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Abstract: Two numerically reliable algorithms to compute the periodic nonnegative
definite stabilizing solution of discrete-time periodic Riccati equations are proposed. The
first method represents an extension of the periodic QZ algorithm to non-square periodic
pairs, while the second method represents an extension of a quotient-product swapping
and collapsing “fast” algorithm. Both approaches are completely general being applicable
to periodic Riccati equations with time varying dimensions as well as with singular
control weighting. For the “fast” method, reliable software implementation is available

in a recently developed PERIODIC SYSTEMS Toolbox. Copyright

2005 IFAC
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1. INTRODUCTION

This paper deals with the efficient computation of the
unique symmetric stabilizing N -periodic solution Xy,
k = 1,...,N of the periodic reverse discrete-time
algebraic Riccati equation (PRDARE)

Xi = Qp + AL X1 4k — (A} Xi41 By +Sk)
X (Ry+Bf Xi1Br) M (AF X1 Br+Sk) (1)
where A;, € R™+1*" B, € R™+X™k Q, €
R™ ™ R, € R™>™ and S, € R™™ ™ are

N-periodic matrices (N > 1). All Qx and Ry are
assumed symmetric matrices.

Equation (1) arises, for example, when solving the LQ
optimal control problem for the linear periodic system

Tip+1 = Az + Brug 2
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by minimizing the quadratic cost functional
i [@Qr Sk ] [k
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ST Ry
vided a nonnegative stabilizing solution X, k =
1,..., N of PRDARE (1) is known, the periodic state-
feedback matrix F}; in the optimal control law u}, =
Fyxy, which minimizes the performance index (3),
results as

where usually it assumed that { } > 0. Pro-

Fy = —(BF X} 1 Bp+Ri) M (AF X411 Br+Sk) 7 (4)

A solution X of (1) is called a stabilizing solu-
tion if the corresponding feedback (4) ensures that
Darpr(N +1,1) C €7, where ®y(j,i) :=
Aj_q--Ai1A4;, with ®4(i,¢) = I,,, denotes the
transition matrix between time moments ¢ and j.



Any method to solve the PRDARE (1) can be also
employed to solve the dual periodic forward discrete-
time algebraic Riccati equation (PFDARE)

X1 = Qk + A X AL — (A X, CE+Sy)
><(Rk+CkaCg)_1(AkaCg+Sk)T %)

by solving the PRDARE (1) with the replacements

Ay — AL ., Br — C%_,,
Qk — QN*](H Sk Sjj\;,k, Ry — Ry_p

From the solution X}, of the PRDARE, the solution of
PFDARE is recovered with the replacements

Xk — XN_ky2, k=2,..,N

The solution of PRDARE for constant dimensions
has been considered by several authors (Bojanczyk et
al., 1992; Hench and Laub, 1994; Benner et al., 2002),
but PRDAREs with time-varying dimensions have
been considered only recently in (Chu et al., 2004).
A standard assumption in all proposed algorithms
is the invertibility of Rj. The methods proposed in
(Bojanczyk et al., 1992; Hench and Laub, 1994) rely
on the periodic QZ decomposition to compute orthog-
onal bases for suitable periodic deflating subspaces
from which the solution results. The main computa-
tional ingredient for these methods is the computa-
tion of an ordered periodic QZ decomposition of a
pair of periodic square matrices with constant dimen-
sions. Algorithms to perform this decomposition have
been proposed in (Bojanczyk et al., 1992; Hench and
Laub, 1994), but presently there is no robust numerical
software implementing these methods for pairs of real
periodic matrices (Kressner, 2004).

The methods proposed in (Benner et al., 2002; Chu
et al., 2004) belong to the family of “fast” methods,
by reducing the problem to a single DARE satisfied
say by X;. This DARE can be then solved using
standard deflating subspace methods. The rest of so-
lution X, for k = N, N — 1,...,2 can be obtained
by a convergent direct iteration on (1). The quotient-
product swapping and collapsing method of (Benner
et al., 2002; Benner and Byers, 2001) has been rein-
terpreted to perform locally orthogonal compressions
on an extended regular pencil to obtain a subpencil
whose stable deflating subspace generates the stabi-
lizing solution at a certain time moment (Van Dooren,
1999). This method performs substantially less op-
erations than the periodic QZ decomposition based
approach, and this justifies the term “fast” used to
label it (Van Dooren, 1999). The method of (Chu et
al., 2004) performs essentially the same reduction of
the extended pencil by using structure preserving non-
orthogonal block compressions. In the resulting final
subpencil the “matrices” of a standard problem can
be identified which define the solution at a certain
time moment. To compute the solution, a structure-
preserving iterative doubling algorithm with quadratic

convergence is employed in (Chu et al., 2004), but
any alternative approach for standard systems can be
employed as well.

