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Abstract: This paper addresses some issues pertinent to Iterative Learning Control
(ILC) of a class of nonlinear systems with time-varying parametric uncertainties.
The new control strategy combines the backstepping technique with ILC. The
Energy-Function-based (EF-based) approach is employed to derive the control
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that the proposed learning scheme is able to learn from different control targets
and guarantee learning convergence for systems with high relative degree and
unmatched parametric uncertainties. A numerical example is given to demonstrate
the effectiveness of the proposed approach. Copyright c©2005 IFAC
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1. INTRODUCTION

The concept of Iterative Learning Control (ILC)
was first proposed and formulated by Arimoto
(Arimoto et al., 1984). ILC focus on a certain cat-
egory of learning problems where both the control
process and the tracking task are repeatable over a
finite-time interval. The ultimate control objective
of ILC is to iteratively obtain perfect tracking over
the entire time interval in the presence of system
uncertainties. To date, a lot of ILC schemes have
been developed and widely applied.Traditional
ILC approaches with the target of output tracking
are based on Contraction Mapping (CM) prin-
ciple and generally are only applicable to global
Lipschitz continuous systems with relative degree
equal to zero. For systems with higher relative
degree, the output derivative, equal to the system
relative degree, has to be employed in the control
signal (Ahn et al., 1993). Moreover, to guarantee
that perfect tracking can be obtained by itera-

tions, the control target must be strictly repeat-
able. To further extend the implementation areas
of ILC, Energy-Function-based (EF-based) itera-
tive learnings aiming at states tracking were pro-
posed for non-global Lipschitz continuous systems
(Ham et al., 1995; French and Rogers, 2000; Xu
and Tan, 2002). In (Xu and Xu, 2004), EF-based
ILC for learning from different control targets was
developed with rigorous proof. All these works
clearly demonstrate the great potential of EF-
based analysis method. However, all the uncer-
tainties considered therein must be matched with
control inputs, i.e. uncertainties enter the state
equations right at the point where the control
actions enter. Hence, high relative degree and un-
matched uncertainties are two difficult problems
in ILC areas.

Several works about ILC for systems with high
relative degree have been reported in (Sun and
Wang, 2001; Chien and Yao, 2004). A kind of



sampled-date ILC based on CM principle was
proposed for global Lipschitz continuous systems
with arbitrary relative degree in (Sun and Wang,
2001). However, only bounded tracking errors
can be guaranteed. An adaptive output-based
ILC scheme has been proposed for systems with
high relative degree in (Chien and Yao, 2004).
Nevertheless, they are only applicable to linear
or feedback linearizable systems. Therefore, it
will be interesting to explore the possibility of
developing new ILC approaches for non-global
Lipschitz systems with high relative degree and
unmatched uncertainties.

Recently, a recursive design methodology named
backstepping has been proposed for the construc-
tion of various types of control methodologies:
adaptive control, robust control, neural networks
control, optimal control, repetitive learning con-
trol etc. (Freeman and Kokotović, 1993; Krstić et
al., 1995).The main feature of the backstepping
technique is that it can alleviate the restriction
on system relative degree and handle unmatched
uncertainties easily. In this work, we combine the
backstepping technique with EF-based ILC and
develop a novel ILC algorithm for a class of nonlin-
ear systems with time-varying parametric uncer-
tainties. The new constructed control strategy can
not only learn from different control targets in the
presence of unmatched time-varying parametric
uncertainties but also removes the requirement of
system relative degree, which greatly broadens the
application domain of ILC. Rigorous mathemati-
cal proof shows that the developed ILC scheme
can guarantee learning convergence of the out-
put tracking error, i.e. perfect tracking can be
obtained as the iteration number approaches to
infinity.

The paper is organized as follows. Section II
formulates the tracking control problem for a
class of nonlinear systems with unmatched time-
varying uncertainties and high relative degree.
In Section III, a new ILC scheme based on the
backstepping technique is proposed. Convergence
analysis based on energy functions is also outlined
in this section. The proposed ILC approach is
implemented to a single-link robotic manipulator
with a flexible joint in Section IV to illustrate
its effectiveness. Finally, Section V concludes the
paper.

