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Abstract: In this paper we propose a new approach for the control of discrete-time
piecewise affine hybrid systems on full-dimensional polytopes. The new strategy
is divided into a local and a supervisory control problem. The local problem is
to reach and cross one facet of a polytope ensuring that the next sample of
the time-discrete trajectory is picked up in the adjacent polytope. Therefore, a
local piecewise affine control law is obtained by solving an optimization problem,
minimizing the retention period of the trajectory in the polytope or the quadratic
sum of the input signal. This procedure is based on system inherent bounds. The
supervisory control problem is to find a suitable combination of polytopes and
local control strategies that transfers the trajectory to the operating point and
keeps it there.
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1. INTRODUCTION

The piecewise linear approach for nonlinear sys-
tems was proposed in (Sontag, 1981). This ap-
proach has been generalized and finally led to
hybrid systems theory. In (Branicky, 1995) the hy-
brid phenomena were formulated. After this mile-
stone a lot of research has been done, especially in
modeling of hybrid systems. The analysis of this
class of systems and the synthesis of controllers
are still sophisticated, even nowadays.

There are two different directions in literature for
the design of controllers for hybrid and piecewise
affine systems. In (Nenninger, 2001; Habets and
van Schuppen, 2004) continuous time controllers
and in (Bemporad and Morari, 1999; Borrelli,
2002; Imura, 2004) discrete-time controllers are
designed.

Discrete-time affine systems can be obtained from
measurements of technical processes by identifi-
cation (Münz and Krebs, 2002; Ferrari-Trecate,
2001) of the hybrid system or by theoretical
modeling (Hodrus and Münz, 2003; Hodrus et
al., 2004). In the theoretical modeling approach,
given continuous piecewise affine models are dis-
cretized calculating the discrete-time affine model
in each domain from the valid continuous model.

In this paper, a new approach will be presented for
the control of discrete-time piecewise affine sys-
tems that represent a sub class of hybrid systems.

In section 2 some basic notions as polytope, facet,
affine system, and affine control law are given. Us-
ing this terms, the problem of dynamical systems
restricted to a polytope is presented. The simplex



as a special polytope is introduced. The aim of the
local controller design is formulated.

System inherent bounds, on which the new con-
troller design is based, are given in section 3

In section 4, the new control strategy is developed.
It consists of a supervisory and a local control
strategy. At the beginning, the considered state
space is partitioned into a simplex structure. Each
simplex has a corresponding vertex in a graph.
The local control strategy completes the graph by
adding selected edges. After the local control is
explored, the completed graph is used for super-
visory control.

The task of the supervisory control is to find a
path through the graph structure. The local and
the supervisory control strategy are calculated
off-line. The online effort is to determine the
active simplex and therefore, the active control
law, solving a linear search problem. This new
approach is able to track very fast dynamics
because of the reduced on-line effort.

Finally, the new strategy is applied to a two tank
system in section 5. The two tank system can be
modeled as a piecewise affine system with discrete
and continuous input signals. A performance in-
dex will determine which piecewise affine dynamic
assigned to a combination of discrete inputs is the
best.

The contribution is finished with a conclusion in
section 6.

2. PROBLEM STATEMENT

The considered state space x ∈ RN , N ∈ N

is bounded on the set Θ. Assuming there are
M points v1, ..., vM , with M ≥ N + 1, in state
space RN , such that there exists no hyperplane
of RN , containing all these M points. The full-
dimensional polytope P is defined as the convex
hull of v1, ..., vM . If a point vi, (i = 1, ..., M) can-
not be written as convex combination of the points
v1, ..., vi−1, vi+1, ..., vM it is called a vertex of the
polytope P . The polytope is completely character-
ized by its set of vertices. A full-dimensional poly-
tope with M = N + 1 is called a full-dimensional
simplex.

The intersection of a finite number of half spaces
can also describe a polytope. If an integer K ≥
N + 1, non-zero vectors n1, ..., nK ∈ RN , and
scalars α1, ..., αK ∈ R exists, such that

P = {x ∈ RN |∀i = 1, ..., K : nT
i x ≤ αi} (1)

is valid, then (1) is the implicit description of a
polytope.

The intersection of a full-dimensional polytope P
with one of its supporting hyperplanes

Fi = {x ∈ RN |nT
i x = αi} ∩ P (2)

is called a facet Fi of P , if the dimension of the
intersection is equal to N − 1. By convention the
vector ni, that is the normal vector of the facet Fi,
is of unit length and points out of the polytope.

Using numbered vertices of a simplex, the facets
can be named with the number of that vertex
which is not a vertex of the facet.

