
(Doucet, 1998). Therefor, there is a need for accu-
rate state estimation techniques for the Bayesian
filtering problems.

The well-known and widely-used algorithm to
solve the problem is the extended Kalman filter
(EKF). This filter is based upon the principle of
linearizing all nonlinear models (i.e., process and
measurement models) using Taylor series expan-
sions so the traditional Kalman filter (KF) can be
applied. Unfortunately, in practice, the use of the
EKF has two well-known drawbacks. First, the
linearisation can produce highly unstable filters
if the assumptions of local linearity is violated.
Second, the derivation of the Jacobian matrices
are nontrivial in most applications and often lead
to significant implementation difficulties (Julier et
al., 1997). As a result, this filter may diverge.

To address these limitations, Julier and Uhlmann
in (Julier et al., 1997) proposed the unscented
Kalman filter (UKF), which is a straightforward
extension of the unscented transformation (UT)
to the recursive estimation. The UKF is a pow-
erful nonlinear estimation technique and has been
shown to give better performance than a standard
EKF in a variety of applications.

However, all these methods (EKF and UKF)
are approximating the true distribution as being
Gaussian — this is necessary to make the math
tractable. When the non-linearity is pronounced
then even the best-fitting Gaussian distribution
will be a poor approximation to the posterior
distribution.

Another popular solution strategy for the Bayesian
filtering problem is to use sequential Monte Carlo
methods, also known as particle filters (Gordon
et al., 1993). These methods allow for a complete
representation of the posterior distribution of the
states, so that any statistical estimates, such as
the mean, modes, kurtosis and variance, can be



easily computed. They can therefore, deal with
any nonlinearities or distributions.

The main object of this paper is to present an
overview performance analysis of the Kalman-
based filters and particle filters for non-linear
and/or non-Gaussian Bayesian tracking.

The remainder of this paper is organized as fol-
lows. We begin in Section 2 with a description
of the non-linear tracking problem and its opti-
mal Bayesian solution. The Kalman-based filters
including the Extended Kalman filter and Un-
scented Kalman filter are described in Section 3.
In section 4, various particle filters such as generic
particle filter, Extended Kalman particle filter and
Unscented particle filter will be discussed. Finally,
in Section 5, we compare the Kalman-based filters
and particle filter based on a highly non-linear
tracking and analyze the simulation results. Con-
clusions and future work will be drawn in Section
6.

2. BAYESIAN DESCRIPTION FOR
MANEUVERING TARGET TRACKING

Many recursive estimation problems can be for-
mulated as

Xp+1 = £(xg, Wi) (1)
vk = h(xg, vi) (2)

where f is a possibly non-linear function of the
state x; € R™ and the observation y, € R™ is
often a non-linear mapping of the current state.
Both the system model and the measurement
model are inaccurate, due to modeling and/or
sensor errors. This is described by the stochas-
tic processes wy and vi. Then the objective of
tracking is to recursively estimate and predict the
state xj, using the observations y1.x = {y;}*_; up
to and including time k.

From a Bayesian perspective, the tracking prob-
lem is required to construct the pdf p(xg|yi1.x),
given the data yi.; up to time k. It is assumed the
signals are independent with probability densities
p(Wg), p(vk), and the initial pdf, p(xolyo) =
p(Xg), of the state vector, also known as the
prior, is available (yo being the set of no mea-
surements) and independent. Then, in principle,
the pdf p(xx|y1.x) may be obtained recursively in
two stages: time update in (3) and measurement
update in (4).

P(Xps1|y1e) = /p(xk+1|xk)p(xk|3’1:k)dxk (3)
%TL
o p(Yk\Xk)p(Xk\YLk—ﬂ

Pxkly1ie) = P(Yely1k—1) @

These equations can easily be derived using the
Markov property, Bayes’s rule and some standard
calculations from probability theory.

The recurrence relations (3) and (4) form the basis
for the optimal Bayesian solution. This recursive
propagation of the posterior density is only a
conceptual solution in that in general, it cannot
be determined analytically.