2. PROBLEM FORMULATION

Consider the following dynamic system.

ẋ1 = b1(t)x2 + θ1(t)ξ1(x1, t) (1)

ẋ2 = b2(t)x3 + θ2(t)ξ2(x1, x2, t) (2)

ẋ3 = b3(t)x4 + θ3(t)ξ3(x1, x2, x3, t) (3)

· · · ·
ẋn = bn(t)u + θn(t)ξn(x1, · · · , xn, t) (4)

y = x1, (5)

where u ∈ R is the system control input, y ∈ R

is the system output, ∀j ∈ N
�
= {1, · · · , n},

xj ∈ R is the measurable system state, bj
�
= bj(t)

indicates control direction, θj
�
= θj(t) ∈ R1×nj is

a vector of unknown time-varying parameters, and
ξj

�
= ξj(x1, · · · , xj , t) ∈ Rnj is a vector of known

functions. Here, bj, θj and ξj are all smooth
functions with respect to their arguments. The
system dynamics (1) - (5) are repeatable over the
time interval [0, T ], where T is a finite constant.
The following assumption is further made for bj

where j ∈ N .

Assumption 1. Assume bj (j ∈ N) is non-singular
and its sign is known and invariant over the time
interval [0, T ].

Without loss of generality, assume that bj >
0 for all t ∈ [0, T ] and j ∈ N . As part of
the repeatability, the following identical initial
condition (i.i.c.) is satisfied.

Assumption 2. yi(0) = yd,i(0) and xj,i(0) = 0,

for any j ∈ {2, · · · , n} and i ∈ Z+
�
= {1, 2, · · ·},

where i denotes the iteration number and yd,i ∈
Cn([0, T ]) represents the desired system output.

Remark 1. As our control objective is perfect
tracking over the entire time interval, i.e. perfect
tracking from the very beginning, yi(0) = yd,i(0)
is essential. ∀j ∈ {2, · · · , n}, if xj,i(0) = 0 cannot
be satisfied, a simple variable replacement x′

j,i =
xj,i − xj,i(0) can be implemented to guarantee
x′

j,i(0) = 0.

The ultimate control target is to iteratively deter-
mine a sequence of control input ui such that the
tracking error yd,i − yi converges to zero as the
iteration number i approaches infinity. Note that
the target trajectories yd,i could be different from
iteration to iteration.

3. ALGORITHM DEVELOPMENT AND
CONVERGENCE ANALYSIS

3.1 Algorithm Development

The new ILC algorithm is constructed by means
of the backstepping technique as follows:

Step 1: First, let us consider system dynamics
(1). Treat x2,i as a virtual control input, hence
the uncertainty θ1 becomes a matched one. Define
z1,i = yd,i − x1,i and from (1), we have



ż1,i = ẏd,i − b1x2,i − θ1ξ1,i

= b1(−x2,i − θo
1ξ

o
1,i), (6)

where θo
1

�
= [b−1

1 , b−1
1 θ1] and ξo

1,i
�
= [−ẏd,i, ξT

1,i]
T .

By virtue of the EF-based ILC method, the virtual
control input x2,i can be designed as follows:

x2,i =−ˆ̄θ1,iξ̄1,i + k1z1,i
�
= α1,i, (7)

ˆ̄θ1,i = ˆ̄θ1,i−1 − β1z1,iξ̄
T
1,i,

ˆ̄θ1,0 = 0, (8)

where ˆ̄θ1,i ∈ R1×(n1+2) is used to approximate

θ̄1
�
= [θo

1, b−2
1 ḃ1], ξ̄1,i

�
= [ξoT

1,i ,
1
2z1,i]T , k1 > 0

is the feedback gain and β1 > 0 is the learning
gain. To facilitate the following development, we
define the energy function as E1,i(t) = 1

