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Abstract: Various optimal control problems involving set measures are formulated. An
example for such problems is that of optimal motion planning for a mobile observer
or robot equipped with cameras to obtain maximum visual coverage of a given terrain.
Optimality conditions in the form of variational inequality and maximum principle are
presented. The results are applied to the optimal motion planning problem with a simple
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1. INTRODUCTION of z by ||z||. When ambiguity does not arise, is
also used to denote]. Let S = S(z) be a specified
Optimal control problems involving set measures arise real-valued”,-function defined o, a specified sim-
in many physical situations. An example is the prob- ply connected, compact subset®f with a smooth
lem of optimal motion planning for a mobile observer boundarydQ. Let Gsd;f{(sz(x)) ER?:2 €O}
or robot equipped with cameras for planetary explo-
ration or surveillance. It is required to select a path
along which complete or maximum visual coverage
of a given terrain is attained over the shortest or a
specified observation time interval respectively. To fix
ideas, we begin with a detailed discussion of this ex-
ample which provides the motivation for the mathe-
matical formulation of more general optimal control
problems involving set measures. Then, optimality
conditions in the form of variational inequality and
maximum principle for these problems are developed. Definition 2.1 A point (,8(x)) € Gg is said to
The paper concludes with the solutions to the optimal be visible from a point (#,%2) € Epig, if the line
motion planning problem with a simple terrain. segment(z’,z) € R® : (2/,2) = Az, S(x)) + (1 —
A)(Z, 2),0 < X\ < 1} joining the pointsz, S(x)) and
(z,2) lies in Epig.

denote thegraph of S; and Episdéf{(x,z) € Q x

R : z > S(x)}, theepigraph ofS. The spatial profile

of the terrain under observation corresponds:tg,
The observation platform on which the cameras are
attached corresponds to tledevated surface of7 g
given by Gg., whereS. = S + ¢ with ¢ being a
specified positive number. This implies that for any
x € (), the cameras are at a fixed vertical height
above the surfacé's.

2. OPTIMAL MOTION PLANNING PROBLEM
Definition 2.2 The visible setV((z,z)) of a given
Let B = {e1,...,e,} be an orthonormal basis for the POINt(z,2) € Epis is the set of all points it/ that
n-dimensional real Euclidean spak&. The represen- ~ are visible from(z, 2), i.e.V((z, 2)) = {(2', 5(z")) €
tation of a pointz € R” with respect ta3 is denoted ~ Gs : (¢/,5(z"))is visible from (z,2)}. If V((z, 2)) =
by [z] = (21,...,2,)7, and the usual Euclidean norm Gg, thenGy is said to beotally visible from (z, z).



The definitions of visible set and total visibility can
be extended to aetof observation points. Since for
any (z,z) € Epig, the point(z, S(z)) € Gy is al-
ways visible from(z, z), henceV((z, z)) is nonempty.
Since S is assumed to be @>-function defined on a
compact sef?, G is compact. Moreovel((z, z))
and its projection o} (denoted byIloV((x, 2)))
are also compact. Thusz,z) — V((z,z)) (resp.
o V((x, 2))) is a set-valued mapping ofipig into
2Gs (resp.2%), the space of all nonempty compact
subsets o7 s (resp.Q?). In generallloV((x, z)) may
be the union of disjoint compact subsets{ifand it
may consist of isolated points and/or arc$linit was
shown by Wang (2003) that for each pointe €,
there exists aninimalor critical heighth.(z) > S(x)
such thal((z, h.(z))) = Gs, or Gy is totally visible
from the point(x, h.(x)). Moreover, the set-valued
mappingz — V((x, S.(x))) on  into 2¢s may be
discontinuous with respect to the Euclidean metgic
and Hausdorff metrip; whenGg has flat parts (See
Wang (2003) for an example).

Consider the nontrivial case wheee < h.(z) for
all x € Q so that the mobile observer must move
to achieve total or maximum visibility. Lel;, =
[0,t1] denote the observation time interval, where
may be a finite fixed or variable terminal time. For

simplicity, the mobile observer is represented by a

point massM. Its position inR3 at any timet is
specified byp(t) whose representation with respect to
a given orthonormal basi8 is denoted byp(t)] =
(w1(t), 22(), h(t))T, whereh(t) corresponds to the
vertical height along the-axis. The motion of the
mobile observer can be described by Newton’s law:

@

Mh(t)+v.(x(t), &(t), h(t), h(t) = £(t) = Mg, (2)

wherex(t) = (z1(t),z2(t))T; (u,€) is the external
force withu = (uy,us) being the control—Myg is
the gravitational force aligned with theaxis in the
downward directionD is a2 x 2 diagonal matrix with
constant diagonal elements; andv,»; v, is a spec-
ified real-valued function of its arguments describing
the z-component of the friction force. Assuming that
the mobile observer is constrained to move®@n at

all times without slipping, the mobile observer motion
satisfies a holonomic constraint:

h(t)

Mi(t) + Di(t) = u(t);

S(xz(t)) forallt € I, 3)

and a state variable (position) constraintt) €
Q forallt € I, . SinceS is aCs-function on{2, we
may differentiate (3) twice with respect tdo obtain

h(t) = Va5 (2(t)T&(t);

h(t) = VoS (x(t)Ti(t) + &(t) " H(z(t)i(t), (4)

force for keeping the mobile observer on the surface
G at all times:

E(t) = M(VaS((t) "3 (t) + &(t)" H (2 (t)2(t)
tu(2(t), (1), Vo S (@(1)"#(t) + ). (5)

Assuming that the mobile observer lies 63 at the
starting timet = 0, then

h(0) = S(z(0)), h(0) = V.S(x(0))"(0).

