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Abstract: In this paper a new sliding mode control algorithm for the third order uncertain, 
nonlinear and time-varying dynamic system subject to unknown disturbance and input 
constraint is proposed. The algorithm employs a time-varying switching plane. At the initial 
time t = t0, the plane passes through the point determined by the system initial conditions in 
the error state space. Afterwards, the plane moves with a constant velocity to the origin of 
the space. The plane is selected in such a way that the integral of the absolute value of the 
system error over the whole period of the control action is minimised and the input 
constraint is satisfied. By this means, the reaching phase is eliminated, insensitivity of the 
system to the external disturbance is guaranteed from the very beginning of the proposed 
control action and fast, monotonic error convergence to zero is achieved. Copyright © 2005 
IFAC 
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1. INTRODUCTION 
 
In recent years much of the research in the area of 
control systems theory focused on the design of a 
discontinuous feedback which switches the structure 
of the system according to the evolution of its state 
vector. This technique, usually called sliding mode 
control, provides an effective and robust means of 
controlling nonlinear plants (DeCarlo, et al., 1988; 
Hung, et al., 1993; Slotine and Li, 1991; Utkin, 
1997). The main advantage of this technique is that 
once the system state reaches a sliding surface, the 
system dynamics remain insensitive to a class of 
parameter variations and disturbances.  
 
However, robust tracking is assured only after the 
system state hits the sliding surface, i.e. the 
robustness is not guaranteed during the reaching 

phase. Provided a conventional time-invariant sliding 
plane is considered, the advantage of the sliding 
mode control, namely the desired dynamic behaviour 
of the system, is not obtained for some time from the 
beginning of its motion. Furthermore, usually for the 
given initial conditions there is a trade-off between 
the short reaching phase and the fast system response 
in the sliding phase. In order to overcome these 
problems the idea of the time-varying switching lines 
applied for the sliding mode control of the second 
order systems was introduced by Choi, et al. (1993); 
Choi and Park (1994); Choi, et al. (1994) and further 
discussed by Bartoszewicz (1995, 1996). The control 
algorithms proposed in these papers eliminate the 
reaching phase and guarantee fast error convergence 
rate for the second order uncertain systems with 
arbitrary initial conditions. Further results on the 
application of the time-varying switching lines for the 



sliding mode control of the second order systems 
have recently been reported by Tokat, et al. (2002). 
 
In this paper we consider the third order, nonlinear, 
time-varying system subject to the input constraint. 
We introduce a continuously time-varying switching 
plane adaptable to the initial conditions of the system 
and we prove the existence of a sliding mode on the 
plane. At the time t = t0 the plane passes through the 
representative point, specified by the initial 
conditions of the system, in the error state space. 
Afterwards, the plane moves smoothly, with a 
constant velocity, to the origin of the space. Thus the 
proposed control algorithm eliminates the reaching 
phase and forces the representative point of the 
system to stay always on the switching plane. As a 
consequence, our control is robust with respect to the 
external disturbance and parameter uncertainties from 
the very beginning of the system motion. 
Furthermore, the plane is designed in such a way that 
the integral of the absolute value of the system error 
over the whole period of the control action is 
minimised and the input constraint is satisfied. 
Therefore, good dynamic performance of the 
considered system is ensured. 
 
The remainder of the paper is organised as follows. 
The problem considered in this paper is formulated in 
Section 2. Section 3 presents the proposed control 
law and gives details of the switching plane design 
procedure. Finally, Section 4 presents conclusions of 
the paper.  
 
 

2. PROBLEM STATEMENT 
 
Let us consider the time-varying and nonlinear, third 
order system 
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where x1, x2, x3 are the state variables of the system 
and x(t) = [x1(t) x2(t) x3(t)]T is the state vector, t 
denotes time, u is the input signal, b, f – are a priori 
known, bounded functions of time and the system 
state, Δf and d are functions representing the system 
uncertainty and external disturbances respectively. 
Further in the paper, it is assumed that there exists a 
strictly positive constant δ which is the lower bound 
of b(x, t), i.e. 0 < δ = inf{|b(x, t)|}. Furthermore 
functions Δf and d are unknown and bounded. 
Therefore, there exists a constant μ which for every 
pair (x,t) satisfies the following condition 
|Δf (x,t) + d(t)| ≤ µ. Initial conditions of the system 
are denoted as x10 , x20 , x30 , where x10 = x1(t0), 
x20 = x2(t0), x30 = x3(t0). The system (1) is supposed to 
track the demand trajectory given as a function of 

time xd (t) = [x1d (t)   x2d (t)   x3d (t)]T, where 
)(2 tx d )(1 tx d= , )(3 tx d )(2 tx d=  and x3d (t) is a 

differentiable function of time. The trajectory 
tracking error is defined by the following vector 
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Hence, we have e1(t) = x1(t) – x1d (t), e2 (t) = x2(t) –
 x2d (t), e3 (t) = x3(t) – x3d (t). In this paper it is 
assumed that at the initial time t = t0, the tracking 
error and the error derivatives  
 