2b−1
1 z2

1,i +
1

2β1

∫ t

0 ‖δθ̄1,i‖2dτ , where δθ̄1,i
�
= θ̄1,i− ˆ̄θ1,i. Hence,

based on the virtual input (7), ∀t ∈ [0, T ], the
difference of the energy function ∆E1,i(t) is given
by

∆E1,i(t) = E1,i(t) − E1,i−1(t)

=
1
2
b−1
1 z2

1,i −
1
2
b−1
1 z2

1,i−1

+
1

2β1

t∫

0

(‖δθ̄1,i‖2 − ‖δθ̄1,i−1‖2)dτ.(9)

Considering Assumption 2 and (6), the first term
on the right-hand side of (9) is

1
2
b−1
1 z2

1,i =

t∫

0

(b−1
1 z1,iż1,i − 1

2
b−2
1 ḃ1z

2
1,i)dτ

=

t∫

0

[z1,i(−x2,i − θo
1ξ

o
1,i) −

1
2
b−2
1 ḃ1z

2
1,i]dτ

=

t∫

0

z1,i(−x2,i − θ̄1ξ̄1,i)dτ, (10)

where θ̄1 and ξ̄1,i are defined in (8). Substituting
(7) into (10) yields

1
2
b−1
1 z2

1,i = −
t∫

0

z1,iδθ̄1,iξ̄1,idτ −
t∫

0

k1z
2
1,idτ.(11)

It can be shown that the second term on the right-
hand side of (9) is given by

1
2β1

t∫

0

(‖δθ̄1,i‖2 − ‖δθ̄1,i−1‖2)dτ

=
1

2β1

t∫

0

(ˆ̄θ1,i − ˆ̄θ1,i−1)(ˆ̄θ1,i + ˆ̄θ1,i−1 − 2θ̄1)T dτ

≤ − 1
β1

t∫

0

δθ̄1,i(ˆ̄θ1,i − ˆ̄θ1,i−1)T dτ. (12)

Considering the updating law (8), we have

1
2β1

t∫

0

(‖δθ̄1,i‖2 − ‖δθ̄1,i−1‖2)dτ

≤
t∫

0

z1,iδθ̄1,iξ̄1,idτ. (13)

Substituting (11) and (13) into (9) yields

∆E1,i(t) ≤ −1
2
b−1
1 z2

1,i−1. (14)

Step 2: Consider system dynamics (2) and treat

x3,i as a virtual input. Define z2,i
�
= α1,i − x2,i.

According to (2), (6) and (7), the following result
can be established:

ż2,i = α̇1,i − ẋ2,i

=− ˙̄̂
θ1,iξ̄1,i − ˆ̄θ1,i(

∂ξ̄1,i

∂x1,i
ẋ1,i +

∂ξ̄1,i

∂t
) + k1ż1,i

−b2x3,i − θ2ξ2,i

=− ˙̄̂
θ1,iξ̄1,i − ˆ̄θ1,i[

∂ξ̄1,i

∂x1,i
(b1x2 + θ1ξ1,i) +

∂ξ̄1,i

∂t
]

−k1b1x2,i − k1b1θ
o
1ξ

o
1,i − b2x3,i − θ2ξ2,i

= b2(−x3,i − θo
2ξ

o
2,i), (15)

where θo
2

�
= b−1

2 [1, b1, θ1, θ2, b1θ
o
1]

and ξo
2,i

�
= [(

˙̄̂
θ1,iξ̄1,i + ˆ̄θ1,i

∂
¯ξ1,i

∂t ), (ˆ̄θ1,i
∂
¯ξ1,i

∂x1,i
+

k1)x2,i,
ˆ̄θ1,i

∂
¯ξ1,i

∂x1,i
ξT

1,i, ξT
2,i, k1ξ

oT
1,i ]

T . The virtual
control input x3,i is constructed as follows:

x3,i =−ˆ̄θ2,iξ̄2,i + k2z2,i + z1,i
�
= α2,i (16)

ˆ̄θ2,i = ˆ̄θ2,i−1 − β2z2,iξ̄
T
2,i,

ˆ̄θ2,0 = 0. (17)

Similarly, ˆ̄θ2,i is used to approximate θ̄2
�
=

[θo
2, b−2

2 ḃ2], ξ̄2,i
�
= [ξoT

2,i ,
1
2z2,i]T , k2 > 0 is the

feedback gain and β2 > 0 is the learning gain.