In (Habets and van Schuppen, 2004) a method is
presented to partition full-dimensional polytopes
into full-dimensional simplices by using e.g. the
Delaunay-triangulation.

Therefore, in the sequel, the full-dimensional sim-
plex P in RN with N + 1 facets is used.

On each full-dimensional simplex P a discrete-
time affine system

xk+1 = Φ xk + H uk + φ (3)

is considered, with Φ ∈ RN×N , H ∈ RN×m and
φ ∈ RN . The state x ∈ RN is assumed to be
contained in the polytope P . The input signal u
takes values from the bounded set U ⊂ Rm of
continuous inputs.

The discrete-time piecewise affine system is de-
fined on a subset Θ of the state space. There are
several affine systems i, each defined on a simplex
Pi ⊆ Θ, with

⋃
Pi = Θ, Pi ∩ Pj = ∅ ∀i 6= j.

The aim of the controller design is to find discrete-
time affine control laws

uk = −Ri xk + u0,i (4)

defined on the simplex Pi, such that the trajecto-
ries of the controlled system

xk+1 = (Φi −Hi Ri)xk + (φ
i
+ Hi u0,i), (5)

starting at any possible point in Pi

• will stay in the simplex Pi, or
• enter one of the N + 1 adjacent simplices

through one specific facet of the simplex.

The controlled system in equation (5) is equal to
(3), with (Φi + Hi Ri) = ΦR and (φ

i
+ Hi u0,i) =

φ
R
. The result is an autonomous discrete-time

affine system

xk+1 = ΦR xk + φ
R
. (6)

The following example shall clarify the main chal-
lenge of the controller design of discrete-time
piecewise affine systems.

Example 1. (Trajectories in state space). In figure 1
a trajectory of a stable discrete-time affine system
is presented. In the left part, the trajectory is
starting at the initial state x0 and evolves to the
stationary state x∞. In the right part of figure 1, a
simplex structure was superimposed. It is obvious
that the trajectory leaves simplex P1 and only
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Fig. 1. Trajectory of a discrete-time affine system
in state space

reaches the stationary state x∞ if the dynamic
in P2 equals the dynamic in P1.

In the right part, there is a second trajectory that
stays in the simplex P1. This is the result of an
affine control law, as stated in (4), valid in P1.
Alternatively, the trajectory could be forced to
leave the simplex through a selected facet.

If there are discrete inputs uD to the system, uD

is an element of a bounded integer set, see details
in (Nenninger, 2001) or section 5, a finite number
of discrete-time piecewise affine systems can be
determined for each possible combination of the
elements of the finite discrete input vector uD.
Let each combination be numbered serially in the
variable xD.

For each combination xD the same continuous
state space Θ with the same partitioning into sim-
plices is considered. There are max(xD) dynamics
defined for one simplex.

If the trajectory enters a simplex or is within the
start simplex, this is a necessary condition, that
the discrete input uD changes.

In the next section, system inherent bounds are
used to influence the system behavior.

3. SYSTEM INHERENT BOUNDS

Each autonomous system xk+1 = Φ xk has in-
herent system bounds. If the eigenvalues of the
matrix Φ are real valued and positive, these sys-
tem inherent bounds represent hyperplanes cross-
ing the origin of the system. In figure 2 a 2-
dimensional case is shown, where the system in-
herent bounds are given by the straight lines I1

and I2. If the eigenvalues are complex, the system
inherent bounds can be described with ellipsoids.
The trajectory of a stable system, once entering
the ellipsoid is trapped within (Nenninger, 2001).
These complex eigenvalues are not topic of this
paper.

If an affine term φ is added to the autonomous
system, the equilibrium of the system leaves the
origin. This leads e.g. to the controlled discrete-
time affine system (6).

The system inherent bounds cross the equilibrium
xe, if the left eigenvectors wi of the system matrix
ΦR and the elements of the system matrix ΦR are
real valued, that means that the eigenvalues λi

also have to be real valued.

The following equation wix = wixe describes the
system inherent bounds, that are hyperplanes.
System inherent bounds means that there exists
no trajectory which is able to cross this hyper-
plane under the assumptions made.

Fig. 2. The system inherent bounds I1 and I2

corresponding to the eigenvectors w1 and w2.

In figure 2, the equilibrium xe is given. The left
eigenvectors wi are normal vectors to the system
inherent bounds I1 and I2, that are hyperplanes.
The trajectory starting in x0 moves to the equi-
librium xe, not able to cross the system inherent
bounds I1 and I2.

For continuous time systems this result was
proven in (Nenninger, 2001). Transferring his con-
clusions to discrete-time systems means to char-
acterize the eigenvalues λi ∈ {R|0 ≤ λi < 1} for
a considered stable system.