In this paper, extensions of the above methods are
proposed which can address the most general case of
time-varying dimensions and singular input weight-
ing matrices Rj. Problems with possibly time-varying
dimensions are to be expected when solving spectral
and inner-outer factorization problems for periodic
systems using deflation based approaches similar to
those proposed in (Oard and Varga, 1999) for standard
systems. Problems with singular Ry, arise when solv-
ing, for example, dead-beat control problems via an
LQ-optimization based approach (Emami-Naeini and
Franklin, 1982). Both of proposed methods are able to
address problems with null characteristic multipliers.
The first method extends the periodic QZ algorithm
to handle non-square periodic pairs with time-varying
dimensions. To apply the standard periodic QZ algo-
rithm algorithm, a certain periodic pair is preprocessed
by deflating first its infinite characteristic multipliers
and then isolating the core finite characteristic multi-
pliers. The second method performs structure exploit-
ing orthogonal transformations to reduce an extended
regular pencil to a regular subpencil, whose deflat-
ing subspaces produce the solution of PDARE at a
fixed time moment. This method extends the quotient-
product swapping and collapsing approach of (Benner
et al., 2002) along the lines of the reduction technique
employed in (Varga and Van Dooren, 2003). The main
advantage of this approach is that its implementation
is straightforward using available robust numerical
software. For the fast” method, reliable software im-
plementation is already available in a recently devel-
oped PERIODIC SYSTEMS Toolbox (Varga, 2005).

2. EXTENDED PERIODIC QZ ALGORITHM

Consider the periodic matrix pairs

A, O By L., O O
Mk: _ijnk _Sk 7Lk: 0 Ag 0 (6)
St O Ry O -Blo

where M, € R#HrRsitme)x@uetme) qnq 1, ¢
Rkt ma) X @netmisn)  With this pairs, the
PRDARE (1) and (4) can be written as

I, I

MNk41
Mk ch = Lk Xk+1 \I/k
Fy Fit1

for W), := Ay + B F,, € R™+ X" This alternative
form of the PRDARE leads to a straightforward exten-
sion of the methods of (Bojanczyk et al., 1992; Hench
and Laub, 1994) to compute the stabilizing periodic
solution X}:

1. Compute the N-periodic matrices V}; and Zj
such that fork =1,..., N



Vi H H

kMka = |: k,11 :;z:|
T I

Vil Zy1 = [ k:’“ :;ﬂ

where Hk711 € R+ X1 , Tk-,,ll € R™k+1 X741
is invertible, and ® ;-1 | (N+1,1)eC.

2. Partition Zj, to conform with the partitioning of
matrices My, and Vi, M Z;.

Zra1 Zr a2
2y = | Zr,21 Zik22
Zk31 Lk,32

If all Zj 11 are invertible, compute X; =
ZyanZp 1y and Fy = Zy 317, 4.

Note that in the case of time-varying dimensions, the
direct application of the periodic QZ algorithm at Step
1 is not possible. It is shown in what follows how
to overcome this difficulty with recently developed
algorithms to reduce periodic matrix pairs.

The computation of V;, and Zj at Step 1 can be
performed in three main steps. In the first step a
finite-infinite spectral separation is performed by us-
ing the recently developed algorithm to compute
Kronecker-like forms of periodic pairs (Varga, 2004b).
By applying this algorithm to the dual periodic pair
(Mﬁ_ & LJQC,_ «)» orthogonal matrices Vk1 and Zé are
determined such that

foagfoo
Vi My Zy = [M’“ Mi ] :

0 M
Lf Lfvoo
Vinzb, = |5

where L£ and M ° are nonsingular matrices. The pair
(M ,{ , L£ ) contains the finite characteristic multipliers,
while the pair (Mg°, Lg°) contains the infinite charac-
teristic multipliers. Note that the finite characteristic
multipliers at time k are the eigenvalues of the prod-
uct (L], ) "M/, y -~ (L)~" M and the nilpotent
matrix product (Mg°)1Lg° - - -
acterizes the infinite characteristic multipliers. The
problem is not solvable if the above separation can
not be performed (i.e., the resulting Kronecker-like
form contains parts which correspond to a left or right
Kronecker structure).