Define E2,i(t) = E21,i(t)+E22,i(t), where E21,i(t) =
E1,i(t), E22,i(t) = 1

2b−1
2 z2

2,i+
1

2β2

∫ t

0 ‖δθ̄2,i‖2dτ and

δθ̄2,i
�
= θ̄2 − ˆ̄θ2,i. From the definition of E1,i(t), it

can be shown that

∆E21,i(t) = E21,i(t) − E21,i−1(t)

= ∆E1,i(t)|x2,i=α1,i−z2,i . (18)

Substituting the relationship x2,i = α1,i−z2,i into
(10), we have



1
2
b−1
1 z2

1,i =

t∫

0

z1,i(−α1,i + z2,i − θ̄1ξ̄1,i)dτ

=−
t∫

0

z1,iδθ1,iξ̄1,idτ −
t∫

0

k1z
2
1,idτ

+

t∫

0

z1,iz2,idτ.

Using the result of (13), we have

∆E21,i(t) = ∆E1,i(t)|z2,i=0 +

t∫

0

z1,iz2,idτ

≤−1
2
b−1
1 z2

1,i−1 +

t∫

0

z1,iz2,idτ. (19)

On the other hand, we have

∆E22,i(t) =
1

2β2

t∫

0

(‖δθ̄2,i‖2 − ‖δθ̄2,i−1‖2)dτ

+
1
2
b−1
2 z2

2,i −
1
2
b−1
2 z2

2,i−1. (20)

Analogous to (10) and (11), considering (15) and
(16), the first term on the right-hand side of (20)
can be rewritten as

1
2
b−1
2 z2

2,i

=

t∫

0

z2,i(−x3,i − θ̄2ξ̄2,i)dτ

= −
t∫

0

z2,iδθ̄2,iξ̄2,idτ −
t∫

0

z1,iz2,idτ

−
t∫

0

k2z
2
2,idτ. (21)

From the updating law (17) and the result given
in (13), it can be shown that

1
2β2

t∫

0

(‖δθ̄2,i‖2 − ‖δθ̄2,i−1‖2)dτ

≤
t∫

0

z2,iδθ̄2,iξ̄2,idτ. (22)

Substituting (21) and (22) into (20) yields

∆E22,i(t) ≤ −
t∫

0

z1,iz2,idτ − 1
2
b−1
2 z2

2,i−1. (23)

Therefore, (19) and (23) imply that

∆E2,i(t) ≤ −1
2
b−1
1 z2

1,i−1 −
1
2
b−1
2 z2

2,i−1. (24)

Step 3: Consider system dynamics (3) and treat

x4,i as a virtual input. Define z3,i
�
= α2,i − x3,i.

According to (3) and (16), we have

ż3,i = − ˙̄̂
θ2,iξ̄2,i − ˆ̄θ2,i(

∂ξ̄2,i

∂x1,i
ẋ1,i +

∂ξ̄2,i

∂x2,i
ẋ2,i

+
∂ξ̄2,i

∂t
) + k2ż2,i + ż1,i − b3x4,i − θ3ξ3,i. (25)

Considering system dynamics (1) - (2) and the
dynamics of z1,i and z2,i ( (6) and (15)), (25) can
be rewritten as

ż3,i = − ˙̄̂
θ2,iξ̄2,i − ˆ̄θ2,i[

∂ξ̄2,i

∂x1,i
(b1x2,i + θ1ξ1,i)