001 )( ete = , 0)( 02 =te , 0)( 03 =te  (3) 
 
where e0 is an arbitrary real number. The purpose of 
this paper is to design a sliding mode control strategy 
for the system (1) which: 
 
• Makes the system insensitive to the disturbance 

d(t) and the model uncertainty Δf (x, t) for any 
time t ≥ t0, i.e. from the very beginning of the 
system motion; 

• Drives the system error to zero monotonically. 
In other words, we require error convergence 
without oscillations, overshoots or undershoots; 

• Satisfies the following input constraint 
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• Ensures minimisation of the following control 

quality criterion  
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3. SWITCHING PLANE DESIGN 
 
Let us consider a time-varying switching plane with 
the constant angle of inclination. Originally the plane 
moves uniformly (i.e. with a constant velocity) in the 
state space and then it stops at the time instant tf. 
Consequently, for any t ≤ tf the switching plane is 
described by the following equation 
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where c1, c2, A and B are some constants. The 
selection of these constants will be considered further 
in the paper. Since the plane stops at the time tf, for 
any t ≥ tf  it is described as follows 
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First, the constants c1, c2, A and B should be chosen 
in such a way that the representative point of the 
system at the initial time t = t0 belongs to the 
switching plane. For that purpose, the following 
condition must be satisfied  
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Notice that the input signal 
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where γ = η + μ and η is a strictly positive constant, 
ensures the stability of the sliding motion on the 
switching plane (6). In order to verify this property 
we consider the product 
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Substituting relations (1), (2) and (9) into (10) we get  
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which proves the existence and stability of the sliding 
motion on the plane described by equations (6) and 
(7). Consequently, for any time t∈〈0, tf〉 the system 
dynamics is described by equation (6) with the initial 
conditions (3). Therefore, we consider the following 
equation 
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In order to solve it, we consider 
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Since the tracking error convergence to zero without 
oscillations is required, the characteristic polynomial 
of equation (13) should have one, double real root. 
Hence, we get another condition  
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Furthermore, the parameters c1 and c2 must be strictly 
positive to make the system (1) stable in the sliding 
mode. Solving equation (12) with condition (14) and 
assuming for the sake of clarity that t0 = 0 we get the 
tracking error and its derivatives for the time t∈〈0, tf〉 
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Taking into account condition (8) and the assumption 
that t0 = 0 one gets 
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Then formulae (15), (16) and (17) can be written as 
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Next, we will analyse the behaviour of the system in 
the second phase of its motion, that is when the 
switching plane does not move. Notice that for the 
time t ≥ tf the switching plane is fixed and passes 
through the origin of the error state space. This leads 
to the condition 
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From equations (22) and (18) we have 
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The time invariant switching plane is described by 
relation (7), which is equivalent to equation (13). The 
initial conditions which are necessary to solve 
equation (13) can be determined from equations (19), 
(20) and (21) whose values are evaluated at the time 
instant tf. With the following notation  
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the initial conditions for the second phase of the 
system motion can be written as 
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The parameter k defined by equation (24) is strictly 
positive. Solving equation (13) with initial conditions 
(25), (26), (27) and using relation (18) we get 
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These three equations describe the tracking error for 
any time t ≥ tf. Notice that the tracking error 
described by equations (19) and (28) does not exhibit 
any overshoots. This can be demonstrated as follows. 
For the time t∈〈0, tf〉 the tracking error is described 
by equation (19). During this interval the error either 
monotonically decreases for e0 > 0 to a value 
e1(tf) > 0 or monotonically increases for e0 < 0 to a 
value e1(tf) < 0. This can be seen from equations (20) 
and (25) reformulated as 
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The signs of B and e0 are the same, so it can be seen 
from equation (31) that the derivative of the tracking 
error has the opposite sign to e0 for any t∈〈0, tf〉. 
Equation (32) shows that the signs of the tracking 
error at the time instants t0 and tf are the same. Hence, 
the error does not exhibit any overshoot during this 
time interval. On the other hand, for the time t ≥ tf the 
tracking error is given by equation (28). If e0 > 0, 
then the tracking error decreases from the positive 
value e1(tf) to zero. If e0 < 0, then the error increases 
from the negative value e1(tf) to zero. The tracking 
error converges to zero monotonically because from 
equation (29)  
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and for any t ≥ tf , the expression in the square 
bracket ( )teckee kkk  11 1 −−+−  ++−≤ kk kee1  

( ) ketec k
f

k +−=−− 111  is negative. Thus it 
follows from equation (33) that the derivative of the 
tracking error has the opposite sign to e0. 
 