In the second step, orthogonal matrices V;? and Z7 are
determined such that

Ml M
V]?M]{Z]? _ 811 M/;,IQ ’
k,22
Li LI
Vk2L£Z;z+1 = kO’H L’fc’ll‘| )
k,22

where the pair (M ,,, L{ ,,) has constant dimen-
sions and is in a periodic generalized Hessenberg form

(M )~ L7S, y char-

(Hench and Laub, 1994), L |, € R+ ) x (s —n)

(nk+1—n) X (nk—n)

is upper triangular and M/ ,{,11 eR
is u})per trapezoidal, with n = minnyg. The pair
(Mj. 115 Lgvn) has only null characteristic multipliers.
This reduction can be performed by extending the
generalized periodic Hessenberg reduction procedures
of (Bojanczyk et al., 1992; Hench and Laub, 1994) to
the case of non-constant dimensions similarly as done
in (Varga, 1999) for the periodic Hessenberg form.

Finally, orthogonal matrices V;? and Z} are computed
such that

sacf o3 | Mg M2

Vk Mk,2QZk - |: Ok ]Wk]g )

LS Ls,u
Vk3L£,22Zl§+1 :[ oy }v

O L

where the pair (M}, L7 ) has only stable characteristic
multipliers, and the pair (M}!, L}) has only unstable
characteristic multipliers. Because of the symplectic
nature of the eigenvalue problem, the nonzero eigen-
values must appear in reciprocal pairs. For this step,
the algorithms of (Bojanczyk et al., 1992; Hench and
Laub, 1994) to compute and reorder the periodic QZ
decomposition can be used.

The final transformation matrix Z;, is obtained as

To compute X}, and F}, the accumulation of the left
transformations V}, is not necessary.

Each computational step of the above algorithm is nu-
merically stable and has a computational complexity
of O(N(2n+m)?), where n and m are the maximum
problem dimensions for ny and my, respectively.

In the case of constant dimensions, a similar approach
to that proposed for standard systems (Van Dooren,
1981), can be used to deflate trivial infinite character-
istic multipliers first. For this purpose, orthogonal Uy,
are chosen such that

By, 0]
U | =Sk | = _O
Ry, Ry

where all R;, € R™*™ are nonsingular. Note that this
is a necessary condition for the existence of a solution
of the PRDARE. Let define the reduced periodic pair
(My, Ly,) from
[, O (L. 0
UkMk—[ . EJ’ UpLy = [ . 0}7

where M, € R*** T, G_]RQ”XT. Then the N-
periodic orthogonal matrices V', and Zj, are computed
such that fork =1,..., N

Fk,ll Fk,12:|

mmz:[OHm



— - Te11 T
VilpZpsr = [ ]811 TZZ}

where Fk,ll S IR"XTL, Tk,ll € R™"™ is invertible,
and CDTAHH(N + 1,1) € C . Finally, let parti-
11

tion Z) to conform with the partitioning of matrix

ViMpZy

7, = |:Zk,11 Zk,12:|
L1 Li22

and, provided all 7;;,11 are invertible, compute
S ——
Xy = Zk,212k711
The state-feedback matrix F}, results from (4).
3. FAST ALGORITHM

The second algorithm can be explained by defining the
extended pencil

M, -L; O --- O
O My —1Lo O
Ho:T=| : -~ -~ -~ = |
0 Mn1 —Lna
—2Ly O -+ O My

of order p = Zf\il(an + my;). In what follows

it is assumed that this pencil is regular and has no
eigenvalues on the unit circle.

The proposed algorithm implicitly constructs a sta-
ble deflating subspace of the pencil (7) by employ-
ing structure exploiting reductions similar to that em-
ployed in (Varga and Van Dooren, 2003) for comput-
ing periodic systems zeros. The method can be seen
as an extension of the swapping and collapsing ap-
proach proposed in (Benner and Byers, 2001; Benner
et al., 2002) of quotient-products. The basic reduction
is performed as follows.

Consider the (ny + 2ns + n3 + my + ma)-th order
orthogonal transformation matrix U; compressing the

rows of the matrix {_Ll ] to {I({)l , where R; is a
2

nonsingular matrix of order 2ns + mso . Applying U
to the first two blocks rows of H — zT we obtain for
the nonzero elements

g [ M =L O
YO My, —Ls

My O —Lg

Ml R1 le

which defines the new matrices M5 and Zz with nq +
ns -+ M1 rows.

