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Abstract: The neural extended Kalman filter is a technique that learns unmodelled 
dynamics while performing state estimation.  This coupled system performs the state 
estimation of the plant while estimating a function approximation of the difference 
between the system model and the dynamics of the true plant.  At each sample step, this 
approximation is added to the existing model improving the state estimate. This neural 
estimator is applied to a two-dimensional intercept problem as a target tracker providing 
the control reference signal.  Comparisons between different prediction times used in the 
control are provided for both the neural tracker and a baseline tracker.   
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The target intercept problem is an important 
component of robotics, space systems, and missile 
defence.  This guidance and control problem has 
been analyzed for a number of years (Zarchan, 
2002).  The reference signal, whether a predicted 
intercept point or an angle or a point used to follow 
the target while in motion, must be accurately 
defined for successful intercept.  These signals are 
either provided a priori using a model of the 
trajectory or by in-flight position coordinates.  
Usually, the actual motion model of the target is 
unknown, and the interceptor must rely upon target 
tracks provided by off-board sensors.  These off-
board tracks, in order to reduce the effects of noise 
on the measurements, rely upon a target motion 
model.  A manoeuvre that is not properly 
compensated for in the tracking system can cause a 
lag in tracking performance or corruption by noise.  
In the control loop for an interceptor, as depicted in 
Figure 1, the reference input is a predicted state 
estimate from the tracker.  The reference signal is 
either a long term prediction or prognostication that  

 
Fig. 1:  The interceptor control is based on an 

estimate of the desired reference input. 
 
is used to enable the interceptor to meet the target at 
a given point or a short term prediction used to 
enable the interceptor to follow and strike the target.  
This predicted estimate is the output of the target 
tracker processed through its motion model.  Better 
tracker estimates of the state of the target (position 
and velocity) and a more accurate model of the target 
motion increase the probability of intercepting the 
target.  To compensate for the lag in the tracking 
behaviour of a manoeuvring target, adaptive and 
approximating estimation routines have been 
developed (Kirubarajan and Bar-Shalom, 2003) and 
(Wang and Varshney, 1993).  Another such approach 
is the neural extended Kalman filter (NEKF). In 
(Stubberud and Kramer, 2004), the application of the 
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NEKF to the target tracking problem for target 
intercept using a long term predictive intercept point 
was introduced.  
 
The NEKF is able to track accurately through 
manoeuvres without a priori knowledge of the 
manoeuvre motion model.  The NEKF provides both  
an improved state estimate and an improved motion 
model.  
 
The NEKF, as defined in (Stubberud, et al., 1998) 
and (Stubberud, et al., 1995), is a Kalman filter that 
uses a neural network to improve the state-coupling 
function used in the prediction step of the state 
estimate (target track).  The neural network trains on-
line to learn the difference between the dynamics of 
the existing system and the model used by the 
Kalman filter.  The NEKF is both the state estimator 
and the neural network trainer.  Both components use 
the same measurement information.  The improved 
motion model that NEKF provides increases the 
accuracy of the predicted location of the target. 
 
The model of the motion used by the NEKF is a sum 
between an initial model and the neural network.  
While the model of the neural network is continually 
adapting based on the data, a prediction using the 
weights at a given time can be made to an arbitrary 
time into the future.  While the accuracy of this 
prediction deteriorates the further in the future one 
predicts, the average performance should be better 
than that of the non-corrected model.  The goal of 
this effort is to show the benefit of short-term 
prediction in the target tracking used as the reference 
signal for the control loop of the interceptor. 
 
In Section 2, the theoretical development of the 
NEKF is summarized.  The basic control approach to 
the intercept problem with the NEKF implemented is 
discussed in Section 3.  In Section 4, the example 
problem is described.  The results of the NEKF are 
compared against a standard Kalman filter in Section 
5 for predictions of 1, 2, and 5 seconds.  
 