For the intended controller design the left eigen-
vectors have to be linear independent.

In the next section, the system inherent bounds
are used to design a local controller.

4. CONTROL STRATEGY

Given a discrete-time piecewise affine system in
state space Θ, partitioned into simplices, the re-
lation between the numbered simplices can be
stored in a graph structure. Each simplex P is
represented by a vertex in this graph. The control
strategy consists of two parts.

First, the local control strategy will be investi-
gated. Using system inherent bounds, the local
strategy tries to find a discrete-time piecewise
affine control law, ensuring that every trajec-
tory, starting in simplex P will leave the simplex



through a specific facet Fi, i ∈ 1, ..., N + 1 of the
simplex P and the sample picked up next is within
the adjacent simplex PA. The simplex P and PA

share the same facet Fi.

If a valid control law is found, an oriented edge
is added to the graph, connecting simplex P with
PA. This edge is used to store the two determined
parameters R and u0 of the control law (4).
If discrete inputs uD exist, a third parameter
would be xD. The best possibility will be chosen
minimizing a performance index in such a way
that

• the retention time in the simplex P is mini-
mized or

• the control energy is minimized.

It is assumed that a change in xD is only allowed,
if the first sample after the trajectory crossed a
facet is picked up.

4.1 Local control

The local control problem, as mentioned in sec-
tion 2, is to enter the adjacent simplex PA through
a defined facet FA, if the state x ∈ Θ ⊂ RN is not
contained in the final simplex PF . The sequence
of simplices is determined by the supervisory con-
trol.

If the state x is in the final simplex, the local
control problem ist to stabilize the state in xF

and keep the trajectory in PF .

The control law that solves the problem, consists
of two parameters R and u0. The aim of this
procedure is to find a matrix R and the vector
u0, such that constraints in the input signal u are
satisfied.

For each facet of each simplex, the local control
algorithm tries to find a control law (4). If there
are discrete inputs uD, the effort for exploring all
simplices is multiplied with max(xD).

For the local control used to enter an adjacent
simplex through one specific facet two different
methods will be presented.

Let an operating point x∞ in a region of the
adjacent simplex P ∗A be chosen. If P ∪ PA results
in a convex region, than P ∗A = PA. As shown in
figure 4 P ∗A can be a subregion of PA, P ∗A ⊂ PA,
if P ∪ PA is not convex.

The first method is presented in figure 3. After
the x∞ is selected, the system inherent bounds
are given by straight lines through the point x∞
and the vertices vj , j ∈ {1, .., i−1, i+1, .., N+1} of
the facet Fi. In figure 3 e.g. i = 3, the vertices v1

and v2 are used together with x∞ to determine
the system inherent bounds, the straight lines

Fig. 3. The controlled system with real eigenvalues
and selected eigenvectors.

I1 = (v1, x∞) and I2 = (v2, x∞). Additionally, x∞
has to be chosen that αj ≤ 90◦ with P ∗A,α ⊆ P ∗A.

In this case, the two eigenvalues λ1 and λ2 do not
have to be be equal, but both have to be stable.
A sample trajectory, not a straight line for this
general case, from x0 to x∞ is given.

Fig. 4. The controlled system with multiple real
stable eigenvalues, the operating point on a
restricted area of the neighbor simplex.

The second method is to choose the x∞ ∈ P ∗A and
real multiple eigenvalues λi = λ, i = 1, ..., N . In
figure 4 an example is given with λ1 = λ2. The
trajectories are straight lines due to the multiple
eigenvalues, an example is given from x0 to x∞.
The system inherent bounds I1 and I2 only have
to be linearly independent.

Both methods can be formulated as a standard op-
timization problem, a so called constrained min-
max-problem. A solver for this problem is e.g.
fminimax contained in the Matlab Optimiza-
tion Toolbox.

The stabilizing control in the final simplex PF

can be determined with the second method, men-
tioned to leave the simplex through a facet, with
x∞ = xF is in the simplex PF . Formulating an



optimization problem the parameter R and u0 can
be determined.

4.2 Supervisory control

The local control provides a graph with edges. The
supervisory control reduces to a problem to find a
path in this graph. This is also a standard prob-
lem and can be solved with Dijkstra’s-Algorithm
(Nemhauser et al., 1989).