Then construct the (n142n;41+n;4+2+m1+m;11)-th
order orthogonal transformations U; fori = 2, ... N-1
such that

M, -L; O

U ]_ M; R, —L;
‘1l O My —Liya

M;+1 O *Ez'-s-l

where R, are invertible matrices of order 2n;,; +
m;+1. This recursively defines the new matrices M,
and L; 1 with ny 4+ n; o + m; rows.

Applying the transformations U; successively to the -
th and (¢ 4 1)-th block rows of the transformed pencil
H — 2T, the reduced pencil

i M, R, -Li O O

M2 0] R2 0]

0—T= I R (8)
MJ\P1*ZLN—1 o O - RN—l
| My —zLy [O O --- O

is obtained, which is orthogonally similar to H — 27T'.
Since the matrices I?; are nonsingular, the regular
subpencil M, N — 2L n of order 2nq + my will contain
all finite eigenvalues of the original pencil. To check
the regularity of the extended pencil, the reciprocal
condition numbers of the upper triangular matrices
R; can be cheaply estimated to detect possible rank
losses.

To compute the solution X, orthogonal V; and Z; are
determined such that

— -~ Hyy — 211 Hig — 2T
V(T — 2Lz = | 7T e =2

where Hq1 — 277, has only finite and stable eigenval-
ues. Partition Z; conformably in two block columns
and three block rows

Zi1 212
Zy = | Zi21 Z1,22
Z1,31 £1,32

such that Z; 11 € R™ ™", Provided Z 1; is invert-
ible, the solution X7 and feedback Fj can be com-
puted as Xl = 2172121_’111 and F1 = 21731Z1_7111. The
rest of the solution Xy, for k = N, ... 2 is computed
iteratively with (1). Since the process to iterate directly
on the equation (1) is convergent, this iteration pro-
duces virtually no errors.

To estimate the computational effort of the fast ap-
proach, let assume constant dimensions n and m for
the matrices 4, € R™ "™ and B, € R"*™. The
reduction of the pencil H—zT can be done by comput-
ing successively N — 1 QR decompositions of (4n +
2m) X (2n + m) matrices and applying the transfor-
mation to two sub-blocks of the same dimensions. The
reduction step has thus a computational complexity of
O((N — 1)(2n + m)?). Since the last step, the com-
putation of stable deflating subspace of the reduced
pencil My — zLy, has a complexity of O((2n +
m)?3), it follows that the overall computational com-
plexity of the proposed approach corresponds to what
is expected for a satisfactory algorithm for periodic
systems. This approach is substantially more efficient
than the periodic QZ algorithm based approach and



this is why, the proposed algorithm belongs to the fam-
ily of so-called fast algorithms (Van Dooren, 1999).

Since the main reduction consists of successive QR-
decompositions, it can be shown (Golub and Van Loan,
1989) that the matrices of the computed reduced pen-
cil H — AT satisfy

IUX — X2 <emf(2n+m)||X|2, X=H,T
where U is the matrix of accumulated left orthogonal
transformations, €y, is the relative machine precision,
and f(2n + m) is a quantity of order of 2n + m. The
subsequent computational step is performed using the
algorithm of (Misra et al., 1994) and is also based ex-
clusively on orthogonal transformations. This second
step is numerically stable as well. Overall, it is thus
guaranteed that the computed solution is exact for a
slightly perturbed extended pencil. It follows that the
proposed algorithm to compute zeros is numerically
backward stable.

Since the structure of the perturbed extended pencil is
not preserved in the reduction, we can not say however
that the computed zeros are exact for slightly per-
turbed original data (i.e., the algorithm is not strongly
stable). In spite of this weaker type of stability, the
proposed algorithm is the first numerically reliable
procedure able to solve PRDARE:S of the most general
form.

4. DEADBEAT CONTROL

The LQ optimization based approach proposed in
(Emami-Naeini and Franklin, 1982) for deadbeat con-
trol can be easily extended to periodic systems. To
this end, a periodic LQ optimization problem with
R, =0,5 =0and Qi = C’,CTCk is solved, where
Cr € R™*™ are chosen such that the periodic
system (Ay, By, Ck) has no finite zeros. For standard
systems the choice of CY is straightforward and in-
volves the computation of the Kalman controllability
form (Emami-Naeini and Franklin, 1982). The same
approach can be used for periodic systems by comput-
ing the periodic Kalman reachability form (A, By)
of the periodic pair (A, By) using the algorithm pro-
posed in (Varga, 2004a). For a completely reachable
pair (Ag, By), this algorithm computes orthogonal N-
periodic transformation matrices Zj, such that

Ay = ZkTHAka, By = ZkT+1Bk

where each matrix [ By, Ay ] is in a staircase form

Apae
Aoy

Aki1,0|Ak1,1 Ak 2
SO O |Arp2,1 Ak
[Br | Ax]l=| . .

