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Abstract:  Many spectral estimation methods for irregularly sampled data tend to be 
heavily biased at higher frequencies or fail to produce a spectrum that is positive for 
all frequencies. A time series spectral estimator is introduced that applies the 
principles of a new automatic equidistant missing data algorithm to unevenly spaced 
data. This time series estimator approximates the irregular data by a number of 
equidistantly resampled missing data sets, with a special nearest neighbor method. 
Slotted nearest neighbor resampling replaces a true observation time instant by the 
nearest equidistant resampling time point, but only if it is within half the slot width. 
A smaller slot reduces the bias. Therefore, multi shift slotted nearest neighbor uses a 
slot width that is a fraction of the resampling time, giving equidistant data sets with 
slightly different starting points, shifted over the slot width. Results can be accurate 
at frequencies much higher than the mean data rate. Copyright © 2005 IFAC. 
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1. INTRODUCTION 

 
Meteorological data, astronomical data or turbulence 
data obtained by Laser-Doppler anemometry are 
often irregularly sampled, due to the nature of the 
observation system. This has the advantage that the 
highest frequency that can be estimated is higher than 
half the mean data rate, which is the upper limit for 
equidistant observations. Many estimation techniques 
exist for unevenly spaced data. Bos, et al. (2002) 
describe several variations of slotting or resampling 
methods and the Fourier estimator of Lomb-Scargle. 
Lahalle, et al. (2004) estimate continuous time 
ARMA models, requiring the explicit use of a model 
for the irregular sampling instants. 
 
Benedict, et al. (2000) give an extensive survey of 
techniques. Slotting methods estimate an equidistant 
autocovariance function from the irregularly sampled 
data. Slotting algorithms have been refined with 
normalization and fuzzy slotting. Local normalization 
reduces the variance of the estimated autocovariance 
function. Fuzzy slotting produces a smoother 
autocovariance function by distributing products over 
multiple time slots. Autocovariance functions as 

estimated by present slotting techniques are not 
guaranteed to be positive semi-definite. This results 
in spectra that can become negative at a percentage of 
the frequencies where the power is weak. Methods to 
improve the performance of slotting autocovariance 
methods require very large data sets. Also a priori 
knowledge about the spectral shape is necessary, or 
subjective experimental choices have to be made to 
produce successful spectral estimates.  
 

Resampling techniques reconstruct a signal at equal 
time intervals. After resampling, the equidistant data 
can be analyzed using the periodogram or time series 
models. Spectral estimates at higher frequencies will 
be severely biased. Adrian and Yao (1987) described 
Sample and Hold reconstruction as low-pass filtering 
followed by adding noise. These effects can in theory 
be eliminated using the refined Sample and Hold 
estimator (see Benedict, et al., 2000). In practice, all 
spectral details smaller than the bias are lost. Nearest 
Neighbor resampling has similar characteristics. The 
spectra are strongly biased for frequencies higher 
than about 20 % of the mean data rate. The noise and 
filtering effects of equidistant resampling set limits to 
the achievable accuracy of resampling methods. This 



 
 
precludes the accurate estimation of spectra at higher 
frequencies where the resampling noise blurs details  
smaller than the bias and hides spectral slopes.  
 
Bos, et al. (2002) introduced a new idea with time 
series analysis. Their estimator can be perceived as 
searching for uninterrupted sequences of data that are 
almost equidistant. The selected sequences of 
different lengths can be analyzed with an irregular 
version of the Burg (1967) algorithm for segments. A 
slotted nearest neighbor resampling with Burg uses 
an equidistant signal, with many empty places where 
no original observation fell within a slot. The bias of 
slotted nearest neighbor is very much smaller than the 
bias without slotting. The reason is that a single 
original irregular observation can never appear at 
multiple resampled time instants. A disadvantage of 
this slotted Burg resampling method is that very large 
data sets are required to obtain some uninterrupted 
equidistant sequences of sufficient length for the 
irregular Burg algorithm. It turned out that a non-
linear maximum likelihood algorithm for missing 
data, developed by Jones (1980), could sometimes 
give a still better solution, also if much less data are 
available. Whereas the slotted Burg method of Bos, et 
al. (2002) required about 200000 observations, the 
quasi maximum likelihood solution sometimes 
converged already to an accurate spectral estimate 
with 2000 irregular observations.  
 