5. EXAMPLE

The system under investigation is shown in fig-
ure 5. For each tank there is an influx. The left
tank is labeled with 1 and the right tank with
3, and the influxes are labeled with q1 and q3,
respectively. In table 1 the discrete state xD as

Fig. 5. Two tank system

Table 1. Combinations of the valves and
discrete state xD

xD 1 2 3 4 5 6 7 8

V1 0 0 0 0 1 1 1 1
V3 0 0 1 1 0 0 1 1

V13u 0 1 0 1 0 1 0 1

combinations of the discrete input vector uD =
(V 1, V 3, V 13u) is given. A valve is open, if the
value of the binary variable is one, e.g. V 1 = 1.
The dynamic for the two tank system for xD = 8
is

˙̀
1(t) =

− sign(`1(t)− `3(t))
a13

A1

√
2g

√
|`1(t)− `3(t)|

− a1

A1

√
2g

√
`1(t) +

q1,max

A1
uq,1(t)

˙̀
3(t) =

− sign(`1(t)− `3(t))
a13

A3

√
2g

√
|`1(t)− `3(t)|

− a3

A3

√
2g

√
`1(t) +

q3,max

A3
uq,3(t).

The input u(t) = (uq,1(t), uq,3(t))T is added lin-
early to the nonlinear state equation. The state

vector is x(t) = (`1(t), `3(t))T . The root func-
tion in the state equation is approximated with
a discrete-time affine system valid on a simplex
P for the controller design, simulation later on
is done on the nonlinear system. In figure 6, the
partitioned state space Θ, x ∈ {Θ ⊂ R2|0 ≤
x1 = `1 ≤ 60[cm], 0 ≤ x2 = `3 ≤ 60[cm]}
into simplices is given. The simplices are num-

Fig. 6. The trajectory of the two tank system,
starting in x0 = (3, 20)[cm] moving to xF =
(53, 40)[cm]. Sampling time T = 1s.

bered. The trajectory moves from the initial state
x0 = (3, 20)[cm] to final state xF = (53, 40)[cm]
crossing the simplices summarized in table 2. The
information which valves are closed or opened, is
given by xD marked with big digits in these twelve
used simplices in figure 6.

Table 2. Trajectory from x0 to xF se-
quentially moves over the simplices Pi

Step x0 2 3 4 5 6

Pi 43 44 50 49 42 15
xD 1 1 6 8 2 1
Step 7 8 9 10 11 xF

Pi 37 34 33 27 32 30
xD 4 2 4 3 1 7

For simplex ’50’ details are given

Φ6
50 =

[
0.9794 0.0095
0.0088 0.9911

]
, φ6

50
=

[
0.0142
−0.1260

]

and H6
50 =

[
0.6429 0.0031
0.0029 0.6467

]
.

The upper index denotes the xD to indicate the
necessary combination of the valves. The two
parameters of an control are given:

R6
50→49 =

[
0.0353 0.0146
0.0135 0.0532

]
, u6

0,50→49 =
[

1.3156
2.1996

]

The lower index denotes, where the trajectories
start and where they will lead to, e.g. 50 → 49



means the control law is valid in simplex ’50’
and will force the trajectory to enter simplex ’49’.
There were no control laws found for R6

50→48 and
R6

50→44 that consider the limitation of the input
vector u. Other possible control laws were found
for R3

50→49, R5
50→48, R7

50→49, R7
50→48 and R7

50→44.
The control law R6

50→49 has the performance
index J6

50→49 = 9.97. This performance index is
smaller than the performance index J3

50→49 =
14.98 of the control law R3

50→49 and it is smaller
than the performance index J7

50→49 = 16.43 of
the control law R7

50→49. The supervisory control
chose a path through the graph the way, that
simplex ’50’ has to be left through the facet that
is adjacent to simplex ’49’, using valve position
’6’. The needed continuous input u is guaranteed
to stay within their upper bounds cu and lower
bounds cl

cl ≤ u = R x + u0 ≤ cu.

In figure 7, the two states, i.e. the levels in tank
1 and 3, the influx to tank 1 and 3 and the
binary state of the discrete inputs for the valves
are plotted over time. For non-zero values the
valves V 1, V 2 and V 13u are open. If there is a
function value for V 1 the valve V 1 is open. There
is no steady state error. The influes q1 and q2 stay
within their bounds of 0 < qi < 1. The calculation
on a 2.4 GHz Pentium IV for the local control was
done in about 20 minutes, using Matlab R12.1

Fig. 7. The level of the two tank system and the
binary state of the valves.

6. CONCLUSION

A new approach for the design of controllers for
piecewise affine hybrid systems was presented.

Based on a discrete-time model, the design of
the controller is divided into a local control and
a supervisory control. The supervisory control is
performed in a graph, done by path planning,
the local control is based on choosing system
inherent bounds. The resulting control law is an
affine feedback law, valid on the corresponding
simplex. Linear search algorithms reduce the on-
line computational effort for the control action,
determining which control law is active. For that
reason the presented method is suitable even for
more complex industrial applications.
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