3. KALMAN-BASED FILTERS

The traditional methods to deal with the Bayesian
filtering problem is the Kalman filter. Howerver,
in many situations of interest, the linear Gaussian
assumptions of Kalman filter do not hold. The
Kalman filter cannot therefore be used directly.
In this section, we will introduce two Kalman-
based filters — Extended Kalman filter (EKF)
and Unscented Kalman filter (UKF'), which have
been widely used in signal processing, automatic
control, etc,.

3.1 Extended Kalman Filter

If (1) and (2) are non-linear, then a local lineariza-
tion of the equations may be a sufficient descrip-
tion of the non-linear. The extended Kalman filter
(EKF) is based upon this approximation. These
approximations, however, can introduce large er-
rors in the true posterior mean and covariance
of the transformed (Gaussian) random variable,
which may lead to sub-optimal performance and
sometimes divergence of the filter.

The EKF utilizes the first term in a Taylor ex-
pansion of the non-linear function. A higher order
EKF that retains further terms in the Taylor
expansion exists, but the additional complexity
has prohibited its widespread use.

3.2 Unscented Kalman Filter

An alternative to the EKF is to use the unscented
Kalman filter (UKF), which was first proposed by
Julier and Uhlmann (Julier et al., 1997). It builds
on the principle that it is easier to approximate
a Gaussian distribution than it is to approximate
an arbitrary nonlinear function or transformation
(J.K.Uhlmann, 1994). This method bares a super-
ficial resemblance to Monte Carlo-type methods,
but uses a deterministic sampling approach to
capture the true mean and covariance estimates
with a minimal set of carefully chosen sample
points, which are called sigma points (Wan et
al., 2000a).

For linear functions, the UKF is equivalent to the
KF. The computational complexity of the UKF is



the same as the EKF, but it is more accurate and
does not require the derivation of any Jacobians.

4. PARTICLE FILTERS

We have so far presented two nonlinear filtering
methods that rely on Gaussian approximation.
In this section, we shall present the sequential
Monte Carlo method, or particle filter that does
not require this assumption. The particle filter
was first suggested by Gordon et al.(Gordon et
al., 1993) and the key idea is to represent the
required posterior density function (pdf) by a set
of random samples with associated weights and
to compute estimates based on these samples and
weights. As the number of samples becomes very
large, this Monte Carlo characterization becomes
an equivalent representation to the usual func-
tional description of the posterior pdf, and the
particle filter approaches the optimal Bayesian
estimate.

In this section, we first introduce the Sequential
Importance Sampling (SIS) Algorithm. Then we
present the extended Kalman particle filter (EPF)
and unscented particle filter (UPF), which are on
the base of the particle filter.

4.1 The Sequential Importance Sampling (SIS)
Algorithm

In order to develop the details of the algorithm,
let {x}.,, wi}Ne, denote a Random Measure that
characterizes the posterior pdf p(xo.x|y1.x), where
{x{.),i = 1,...,Ng} is a set of support points
with associated weights {w},i = 1,...,N,} and
X0k = {xj,1 =1,...,k} is the set of all states up
to time k. the weights are normalized such that
> w! = 1. Then, the posterior density at k can
be approximated as

N,

p(X01k|YI:k) ~ szd(){o;k - Xg]:k:) (5)
=1

We therefore have a discrete weighted approx-
imation to the true posterior, p(xo.x|y1.x). The
weights are chosen using the principle of Impor-
tance Sampling (Bergman, 1999) (Doucet, 1998).
This principle relies on the following: Suppose
p(z) o« 7(x) is a probability density from which
it is difficult to draw samples, but for which m(x)
can be evaluated.

So, if the samples, xg.x, were drawn from an
importance density, ¢(xo.x) then the weights in
(5) are defined to be

p(XO:k:) (6)

wy, &
F Q(XO:k)

If the importance density is chosen to factorise
such that

q(Xo:6|y1:6) = ¢(Xk|X0:k—1, Y1:6)(X0:k—1|Y 1:6—1) (7)

and the weight update equation can then be
shown to be

i — i POEPDPOGIX )
b ol q(X} %405 Y1:1)

(8)