The behavior of this quasi maximum likelihood 
method for irregular data has first been investigated 
for the simpler, related problem of equidistant 
observations with missing data. In that case, Jones 
(1980) described an efficient method to calculate the 
true likelihood. A survey of existing missing data 
methods and a robust version of the maximum 
likelihood algorithm for autoregressive models of 
missing data problems has been given by Broersen, et 
al. (2004a, 2004b). Broersen and Bos (2004) included 
different types of time series models and order 
selection in the algorithm. The performance of that 
robust and automatic maximum likelihood time series 
algorithm outperforms all other methods for 
equidistant missing data problems.  
 

The variance of the spectra generally becomes 
smaller if more data are available. Often, the bias is 
independent of the sample size, like in Sample and 
Hold resampling. The variance is generally inversely 
proportional to the sample size. Therefore, most 
existing methods will converge to the biased spectral 
result if enough data are available. Most methods to 
diminish the bias are only successful if the variance is 
very small. The purpose of this paper is to develop a 
spectral estimator that can be used in small data sets 
and that has a small bias. The modifications required 
to apply the automatic algorithm for equidistant 
missing data to irregularly sampled data are given. 
First, irregular data are approximated by a number of 
shifted equidistant data sets. Time instants are fixed 
to an equidistant resampling grid where the original 
irregular sampling instant is not further away from 

the grid point than half a slot width. The choices of 
the grid time, the slot width as well as the automatic 
selection of the best model order and model type for 
the time series spectral model are discussed. 
 
 

2.  MULTI SHIFT SLOTTED NN RESAMPLING 
 

The analysis of resampling methods shows that an 
important problem is the multiple use of a single 
irregular observation for more resampled data points. 
This immediately creates a bias term in the estimated 
covariance function, because the autocovariance R(0) 
leaks to estimated non-zero autocovariance lags. The 
analysis of Adrian and Yao (1987) showed that the 
autocovariance function and the spectrum suffer from 
bias in Sample and Hold. Nearest Neighbor (NN) 
resampling has the same problems. The bias is caused 
by the shift of irregular time intervals to a fixed grid 
and by the multiple use of the same irregular 
observation. That gives a colored spectral estimate, 
even if the true irregular process would be white 
noise. It will be eliminated in slotted  NN resampling. 
 
The signal x(t) is measured at N irregular time 
instants t1,...,tN. The average distance between  the 
samples T0  is given by T0 = (tN - t1 )/(N-1) = 1/f0, with 
f0 the mean data rate. The signal is resampled on a 
grid at kN equidistant time instants at grid distance Tr 

= T0 / k (for simplicity in notation, k or 1/k is limited 
to integer numbers). The resampled signal exists only 
for t = nTr with n integer. The spectrum can be 
calculated up to frequency kf0 / 2. The usual Nearest 
Neighbor resampling substitutes at all grid points nTr 
the closest irregular observation x(ti), with 
 

     |ti-1-nTr| > |ti-nTr|   ;   |ti+1-nTr| > |ti-nTr|.       (1) 
 
The uninterrupted resampled signal contains kN 
equidistant observations. For k > 1, that means that 
many of the original N irregular observations have to 
be used for more resampled observations.  
 
Slotted Nearest Neighbor resampling accepts only a 
resampled observation at t=nTr if there is an irregular 
observation x(ti) with ti within the time slot w 
 

 nTr – 0.5w  <  ti  ≤  nTr +0.5w.             (2) 
 
If there is more than one irregular observation within 
a slot, the one closest to nTr  is used for resampling; if 
there is no observation within the slot, the resampled 
signal at nTr is left empty. For small Tr and w equal to 
Tr, the number N0 of non-empty points nTr becomes 
close to N  because almost every irregular time point 
falls into another time slot. For larger Tr  with k < 1, 
more irregular observations may fall within one slot 
and only the one closest to the grid point survives in 
the slotted NN resampled signal. Taking w = Tr /M, 
with integer M, gives disjunct intervals in (2) where 
some irregular times ti  are not within any slot of (2). 
Therefore, multi shift slotted NN resampling is 
introduced, where M different equidistant missing 
data signals are extracted from one irregular data set 