 
2. THE NEURAL-EXTENDED KALMAN FILTER 
 
The neural extended Kalman filter is a coupled 
system of a standard EKF that provides state 
estimates and an EKF neural network training 
parameter as developed in (Singhal and Wu, 1989).  
The standard EKF equations are given as 
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The state estimate ˆ x k| k  is dependent on two factors:  
the measurements, zk , and the process model, f ⋅( ) .  
The quality of the process model has a significant 
impact on the state estimate.  The process model is a 
matrix function that estimates the dynamics of the 
target  
 
 ( ) εff +⋅=true  
 
The error in the model can be estimated arbitrarily 
close using a function approximation scheme.  As 
discussed in (Owen and Stubberud, 2003), this is a 
result of the Stone-Weiestrauss Theorem.  A neural 
network fits the criteria of this theorem if it uses a 
multi-layer perceptron.  In (Stubberud, et al., 1993), 
a neural network training algorithm using the EKF 
paradigm was coupled to an EKF performing state 
estimations.  This implementation is detailed in 
Figure 2.  The new state includes the target states and 
the weights of the neural network.  
 

 
Fig. 2:  Implementation of the NEKF –  
 A neural network training algorithm is coupled  
 to an EKF performing state estimation. 
 
The same residuals used to update the state estimator 
also train the weights to provide a function that, 
when added to the original mathematical model 
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ŵ



     

( ) ( )
,εδ

δff
<

+⋅+⋅= NNtrue  

 
provides an improved dynamic model for the 
prediction step (Eqs. (1d) and (1e)).    
 
The coupled equations of the NEKF are defined as 
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where 

|
ˆ

k kx  is the augmented state vector of Eq. (2b) 
and 
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where the Jacobian of our a priori model F is defined 
by 
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The augmented state vector estimates simultaneously 
the track estimates and the weights of the neural 
network.    The weights of the neural network are 
considered parameters of a function.  These weights 
are adjusted by the residual to correct errors in the 
prediction.  The weights change the model used in 
Eqs. (2d) and (2e).  Thus, the prediction estimates are 

better than those provided by Eqs. (1d) and (1e).   
The motion model of the target is provided by the 
initial NEKF motion model with the neural network 
added in 
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where the weights are held constant. 
 
 

3. INTERCEPT CONTROL SYSTEM 
 
The intercept control problem employed uses the 
standard feedback control approach seen in Figure 1.  
The controller used is a double-lead controller. 
Sample rates of 1.0, 2.0, and 5.0 seconds were used.   
The reference input was a predicted location of the 
target based upon the sample time.  The reference 
signal was the predicted location of the target 
provided by the target tracking system. 
 
The discrete-time model of the interceptor is defined 
as  
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where the state is defined as the discretized version 
of target kinematics of position and velocity for a 
sample rate of dt 
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For both coordinates, x and y, there are two 
controllers in series  
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with a gain, K, chosen as 1.0, 0.33, and 0.05 for a 
sample rate of 1.0, 2.0, and 5.0 seconds, 
respectively.. These were chosen to ensure stability 
of the interceptor. 



     

4. EXAMPLE PROBLEM 
 
For our test case, a target with a ballistic trajectory 
was created.  The continuous time model of the 
system was defined as 
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The state x  was defined as 
 

[ ]Tx x y y& &  
 
which represents the x, y coordinate of the target and 
the associated velocities.  The input u  was defined 
as 
 

rot _ earth

ax

f − g

















 
 
where earthrot _  indicates the rotation of the earth 

for a given time step, xa defines any x-direction 

acceleration provided by the target, f − g  indicates 
the vertical acceleration of the target with the effects 
of gravity.   
 
For our test case, the sampling rate to discretize the 
system was set to 1 second.  The rotation of the earth 
was set to (20000/(24⋅3600)) m/s. The horizontal 
acceleration was defined as 40 m/s2 for the duration 
of the trajectory.  The applied vertical acceleration 
was set at a value of 12 m/s2 and lasted for 60 
seconds.  Figure 3 shows the resulting test case 
trajectory. 