O | O O Aprie—1Arue

RO
where Ag.i; € R i =1,... 0 Apiio1 €
10

(i-1) N
R+ and rank Ag,; ;1 = I/](C:)_l, i=1,...,L

('}, can be chosen in the form

C =diag (Cr 1, -+, Cre—1, I,,IED)Z;{

WD) )y, D) L
where C ;-1 € IRk k177 Yk contains in

each line a single nonzero element (e.g., setto 1) in the
position corresponding to a linearly dependent column
of Ay ;—1. For example, in the simple case when all
sub-diagonal blocks are invertible, C, can be simply
chosen as

Cr=1[0 - 0Lz}
k

5. NUMERICAL EXPERIMENTS

Two examples are considered to illustrate the capa-
bilities of the proposed fast algorithm. The compu-
tations have been performed using MATLAB based
implementations relying on the tools available in
the recently developed PERIODIC SYSTEMS Toolbox
(Varga, 2005). To assess the accuracy of the results,
the residuals (assuming Sy = 0)

k= || Xk — Qr — AL X1 (Ak + BrFy)|p

can be computed from which a total residual can be
defined as

N 1/2
Residual = Z 7’]2» &)
j=1

Example 1. This is an example with time-varying
dimensions, defined by the 3-periodic matrices

2 -3
-32 9 6 —3
-2 9
0
B1|:1:|aBQ|:O:|7B3 1
1 1 1

For this problem the deadbeat control problem has
been solved by choosing R = Rs = R3 = 0 and

1 0 0 11
o 1.1 272 10
le 2 2 7Q2: 1 1 7Q3:|:00:|
o1 1 "3 3
2

The resulting total residual of the computed solution is
2.1-10712, For reference purposes, the exact periodic
deadbeat state-feedback is given below

80 40 8 32
F=[6-4-2] p=| 0400 n_ |8 32
1= | P [3333} 3 [5 5}

Example 2. This example has been used in (Varga
and Pieters, 1998) to design periodic output feed-
back controllers for periodic systems with relatively



large periods. The discrete-time periodic system orig-
inates from a continuous-time periodic model of a
spacecraft pointing and attitude system described in
(Pittelkau, 1993). This system has state and input di-
mensions n = 4, m = 1, respectively, and a pe-
riod of T' = 6073.8 seconds. The discretized system
for different sampling periods T'/N has been used in
(Varga and Pieters, 1998) to design periodic output
feedback controllers for this system. The matrices of
the discrete-time periodic system can be computed
explicitly for arbitrary values of .

The deadbeat control problem has been solved for
different sampling times by choosing Ry = 0, S, =
0 and Qr = C]?Ck with C;, = [0 00 1]Zg,
where Zj, is the N-periodic orthogonal transformation
matrix which brings the periodic pair (A, By) into
the periodic Kalman reachability form (A, By, ). Note
that in this form each Ek has only the (1,1) entry
nonzero and each Ay is an upper Hessenberg matrix.

The table below presents the following results ob-
tained for different values of IN: the total residual
(9), ITER - the number of iterations performed on
PRDARE (1) to achieve the limiting accuracy, and
STDEG - the achieved closed-loop stability degree
(i.e., the maximum modulus of closed-loop character-
istic multipliers). Note that N = 600 corresponds to
a typical sampling period of about 10 seconds used to
control satellites on low Earth orbits.

N 40 120 360 600
Residual 1.0-10"T 7.7-10-1% 84-.10"12 2.4.10" 11
ITER 2 2 2 6

STDEG 2-10—1%% 5.10732¢4 1.107822 2.107322

6. CONCLUDING REMARKS

The proposed algorithms to solve PRDAREs are com-
pletely general, numerically reliable and computation-
ally efficient. For the fast algorithm, a robust numeri-
cal implementation is available in the PERIODIC SYS-
TEMS Toolbox (Varga, 2005). This implementation
underlies user-friendly software to solve periodic LQ
control and filtering related problems. This software
used in conjunction with software tools to compute pe-
riodic Kalman forms allows to solve periodic deadbeat
control problems in the most general setting (i.e., for
controllable systems with time-varying dimensions).
The ultimate structure preserving and numerically
stable approach to solve PRDARE:s is still needed to
be developed, and very likely, it will be based on struc-
ture preserving orthogonal symplectic reductions.
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