+
∂ξ̄2,i

∂x2,i
(b2x3,i + θ2ξ2,i) +

∂ξ̄2,i

∂t
] − k2b2x3,i

−k2b2θ
o
2ξ

o
2,i − b1x2,i − b1θ

o
1ξ

o
1,i − b3x4,i − θ3ξ3,i

= b3(−x4,i − θ̄
o
3ξ̄

o
3,i), (26)

where θ̄
o
3

�
= b−1

3 [1, b1, b2, θ1, θ2, θ3, b1θ
o
1, b2θ

o
2]

and ξ̄
o
3,i

�
= [(

˙̄̂
θ2,iξ̄2,i + ˆ̄θ2,i

∂
¯ξ2,i

∂t ), (ˆ̄θ2,i
∂
¯ξ2,i

∂x1,i
+

1)x2,i, (ˆ̄θ2,i
∂
¯ξ2,i

∂x2,i
+k2)x3,i,

ˆ̄θ2,i
∂
¯ξ2,i

∂x1,i
ξT

1,i,
ˆ̄θ2,i

∂
¯ξ2,i

∂x2,i
ξT

2,i,

ξT
3,i, ξ

oT
1,i , k2ξ

oT
2,i ]

T . The virtual control law is de-
signed as follows:

x4,i =−ˆ̄θ3,iξ̄3,i + k3z3,i + z2,i
�
= α3,i (27)

ˆ̄θ3,i = ˆ̄θ3,i−1 − β3z3,iξ̄
T
3,i,

ˆ̄θ3,0 = 0, (28)

where ˆ̄θ3,i is used to approximate θ̄3
�
= [θo

3, b−2
3 ḃ3],

ξ̄3,i
�
= [ξoT

3,i ,
1
2z3,i]T , k3 > 0 is the feedback

gain and β3 > 0 is the learning gain. Define
E3,i(t) = E31,i(t) + E32,i(t), where E31,i(t) =
E2,i(t), E32,i(t) = 1

2b−1
3 z2

3,i+
1

2β3

∫ t

0 ‖δθ̄3,i‖2dτ and

δθ̄3,i
�
= θ̄3− ˆ̄θ3,i. Analogous to the analysis in Step

2, the following result can be derived.

∆E3,i(t) ≤ −1
2

3∑
j=1

b−1
j z2

j,i−1 (29)

Step j: Define zj,i
�
= αj−1,i − xj,i. The dynamics

of zj,i can be derived similarly to Step 1, 2 and 3.

żj,i = bj(−xj+1,i − θo
jξ

o
j,i), (30)

where θo
j

�
= b−1

j [1, b1, · · · , bj−3, bj−2, bj−1,
θ1, · · · , θj−1, θj , bj−2θ

o
j−2, bj−1θ

o
j−1] and



ξo
j,i

�
= [

˙̄̂
θj−1ξ̄j−1,i+

ˆ̄θj−1,i
∂
¯ξ

j−1,i

∂t , ˆ̄θj−1,i
∂
¯ξ

j−1,i

∂x1,i
x2,i,

· · · , ˆ̄θj−1,i
∂
¯ξj−1,i

∂xj−3,i
xj−2,i, (ˆ̄θj−1,i

∂
¯ξj−1,i

∂xj−2,i
+1)xj−1,i,

(ˆ̄θj−1,i
∂
¯ξj−1,i

∂xj−1,i
+ kj−1)xj,i,

ˆ̄θj−1,i
∂
¯ξj−1,i

∂x1,i
ξT
1,i,

· · · , ˆ̄θj−1,i
∂
¯ξj−1,i

∂xj−1,i
ξT

j−1,i, ξT
j,i, ξoT

j−2,i, kj−1ξ
oT
j−1]T .