 
Fig. 3:  Example target trajectory used as test case. 
 
 
 

5. RESULTS OF THE KALMAN FILTER AND 
THE NEKF 

 
The target was tracked using both a Kalman filter 
and the NEKF.  The measurement-coupling equation 
for the state estimates was defined for position-only 
measurements 
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The measurement covariance was defined as 
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based on the noise added to the measurements. 
 
The process noise covariance was defined as the 
integrated white noise model 
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The initial model of the NEKF is given as the 
straight-line motion model of Eq. (5) sampled at 1.0 
second intervals.  The input-coupling matrix was set 
to zero in that the actual inputs are not known. 
 
For the NEKF, a single-layer neural network with 
four hidden nodes that applied a sigmoid function  
 

  

1− e−α

1+ e−α
 

 
was used.   The process noise was 1.0 on the input 
weights and 0.05 for the output weights.   
 
Target track predictions of 1.0, 2.0, and 5.0 seconds 
ahead were used to create the reference signal in the 
control system.  The interceptor was launched at 34 
seconds into the 106 second flight of the target.  100 
Monte Carlo runs were performed for each prediction 
time using the noise statistics described above.  The 
average miss distances between the NEKF 
predictions and the true path were measured.  These 
are shown in Figure 4.  The one step prediction is 
shown as the solid line.  The dashed-dotted line 
depicts the two time-step prediction while the dashed 
line indicates the results of a five time-step 
prediction.  This notation is used also used in Figures 
5, 6, and 7. 
 
In Figure 5, the results runs that were repeated using 
the Kalman filter are shown.  As was expected, the 
shorter prediction time, the better its accuracy was 
found to be.  The prediction values from the two 
tracking approaches were then used as the reference 
signal of the interceptor control loop.  The results for 
the interceptor for each prediction time are shown in 



     

Figures 6 for the NEKF results and Figure 7 for the 
Kalman filter results.   
 
Table 1 details the mean miss distance of the 
interceptor for both tracking approaches.  Table 2 
details the standard deviation of the miss distance of 
the interceptor for both tracking approaches. The 
statistics were taken beginning from 16 seconds into 
the flight of the interceptor, so as to remove the 
initial launch distances.   
 
From these results, it is clearly seen that the NEKF 
provides superior results to the Kalman filter when 
used as the tracking system that provides the 
reference signal to the control system. 

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

step

di
st

an
ce

 (
m

)

1-step predict
2-step predict
5-step predict

Fig. 4:  Average Miss Distance Between Path  
 and Prediction Using NEKF. 
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 Fig. 5:  Average Miss Distance Between Path  
 and Prediction Using the Kalman Filter. 
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Fig. 6:  Interceptor Results Using NEKF Prediction.  
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Fig. 7:  Interceptor Results Using Kalman Filter 

Prediction. 
 

Table 1. Mean Miss Distance  
Between Interceptor and Target 

 
Prediction 1.0 s 2.0 s 5.0 s 
NEKF 197.6 446 2693 
Kalman 
Filter 

3084 3311 4114 

 
 

Table  2. Standard Deviation of Miss Distance  
Between Interceptor and Target 

 
Prediction 1.0 s 2.0 s 5.0 s 
NEKF 37.7 139.2 626.9 
Kalman 
Filter 

1464 1490 1577 

 
 

6. CONCLUSIONS 
 
In this paper, the use of a neural extended Kalman 
filter to provide a continual state estimate and to, in 
turn, use these results for interception of the target 
was introduced.    As in its use for a closed-loop 
control system, the NEKF was shown to have the 
capability to improve the state estimates in the 
presence of modelling errors.  The goal of this 
research is to provide an improved ability to intercept 
the target. 
 