 
 
nTr+mw–0.5w< ti ≤nTr+mw+0.5w, m=0,1,.,M-1.  (3) 

 

Now, all slots of width w are connected in time. The 
number of possible grid points is N*M*T0 / Tr. Hence, 
the remaining fraction γ  is approximately given by 
1/Mk. Experience with missing data problems of 
Broersen, et al. (2004b) shows that time series 
models can be easily estimated for γ  > 0.1. It may 
become difficult if γ  is less than 0.01, unless the 
number of observations is very large. This limits the 
useful range of the resampling frequency 1/Tr and the 
slot width w for a given number of observations.  
 
 

3.  TIME   SERIES  MODELS   
 
Three different linear types of time series models can 
be distinguished: autoregressive or AR, moving 
average or MA and combined ARMA models. An 
ARMA(p,q) model can be written as (Priestley, 1981) 
 

1 1 1 1 ,n n p n p n n q n qx a x a x b bε ε ε− − − −+ + + = + + +� �
 (4) 

 

where εn is a purely random process of independent 
identically distributed stochastic variables with zero 
mean and variance σε

2. It is purely AR for q = 0 and 
purely MA for p = 0. Assume that data represent a 
stationary stochastic process. The power spectral 
density h(ω ) of an ARMA(p,q) model is completely 
determined by the parameters in (4) together with the 
variance σε

2 and is given by: 
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The autocovariance rAR(k) of the AR part of (4) is 
found with the standard AR theory (Priestley, 1981). 
It simply follows that 
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This result shows that the parameters of a time series 
model completely describe the power spectral density 
and the autocorrelation function of the data xn in (4).  
 
Furthermore, results of the theory for equidistant data 
show that transformations like (5) and (6) of 
efficiently estimated time series parameters represent 
efficient estimates of the power spectrum and the 
autocorrelation function; see Priestley (1981). The 
freely available program ARMAsel of Broersen 
(2002) computes hundreds of candidate time series 
models, AR, MA and ARMA, for uninterrupted 
equidistant data and automatically selects one single 
model type and model order. That selected model is 
used to compute the spectrum and the autocorrelation 
function of the data with (5) and (6), respectively. In 
simulations, the quality of the selected model is often 
close to the best achievable accuracy for the given 
number of observations.  

A similar automatic, approximate maximum likeli-
hood, ARMAsel-mis program has been developed for 
the equidistant missing data problem. The accuracy 
of the ARMAsel-mis spectra is better than the spectra 
obtained with many other methods from the 
literature, in simulations with missing data. Broersen, 
et al. (2004b) have given examples where the 
estimation of time series models in missing data 
problems was efficient, meaning that the accuracy of 
the resulting model approached the limit of the 
achievable accuracy. The experimental accuracy of 
spectra for irregular data will be studied here.  
 
 

4.  ARMASEL  FOR  IRREGULAR  DATA 
 
Input for the estimation are the M equidistant missing 
data sequences or segments obtained with the multi 
shift slotted nearest neighbor algorithm of (3). The 
segments are all derived from original observations in 
the same irregularly sampled time interval. In 
principle, the data in the different segments are 
correlated and not independent. However, the most 
influential parts of each segment are found at places 
where only few data are missing. Generally, those 
places are at different times for the various segments 
and the assumption that the segments are more or less 
independent is justified. However, the method will 
not be maximum likelihood, even not approximately 
because the true process is always continuous if the 
observations are irregular. Jones (1980) computes the 
likelihood of an equidistant missing data problem by 
relating observations to all previous observations that 
are present in one single segment. In the irregular 
case, the data are distributed over different segments 
if M is greater than 1. The ‘likelihood’ is computed 
separately for each segment and added afterwards in 
the minimization procedure. Therefore, not all 
contributions to the true likelihood are taken into 
account. Using all of the almost independent M 
segments, each with about N/M observations, gives a 
much better accuracy than using only one segment. 
 

All elements for an automatic ARMAsel algorithm 
for irregular data can be copied from the algorithm 
that has been developed for missing data by 
Broersen, et al. (2004a, 2004b). Only the creation of 
M equidistant segments with (3) has to be added. 
 