In the sequel a method of choosing the switching 
plane parameters will be proposed. We will consider 
the control quality criterion given by equation (5). 
Since we have demonstrated that the tracking error 
converges monotonically in the considered system, 
this criterion is equivalent to 
 

∫
∞

=
0

1 )( dtteJ  (34) 

 
Substituting equations (19) and (28) into (34) and 
calculating appropriate integrals we get  
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In order to calculate the parameters B and c1 of the 
switching plane, criterion (35) should be minimised 
with input constraint (4), where umax is a constant, 
which satisfies the following condition  
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Conditions (4) and (36) imply that there exists such a 
strictly positive constant 
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that condition (4) is satisfied if the following relation 
holds 
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Furthermore, clearly inequality (38) always holds if 
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Let us calculate the greatest value of )(3 te . For t ≤ tf 
the tracking error is given by equation (19). 
Differentiating this equation three times we get 
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Notice that at the initial time Be −=)0(3 . Then we 
calculate the extreme value of this signal. The value 
is achieved at the time 
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and it is equal to 
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Note that |Be – 2 | < |B|. Furthermore at the time t = tf , 
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|Be –k (k –1)| ≤ |B|. This can be proved considering the 
right hand side of the above relation as a function of 
k > 0. Let f(k) = Be –k (k–1). This function for k = 0 
equals f(0) = – B and for k → ∞, f (k) → 0. The 
extreme of this function is achieved when k = 2 and it 
is equal f (2) = Be – 2. Then |Be – 2| < |B|.  
 
On the other hand, for t ≥ tf the tracking error is 
described by equation (28). Differentiating this 
equation three times we get 
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Consequently, at the time tf  
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The absolute value of the right hand side of the above 
equation may be greater than |B| and could possibly 
present the greatest value of | )(3 te |. Furthermore, for 
t∈〈tf, ∞) the extreme value of (43) is reached at the 
time 
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This extreme value is 
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Let us consider the following expression |(e k –
1)exp{–[2 + ke k /(e k – 1)]}| = |exp[–2 – k/(e k -1)] –
 exp[–2– ke k /(e k –1)]|<1. Therefore, |B(e k –1)exp{–
[2 + ke k /(e k – 1)]}| < |B|. Finally, let us notice that 
the third derivative of the tracking error described by 
relation (45) converges to zero for t → ∞. 
Consequently, we conclude that the greatest value of 
| )(3 te | is represented by the maximum of the two 
expressions: |B| and the absolute value of expression 
(44). Therefore, we get the following constraints 
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Since constraint (48) is expressed in terms of k rather 
than c1, it will be convenient to consider quality 
criterion J(k, B) instead of J(c1, B). For that purpose 
we calculate c1 from equation (24)  
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Substituting (49) into (35), the control quality 
criterion can be presented as 
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It can be easily noticed that for any given value of k, 
the minimum of criterion (50) is obtained for the 
greatest value of |B| satisfying constraints (47) and 
(48). These constraints are illustrated in Figure 1. The 
optimal solution of the minimisation problem 
considered here is represented by a point which 
belongs to the curve bounding the admissible set 
shown in the figure. Therefore, this solution can be 
found as minimum of a single variable function of k. 
Consequently, in order to minimise criterion (50) 
with constraints (47) and (48) the following two cases 
k < 1 and k ≥ 1, should be considered. 
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Fig. 1. Optimisation constraints. 
 
In the first case we minimise criterion (50) with 
constraint (47), and in the latter one constraint (48) is 
taken into account. 
 
Now we will precisely analyse the minimisation task. 
First we consider the case when k < 1. In this 
situation, from relations (50) and (47) we get  
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This criterion value decreases when the argument k 
increases form zero up to one. This leads to the 
conclusion that the minimum value of (51) is equal to  
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In the second case, i.e. when k ≥ 1 we minimise  
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The smallest value of criterion (53) is achieved for 
k = 2. It equals 
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Notice that the right hand side of equation (52) is 
greater than that of (54). Hence (54) is the minimum 
value of criterion (50), and finally we have the 
following optimal solution  
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Consequently, from expression (49) we get the 
following value of the parameter c1 
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The other parameters of the switching plane can be 
calculated from equations (14) and (18)  
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The plane described by these parameters stops 
moving at the time instant 
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4. CONCLUSIONS 
 

In this paper a new sliding mode control method, for 
the third order dynamic system has been proposed. 
The method employs a time-varying switching plane 
which moves with a constant velocity and the 
constant angle of inclination to the origin of the error 
state space. The switching plane parameters are 
chosen in such a way that the control quality criterion 
is minimised and the input constraint is satisfied. The 
moving switching plane ensures that the tracking 
error converges to zero monotonically and the system 
is insensitive with respect to its model uncertainty 
and external disturbance since the very beginning of 
the control action.  
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