From these results, paths of continued research 
present themselves.  Incorporation of predictive 
location control into the system could significantly 
improve ability to intercept. One step is to 
incorporate noise into the measurements.  In past 
work, the NEKF has shown greater performance with 
noisy signals and greater variation in the training 
dynamics (Stubberud and Owen, 2000), (Stubberud 
and Owen, 1999), and (Stubberud and Owen, 1996).  
Another path towards improving intercept ability is 
that the neural network training parameters need to 
be investigated further to improve performance.  
 
The current example uses a simplified interceptor 
model and controller. As this research continues, the 
interceptor model and associated control law will be 



     

investigated further. Control laws to be considered 
include predictive control and proportional 
navigation. 

 
REFERENCES 

 
Kirubarajan, T and Y. Bar-Shalom, “Tracking 

Evasive Move-Stop-Move Targets With A 
GMTI Radar Using A VS-IMM Estimator,” 
IEEE Transactions on Aerospace and Electronic 
Systems, Vol. 39 , No. 3, pp. 1098 – 1103, July 
2003. 

Owen, M.W. and A.R. Stubberud, “NEKF IMM 
Tracking Algorithm,” Proceedings of SPIE:  
Signal and Data Processing of Small targets 
2003, Vol. 5204, Oliver Drummond (ed.), San 
Diego, California, August, 2003. 

Singhal, S, and L. Wu, “Training Multilayer 
Perceptrons with the Extended Kalman 
Algorithm,” Chapter, Advances in Neural 
Processing Systems I, D.S. Touretsky (ed.), 
Morgan Kaufmann, pp. 133-140, 1989. 

Stubberud, S.C. and K .A. Kramer, “A 2-D Intercept 
Problem Using a Neural Extended Kalman Filter 
and Controller Modification,” Proceedings of 
the International Conference on Computing, 
Communications and Control Technologies,  
Vol. 4, pp. 228-233, Austin, TX, August, 2004. 

Stubberud, S.C., R.N. Lobbia, and M. Owen, “An 
Adaptive Extended Kalman Filter Using 
Artificial Neural Networks,” Proceedings of the 
34th IEEE Conference on Decision and Control, 
New Orleans, pp. 1852-1856, Louisiana, 
December, 1995. 

Stubberud, S.C., R.N. Lobbia, and M. Owen, “An 
Adaptive Extended Kalman Filter Using 
Artificial Neural Networks,” The International 
Journal on Smart System Design, Vol. 1, pp. 
207-221, 1998.  

Stubberud, S. and M. Owen, “Controller 
Modification Using Improved Models Of The 
Neural Extended Kalman Filter,” Proceedings of 
the 14th International Conference on Systems 
Engineering, Coventry, UK, pp. 519-523, 
September, 2000. 

Stubberud, S. and M. Owen, “An On-line Control 
Law Adaptation Technique Using Neural 
Networks,” Proceedings of the 13th 
International Conference on Systems 
Engineering, Las Vegas, NV, August, 1999. 

Stubberud, S.C. and M. Owen, “Artificial Neural 
Network Feedback Loop,” Proceedings of  the 
11th International Symposium on Intelligent 
Control, pp. 514-519,  Dearborn, Michigan, 
September, 1996. 

Stubberud, S.C., V. Samant, and J. Saib, “Neural 
Network Technique for an Adaptive Estimator 
for Dynamic Systems,” Proceedings of the Ninth 
International Conference on Systems 
Engineering, Las Vegas, NV, pp. 230-234, July 
15-17, 1993. 

 
 
 

Wang, J.C. and P.K. Varshney, “A Tracking 
Algorithm For Maneuvering Targets,” IEEE 
Transactions on Aerospace and Electronic 
Systems, Vol. 29, No. 3, pp. 910-925, July, 
1993. 

Zarchan, P., Tactical and Strategic Missile Guidance,    
       Fourth Edition, American Institute of 

Aeronautics and Astronautics, Washington, 
D.C., 2002. 