• The ‘likelihood’ for AR models is computed with 
the method of Jones (1980) or with ARfil 
(Broersen, et al., 2004b), depending on γ.  

• The tangent of π /2 times the AR reflection 
coefficients is used in the minimization to 
guarantee estimated reflection coefficients with 
absolute values less than 1. 

• The starting values for the AR(p+1) model are the 
estimated reflection coefficients of the AR(p) 
model with an additional zero for order p+1. 

• AR(p) order selection uses as criterion: 
 GIC(p)  =  the ‘likelihood’ + α p, 
      with α = 3  for  less than 25 % missing,  α = 5 for 
      less than 25 % remaining and α = 4 otherwise. 



 
 
• The maximization of the likelihood of MA and 

ARMA models gives problems with MA starting 
values and with order selection. Those models are 
much better estimated from the parameters of an 
intermediate AR model, with a reduced statistics 
method; see Broersen and Bos (2004). 

• The order of that intermediate AR model is 
chosen as the highest AR order with a spectrum 
close to the spectrum of the selected AR model. 

• Order selection for MA and ARMA is based on 
the ‘likelihood’ plus three times the number of 
estimated parameters. The same criterion is used 
to determine the preferred model type for the 
irregular data; see Broersen and Bos (2004).  

• The quantity γ N can roughly be considered as the 
effective number of observations. The remaining 
fraction γ  depends on the choice of the slot width 
and on the resampling period. 

 
 

5.  BIAS  OF  SLOTTED  NN  RESAMPLING 
 

 
Fig.1. Theoretical expectation of the bias of slotted 

nearest neighbor resampling for a turbulence 
spectrum, for 4 resampling times Tr and four slot 
widths w. The slot width is always given as a 
fraction of Tr . In every plot, the sequence from 
above to below is the same sequence of the legend. 

 
Whereas sample and hold or nearest neighbor 
resampling always cause a filtering operation and 
additive noise in the frequency domain, this effect 
may disappear by using the slotting variant. As an 
example, the expectation of a white noise spectrum 
remains white and unchanged after slotted nearest 
neighbor resampling. The major part of the bias in 
resampling is caused by the multiple use of the same 
irregular observation for more resampled values. This 
causes a cross over of the autocorrelation R(0) to the 
autocorrelation at R(Tr), R(2Tr),… . Slotting prevents 
this because an irregular observation can only be in 
one time slot. The bias depends on the distribution of 
the sampling instants. The variation of the 
autocorrelation function over the width of the slot is 
the remaining cause of the bias with slotting. It can 
be described easily if the sampling moments have a 
Poisson distribution, by calculating the probability 

density function of those continuous time correlation 
lags τ that contribute to the resampled autocorrelation 
Rres(nTr). This bias depends strongly on the shape of 
the autocorrelation function and hence, of the 
spectrum. Rather flat spectra have no visible bias; 
spectra with a large dynamic range can have a strong 
bias. Two types of spectra are treated here. The first 
has a constant slope in the double logarithmic 
presentation, that descends at a rate of ∼ f--5/3 from 
0.01f0. The second example starts similar but it has an 
extra declining slope at a rate of ∼ f--7 for frequencies f 
above 0.1f0. These types of spectra are representative 
for turbulence data. A narrow peak can be added to 
study the possibility of retrieving spectral details. 
 
The bias in the first example with one slope is hardly 
visible in spectral plots. Like many examples with a 
limited dynamic range, the bias is negligible and 
accurate spectra can be estimated until frequencies far 
beyond the mean data rate. Results of the second 
example with two slopes are presented in Fig. 1. The 
first figure shows whole the frequency range. The 
resampling time Tr = 2/f0 permits to compute spectra 
up to f0 /4. The other figures give only the higher part 
of the frequency range, to increase the visibility of 
the bias. The bias becomes important in weak parts of 
the spectrum and becomes less if the slot width is 
reduced. If the slot width is taken small enough, the 
bias will disappear eventually. That requires a very 
small slot if the dynamic range of the true spectrum is 
large, like in Fig. 1 for Tr = 0.25. However, the small 
slot also reduces the remaining fraction γ , because 
more resampling instants are used for the same 
amount of data. A smaller slot reduces the bias of the 
spectral estimate, but it gives an increased variance 
because the remaining fraction γ  becomes smaller 
and the estimation of parameters is more difficult. 
 