The virtual control laws are as follows:

xj+1,i = −ˆ̄θj,iξ̄j,i + kjzj,i + zj−1,i
�
= αj,i (31)

ˆ̄θj,i = ˆ̄θj,i−1 − βjzj,iξ̄
T
j,i,

ˆ̄θj,0 = 0, (32)

where ˆ̄θj,i is used to approximate θ̄j
�
= [θo

j , b−2
j ḃj],

ξ̄j,i
�
= [ξoT

j,i ,
1
2zj,i]T , kj > 0 is the feedback

gain and βj > 0 is the learning gain. Define
Ej,i(t) = Ej−1,i(t) + 1

2 b−1
j z2

j,i + 1
2βj

∫ t

0 ‖δθ̄j,i‖2dτ ,

where δθ̄j,i
�
= θ̄j − ˆ̄θj,i. It follows from (18) - (24)

that ∆Ej,i(t) ≤ − 1
2

∑j
m=1 b−1

m z2
m,i−1.

Step n: From the results in Step j, we have

żn,i = bn(−ui − θo
nξo

n,i), (33)

where θo
n and ξo

n,i are the terms defined as in
(30) with j = n. The real system input ui is
constructed as follows:

ui =−ˆ̄θn,iξ̄n,i + knzn,i + zn−1,i (34)
ˆ̄θn,i = ˆ̄θn,i−1 − βnzn,iξ̄

T
n,i,

ˆ̄θn,0(0) = 0,(35)

where ˆ̄θn,i is used to approximate θ̄n,i
�
= [θo

n, b−2
n ḃn],

ξ̄
�
= [ξoT

n,i,
1
2zn,i]T , kn is the feedback gain and βn

is the learning gain. Define Ei(t) = En−1,i(t) +
1
2b−1

n z2
n,i + 1

2βn

∫ t

0
‖δθ̄n,i‖2dτ , where δθ̄n,i

�
= θ̄n −

ˆ̄θn,i. Following the approach similar to the deriva-
tion in Step 2, it can be shown that

∆Ei(t) ≤ −1
2

n∑
j=1

b−1
j z2

j,i−1. (36)

3.2 Convergence Analysis

Using (36) repeatedly, we have

Ei(t) ≤ E1(t) − 1
2

i−1∑
p=1

n∑
j=1

b−1
j z2

j,p (37)

If E1(t) is bounded, according to (37) and con-
sidering the positiveness of Ei(t) and b−1

j �= 0
(j ∈ N), it can be derived that lim

i→∞
zj,i(t) = 0

pointwisely for any j ∈ N . Now, let us derive the
finiteness of E1(t). From the definition of Ei(t),
we have

E1(t) =
1
2

n∑
j=1

b−1
j z2

j,1 +
n∑

j=1

1
2βj

t∫

0

‖δθ̄j,1‖2dτ.

Hence, the derivative of E1(t) is given by

Ė1(t) =
n∑

j=1

(b−1
j zj,1żj,1 − 1

2
b−2
j ḃjz

2
j,1)

+
n∑

j=1

1
2βj

‖δθ̄j,1‖2. (38)

According to Step j, for any j ∈ {1, · · · , n−1}, we
have żj,1 = −bjxj+1,1 − bjθ

o
jξ

o
j,1, xj+1,1 = αj,1 −

zj+1,1 and αj,1 = −ˆ̄θj,1ξ̄j,1+kjzj,1+zj−1,1. Hence,
the following result can be established:

b−1
j zj,1żj,1 − 1

2
b−2
j ḃjz

2
j,1

= zj,1(−xj+1,1 − θo
jξ

o
j,1 −

1
2
b−2
j ḃjzj,i)

= zj,1(−xj+1,1 − θ̄j ξ̄j,1)

= zj,1(−αj,1 + zj+1,1 − θ̄j ξ̄j,1)

= zj,1(ˆ̄θj,1ξ̄j,1 − kjzj,1 − zj−1,1 + zj+1,1 − θ̄j ξ̄j,1)

= −zj,1δθ̄j,1ξ̄j,1 + zj+1,1zj,1 − zj,1zj−1,1 − kjz
2
j,1.

For j = n, we have

b−1
n zn,1żn,1 − 1

2
b−2
n ḃnz2

n,1

= zn,1(−u1 − θo
nξo

n,1) −
1
2
b−2
n ḃnz2

n,1

= zn,1(−u1 − θ̄nξ̄n,1)

= −zn,1δθ̄n,1ξ̄n,1 − zn−1,1zn,1 − knz2
n,1.