Particle filters rely on sequential important sam-
pling (SIS) and, as a result, require the design of
proposal distributions that can approximate the
posterior distribution reasonably well. In general,
it is hard to design such proposals. The easiest
and common strategy is to sample from the prior
distribution and to weight the particles according
to the measurement likelihood. An alternative is
to sample from the measurement likelihood. These
strategies can, however, fail if the new measure-
ments appear in the tail of the prior or if the
likelihood is too peaked in comparison to the
prior. Various other approaches have been pro-
posed to solve this problem, such as prior editing,
rejection methods and auxiliary particle filters.
These three methods are all suffered from the
numerous inefficiencies. However, it is possible to
construct suboptimal approximations to the opti-
mal importance density by using local lineariza-
tion techniques (Doucet, 1998). Such lineariza-
tions use an importance density that is a Gaus-
sian approximation to p(Xp|Xgp—1,yr). Another
approach is to estimate a Gaussian approximation
to p(xg|Xk—1,yx) using the unscented transform
(Merwe et al., 2000).

4.2 Extended Kalman Particle Filter (EPF)

Within the particle filter framework, a separate
EKEF is used to generate and propagate a Gaussian
proposal distribution for each particle, i.e.,

q(X;f‘Xz):k’ylik) %N(XE,PZ:) i=1,...,N. (9)
That is, at time k-1 one uses the EKF equations,
with the new data, to compute the mean and
covariance of the importance distribution for each
particle. Next, we sample the i-th particle from
this distribution. The method requires that we
propagate the covariance ]512' and specify the EKF
process and measurement noise covariances.

Since the EKF is an MMSE estimator, this local
linearization method leads to an improved an-
nealed sampling algorithm, whereby the variance
of each proposal distribution changes with time.
Ideally, we start searching over a large region
of the error surface and as time progresses, we
concentrate on the regions of lower error.



4.8 Unscented Particle Filter (UPF)

The unscented particle filter was developed to
address some of the short-comings of the extended
Kalman particle filter.

As shown in section 3.2, the unscented Kalman
filter (UKF) is able to more accurately propa-
gate the mean and covariance of the Gaussian
approximation to the state distribution, than the
EKF. Distributions generated by the UKF gener-
ally have a bigger support overlap with the true
posterior distribution than the overlap achieved
by the EKF estimates. The UKF also has the
ability to scale the approximation errors in the
higher tailed distributions. This makes the UKF
very attractive for the generation of proposal dis-
tributions (Merwe et al., 2000).

The new filter that result from using a UKF
for proposal distribution generation within the
particle filter framework is called the Unscented
Particle Filter (UPF), which takes advantage of
the good features of both UKF and particle filters,
and avoids their limitations. The UPF uses a UKF
for proposal distribution within the particle filter
framework. Specifically, the proposal distribution
for each particle is as follows:

q(xi‘xé:k—lv}’hk) :N(igwf’z% = 1,,N(10)

where X, and lsk are the mean and covariance
of x, computed using UKF. The UPF algorithm
is easily obtained by plugging the UKF step

and Equation (10) into the generic particle filter
algorithm.

5. SIMULATION EXPERIMENT

Here we consider the following dynamic system as
an illustrative example:

o= fr(Tp-1,k) + vp_1 (11)
= ﬁ + (12)
Yr =50
where
_ 251y
Folwpr, k) = 22 4 $k2 L 8cos(1.2(k — 1))

2 1+xi_,

and vi_1 and ny are zero mean Gaussian random
variables with variances Qx—; and Ry, respec-
tively. We use Qr_1 = 10 and R = 1. Given
only the noisy observations, y;, the different filters
were used to estimate the underlying clean state
sequence xy for t = 1,...,T. Here T = 60. This
example has been analyzed before in many publi-
cations (Carlin et al., 1992) (Gordon et al., 1993)
(Arulampalam et al., 2002).
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Fig. 1. pdf of likelihood p(y|xk)

Table 1. RMSE for 100 Monte Carlo
simulations with Kalman-based filters
and particle filters

Algorithm RMSE Execution time
mean var (s)
EKF 102.4464  82.9801 0.0369
UKF 7.6539 11.2789 0.0335
SR-UKF 7.2869 6.9294 0.0342
PF 5.4149 2.5382 1.0812
EPF 5.1272 2.5541 6.3639
UPF 4.8438 2.9322 2.8613
SR-UPF 4.7998 2.4346 4.0925

This is highly nonlinear in both the process and
observation equations. Notice the term in the
process equation which is independent of xj but
varies with time k, which can be interpreted as
time varying noise. The likelihood p(yk|z) in Fig.
1 is very peaked and has a heavy tail, which
makes the problem more difficult to address using
conventional methods.