To illustrate what happens in the areas with a large 
spectral bias, a small and narrow peak at 0.6f0 has 
been added in Fig. 2, on the steep slope of the true  
 

 
Fig.2. Theoretical expectation of the bias of slotted 

nearest neighbor resampling for 2 true double slope 
turbulence spectra, with or without additive white 
noise, with signal to noise power ratio 105. Linear 
frequency scale, Tr = 0.25/f0 , slot width w = Tr /2.  



 
 
turbulence spectrum of Fig.1. Moreover, a second 
spectrum with the same peak has been generated, 
with an extra additive white noise at a level of 
0.00001 times the power of the turbulence signal. 
Although the true spectra in Fig. 2, with or without 
noise, are completely different for f / f0 > 0.6, the 
expectations of the biased slotted nearest neighbor 
resampled spectra are almost identical. This 
demonstrates that all true spectral details which are  
under the bias level of the slotting will not appear in 
the spectrum after the slotted resampling operation. 
Different true spectra, with or without noise, give the 
same biased estimates. This shows that reconstruction 
methods trying to remove the resampling bias will 
not be reliable. If different true spectra produce 
almost the same biased spectrum, it is not possible to 
undo the bias and to reconstruct the true spectrum 
without using additional information about the data. 
That additional or a priori information is not an 
outcome of the irregular data which are analyzed. 
 
The peak at f / f0 = 0.6 is still visible in both slotted 
spectra in Fig. 2. This indicates that it will be still be 
possible to detect spectral details above half the mean 
data rate, despite the bias. That would be impossible 
for equidistantly sampled observations. If the power 
of the noise is increased to more than 0.001 times the 
signal power, the true noisy and slotted noisy spectra 
virtually coincide and the peak vanishes. Both spectra 
are flat in the higher frequency range and only the 
very low frequency part of the spectrum raises above 
that noise level. The bias of slotted nearest neighbor 
resampling depends on the spectral shape. It is only 
important in a frequency range with low power.  
 
 
6.  PERFORMANCE  OF THE  NEW  ESTIMATOR 
 
Simulations with a known (aliased) spectrum are a 
first step in testing new algorithms. Test data was 
generated using the following procedure. First 128N 
equidistant data points were generated using a high 
order AR process. Then, randomly 127N data points 
were discarded. Each data point had a probability of 
127/128 to be discarded. The resulting irregular data 
was non-equidistant and time intervals between 
arrivals were roughly Poisson distributed. In 
simulations, the true properties of the data are known. 
Hence, the quality of estimated results can be 
established. A quality measure for the fit is the 
aliased model error MET. That supposes that no anti-
aliasing filter was used prior to resampling. It has 
been defined by de Bos et al. (2002) as  
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ε
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.         (7) 

 
PET (p) is the squared error of prediction of a model 
with p parameters. The true autocorrelation at time 

scale Tr = kT0 has been used to compute 2
,Tεσ . This 

normalizing variance measures how the process x(t) 
is predicted optimally by using x(t-Tr), x(t-2Tr), ⋅⋅⋅.  

 
Fig.3. True spectrum and the ordinary and slotted NN 

estimates for a single slope turbulence spectrum.   
Tr = 1/16f0 with slot width w = Tr , N = 1000. NN 
selected AR(1) with MET  = 40.6, with slotted NN 
the AR(2) model was selected with MET  = 16.1. 

 
The estimation with the new algorithm may take a 
long time, because a non-linear search program is 
used to estimate the time series parameters. If the 
sample size is large enough, a very small slot width 
can be chosen to reduce the bias and accurate results 
can be obtained. Sometimes, low order models with a 
few parameters are sufficient for accurate estimation 
of the spectrum. They can be estimated with small 
data sizes. Higher order models require more data. 
 