Therefore,

n∑
j=1

(b−1
j zj,1żj,1 − 1

2
b−2
j ḃjz

2
n,1)

= −
n∑

j=1

zj,1δθ̄j,1ξ̄j,1 −
n∑

j=1

kjz
2
j,1. (39)

For the last term on the right-hand side of (38),
the following result is valid for all j ∈ N .

1
2βj

‖δθ̄j,1‖2 =
1

2βj
(‖δθ̄j,1‖2 − ‖θ̄j − ˆ̄θj,0‖2)

+
1

2βj
‖θ̄j − ˆ̄θj,0‖2. (40)

As θ̄j is bounded over the time interval [0, T ] and
ˆ̄θj,0 = 0, a finite constant Bj can be found such

that Bj = max
t∈[0,T ]

{ 1
2βj

‖θ̄j − ˆ̄θj,0‖2}. Moreover,

analogous to the derivations in (12) and (13), we



have 1
2βj

(‖δθ̄j,1‖2 − ‖θ̄j − ˆ̄θj,0‖2) ≤ zj,1δθ̄j,1ξ̄j,1.
Hence, (40) can be rewritten as

1
2βj

‖δθ̄j,1‖2 ≤ zj,1δθ̄j,1ξ̄j,1 + Bj . (41)

Substituting (39) and (41) into (38) yields Ė1(t) ≤∑n
j=1 Bj. Considering Assumption 2 and the

properties of θ̄j , we can establish that E1(0) is
bounded. Therefore, the finiteness of Ė1(t) im-
plies that E1(t) is finite over the time interval
[0, T ], which ensures that ∀j ∈ N , lim

i→∞
zj,i = 0.

Furthermore, the boundedness of Ei(t) leads to
the boundedness of zj,i and

∫ t

0 ‖δθ̄j,i‖2dτ for all
j ∈ N . According to the definition of zj,i, it can
be derived that yi and

∫ t

0 x2
j,idτ (j = {2, · · · , n})

are finite. Hence, from the control law, the term∫ t

0 u2
i dτ is bounded, i.e. ui is L2 bounded over

[0, T ].

4. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the proposed
control strategy, we consider a single-link robotic
manipulator with a flexible joint.

ẋ1 = x2

ẋ2 =−Mgl

J1
sin x1 − k

J1
(x1 − x3)

ẋ3 = x4

ẋ4 =
k

Jm
(x1 − x3) +

1
Jm

u

y = x1, (42)

where x1 is the link angle, x3 is the motor shaft
angle, J1, Jm are the load and motor inertias, k
is the joint stiffness, and u is the input torque.
Assume that the system is repeatable over [0, 2π].
Let yd,i = Ai sin t, which is iteration-dependent.
We choose Ai randomly from the interval [0.5, 1].
To satisfy the i.i.c., let x1,i(0) = yd,i(0) = 0 and
x2,i(0) = x3,i(0) = x4,i(0) = 0. Choose β1 = β2 =
β3 = β4 = 5 and k1 = k2 = k3 = k4 = 1. Applying
the proposed ILC law developed in Section 3, we
obtain the simulation result depicted in Fig. 1. In
Fig. 1, the horizontal axis is the iteration number
i and the vertical axis is the sup-norm of yd,i −
yi, i.e. max

t∈[0,T ]
|yd,i − yi|. Obviously, the proposed

ILC approach works quite well for systems with
unmatched time-varying parametric uncertainties
and non-uniform tracking targets.

5. CONCLUSIONS

A novel ILC strategy based on the backstepping
technique has been developed in this paper. The
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|y
d,

i−y
i| su

p

Fig. 1. Convergence of the output tracking error.

new scheme extends current ILC to systems with
unmatched time-varying uncertainties and high
relative degree, which greatly widens the appli-
cation domain of ILC.
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