In Table 1, the Root Mean Square Error (RMSE)
and the Execution time® of the algorithms for
Kalman-based filters and particle filters are com-
pared. The RMSE is defined as follows:

1 T Nme
RMSE = | =) (2 —at)2. (13)

T -
k=1 i=1

ch

The SR-UKF denotes the square root unscented
Kalman filter, which was proposed in (Merwe
et al., 2001). And SR-UPF is the square root
unscented particle filter.

The example was repeated N,,. = 100 times
independently with random re-initialization for
each run. So here we adopt the mean and variance
of RMSE. All of the particle filters used N = 500
particles.

5.1 Kalman-Based Filters

The extended Kalman filter’s local liberalization
and Gaussian approximation are not a sufficient

1 which is a relative measurement of algorithms.
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Fig. 2. RMSE(k) for different Kalman-based filters

description of the non-linear and non-Gaussian
nature of the example. This can be seen from Fig.
?7?7. The mean of the filter is rarely close to the
true state.

The RMSE measure in Table 1 indicates EKF
erros is the least accurate of the algorithms at
approximating the posterior. The approximations
made by the EKF are inappropriate in this exam-

ple.

The improvement in RMSE performance of the
UKEF over that of the EKF is great which can be
seen in Table 1. And the superior performance is
also well documented (Kitagawa, 1996) (Julier et
al., 1997) (Wan et al., 2000a) (Wan et al., 2000Db).
SR-UKF has a little improvement in performance
over UKF for RMSE.

In Fig. 2, the RMSE is presented for each time,
i.e., according to the equation (14) for the different
Kalman-Based methods. The UKF and SR-UKF
are much more stable than the EKF, which is an
attractive factor in the application.

N,
| Nme
RMSE(K) = \| 57— >_ (& — ). (14)
mc i=1

5.2 Particle Filters

The RMSE errors in Table 1 indicate that, in
highly non-linear environments, the particle filters
offers an improvement in performance over an
EKF and UKF. This improvement results from
approximating the density rather than the mod-
els.

When using a particle filter, one can often expect
and frequently achieve an improvement in per-
formance by using far more particles or alterna-
tively by employing EPF or UPF. An importance
density tuned to a particular problem will yield
an appropriate trade off between the number of
particles and the computational expense neces-
sary for each particle, giving the best qualitative
performance with affordable computational effort.

Mean of RMSE
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Fig. 3. particle filters with different number of
particles
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Fig. 4. RMSE(k) for different particle filters

Fig. 3 shows performance of PF, EPF and UPF
using different number of particles: 50, 100, 200,
500. The RMSEs using particles from 50 to 500
decrease rapidly , and 1000 and beyond have little
room for improvement. Particle filter using 1000
particles almost has the same RMSE with EPF
and UPF using only 200 particles. So choosing the
importance density to be well suited to a given
application requires careful thought. The choice
made is crucial.

In Fig. 4 the RMSE is presented for each time, i.e.,
according to the equation (14) for the different
particle filters.

6. CONCLUSIONS AND FUTURE WORK

In the simulation study in section 5, the par-
ticle filters improved the tracking performance
compared to the Kalman-based filters for non-
linear /non-Gaussian Bayesian tracking. However,
particle filters can be time consuming if many
particles are used.

For Kalman-based filters, the UKF has superior
performance over the EKF with the same compu-
tation time, and SR-UKF has a little improvement
in performance than UKF. The UKF and SR-
UKF are much more stable than the EKF. When
using a particle filter, one can often expect and fre-



quently achieve an improvement in performance
by using far more particles or alternatively by em-
ploying EPF or UPF. On the whole, the particle
filter is superior to the Kalman-based filters.

Although the particle filter is time consuming,
but in the low data rate, low signal-to-noise ratio
situations where sensor responses may provide
very ambiguous information about the state of the
target, the superior performance of particle filters
is very attractive.

In our future work, we will extend the range of
applications of the particle filters. And the parallel
particle filter and hardwarization of particle filter
is also our direction of future work.
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