Fig. 3 gives a simulation result with the single slope 
example. The usual NN interpolation with 
uninterrupted equidistant resampled data selected the 
AR(1) model with ARMAsel. The new ARMAsel 
algorithm for irregular data could estimate 10 or 15 
AR parameters and selected the AR(2) model. The 
spectral estimate is accurate up to high frequencies, 
much higher than the mean data rate f0. Even for N = 
200, often good results are obtained for Tr = 1/16, 
with AR(1) or AR(2) selected. The result of the 
slotted Burg irregular algorithm of Bos, et al. (2002) 
is not shown in Fig.3. It could estimate only one 
parameter for N =1000, with MET = 38.9. It requires 
very large data sets and fails for N =200, because no 
single parameter could be estimated with sufficient 
accuracy. ARMAsel for irregular data can estimate 
one AR parameter as long as γ N, the effective 
number of observations, is greater than about 10. 
Hence, for N = 50, the resampling time Tr should be 
greater than about 0.2 to estimate an AR(1) model if 
w is taken as Tr. The AR(1) model still gives a rather 
accurate spectral density in this one-slope example 
without sharp true spectral details. The reasonable 
accuracy of the AR(1) model until the frequency 8f0 
demonstrates that low order AR models are good 

representatives for turbulence with a ∼ f--5/3 slope. 
 
Accurate estimation is somewhat more difficult for 
the second example with two spectral slopes. Fig. 4 
gives the spectra if enough observations are available  



 
 

 
Fig. 4. True spectrum, 3 estimates and the NN 

expectation for a double-slope turbulence spectrum. 
Tr = 1/4f0 with slot width w = Tr /4. N = 5000. The 
AR(3) model was selected with ARMAsel irregular 
applied to the multi shift slotted nearest neighbor 
resampled signal, with MET  = 5200.  

 

to let the ARMAsel algorithm for irregular data select 
a good fitting model. As a comparison, also the 
results of nearest neighbor resampling without 
slotting and of the slotted Burg irregular algorithms 
are presented. ARMAsel selected the ARMA(7,6) 
model for an uninterrupted nearest neighbor 
resampled signal with MET = 1.8*106. It is almost 
coinciding with the biased expectation of nearest 
neighbor resampling. The enormous improvement in 
nearest neighbor with the slotting procedure is 
obvious in Fig. 4: the bias becomes about 1000 times 
smaller for frequencies greater than f0/2. The irregular 
slotted Burg algorithm could only estimate one AR 
parameter here and the MET was 2.7*106. As a 
comparison, the MET  of the white noise AR(0) 
model is 7*108. That number is calculated by using 
the variance of the turbulence signal for PET (0) in 
(7). It has been verified that the selected spectral 
estimates for NN and slotted NN are always rather 
close to their biased expectations, if sufficient data 
are available. It is also possible to compute models 
for  the combinations Tr = 0.5, w= Tr /8 or Tr = 1, w= 
Tr /16, which have about the same remaining fraction 
γ ≈ 1/16. In most cases, the spectrum of the selected 
ARMAsel-irreg model was close to the expectation 
of the biased spectrum, as given in Fig. 1, but the 
automatic selection is not always reliable. If more 
observations are available, the multi shift slotted 
nearest neighbor spectra converge to their biased 
expectations. The bias can still be diminished by 
using smaller slots then. It turns out that 100 
observations are sufficient for the two slope example 
to have a rather good AR(2) estimate of the spectrum 
for Tr = 0.5, w= Tr /2 or Tr =1, w= Tr /4, with the MET 
of the selected model less than 0.01*MET (0) of the 
white noise model. The irregular Burg algorithm will 
become comparable with ARMAsel-irreg if the 
sample size is great enough to estimate 3 or 4 AR 
parameters. However, the variance of the estimated 
Burg parameters will always be greater. 

6.  CONCLUSIONS 
 
A new robust estimator is introduced that fits a time 
series model to multi shift slotted nearest neighbor 
resampled segments from irregularly sampled data. 
The ARMAsel-irreg algorithm gives rather accurate 
results at frequencies higher than the mean data rate 
f0. In simulations with few data, the results are much 
better than those that can be obtained from the same 
data with other known existing techniques. In many 
examples, order and type of the best time series 
model for the data can be selected automatically, 
without user interaction, with a selection criterion. 
However, selection is not yet always reliable.  
 Multi shift slotted nearest neighbor resampling 
will give very accurate spectra if the dynamic spectral 
range is limited. For a large dynamic range, a small 
slot width will reduce the expectation of the bias. 
That still requires very large data sets to obtain 
accurate estimates at frequencies higher than f0. 
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