= (6)

Let s, (1) (z(t),z(t)) denote the state of system
(1) at timet. When necessary,, (t; s, (0)) is used to
indicate the dependence of a solution of (1) on the
controlu ands,(0). A controlu = wu(t) defined on

a given time interval, is said to beadmissibleif it

is a measurable function dp,, and takes its values in
the control regiorlUs, whereU,,, = {(u1,...,uy) €

R™ : |u;| < 1,4 =1,...,m}, with @;'s being given
positive constants. The set of all admissible controls
defined onl, is denoted byit.q(1I;,), wheret; is

a fixed or variable terminal time. In what follows,
it is assumed that no constraint is imposed on the
magnitude of the vertical forcg

Now, a few physically meaningful optimal motion
planning problems incorporating the foregoing notion
of visibility into the formulation can be stated as
follows:

e P1. Minimum-time Total Visibility Problemlet
Upa = Utl>0 Uaa(I:,) be the set of all admissi-
ble controls. Givers,(0) = (x(0),4(0)) or the ini-
tial state of the mobile observer with initial position
p(0) (2(0),S(z(0))) € Gg and initial velocity
v(0) = (2(0), V.S(z(0))T#(0)), find the smallest
time ¢ > 0 and an admissible contref* = u*(t)
defined on/;: such that its corresponding paiti =
{(wu- (1), S(xu- (t)) € R? : t € I;: } satisfies the total
visibility condition attj:

U V(@ (), Se(zux(t)))

tGItT

Gs

or alternatively,

pa{ [ TaV((@u (1), Sewus (1))} = pa{Q},
tEItI
(7)
wherepus{c} denotes the Lebesgue measure of the set
o C R2,

In the foregoing problem statement, condition (7) only
involves the positionz,,« (), not the velocityz,,» (¢).

In certain physical situations, it is required to move the
mobile observer from one rest position to another, i.e.
Zy+(0) = 0 andi,,- (t) = 0.

e P2. Maximum Visibility Problem with Fixed Obser-
vation Time-IntervalGiven a finite observation time
interval I;; and s, (0) = (x(0),#(0)), or the ini-

whereV,, denotes the gradient operator with respect tial state of the mobile observer with initial position

toz, andH (z(t)) the Hessian matrix of with respect
to = evaluated at:(t). Substituting (4) into (2) gives
the required vertical componegtt) of the external

p(0) (z(0),S(z(0))) € Gs and initial velocity
v(0) (#(0), V.S (x(0))T4(0)), find an admissi-

ble controlu* = w*(¢) and its corresponding path



I = {(zy(t),S(zux(t))) € R® : ¢t € I} such
that the visibility functional given by

Jl(U):/O1uz{ﬂnV((wu(t),Se(xu(t))))}dt (8)

is defined, and satisfieg (u*) > Ji(u) forall u(-) €

Uaa(It,).

Another meaningful visibility functional is given by
Jo(u) = ,UQ{ U HQV((xu(t)vse(mu(t))))} 9
tels,

The foregoing problem with/; replaced byJ/; corre-
sponds to selecting an admissible contrbluch that

the area of the union of the projected visibility sets on

Q for all the points along the corresponding pathis
maximized.

3. OPTIMAL CONTROL PROBLEMS

The foregoing example suggests the following optimal
control problems involving set measures. As in Sec.2,

let I;, denote the control time interval, adflq (I, )
the set of all admissible controlg-) defined only, .
Let the system be described by

z(t) = Az(t) + Y (u(t)), =z(0) ==z, € R", (10)

where A is a givenn x n constant matrix, and is
a specifiedC;-function onU into R™, whereU is a
given compact subset &™. The set of all admissible
controls defined orl;, is denoted bylf,q(I:, ). Let
T — f)( ) be a given set-valued mapping &% —
28" such that(x) is compact, ang,, {V(x)} < i <
oo for all x € R", whereu,, denotes the Lebesgue
measure for sets ilR”, and i is a given positive
number. Moreover) is continuous with respect to
metrics pr and pg. Now, optimal control problems
similar toP1 andP2 can be stated as follows:

e Problem P1':Letif,q = Ut1>0 Uaa (I, ) be the set
of all admissible controls. Givenr, the initial state

of (10) att = 0, find the smallest time&; > 0 and an

admissible contral* = v* () defined on/;: such that

its corresponding trajectory, . satisfies the terminal
condition att}:

Nn{ U D(xu* (t;xo))} = Co,

tGIq

11)

wherec, is a specified positive constant.

e Problem P2': Given a finite control time interval
I, andz,, the initial state of (10) at = 0, find an
admissible control.* = «*(¢) and its corresponding
trajectoryz,«(t; z,),t € I, such that the functional
given by

Ji () = / Vb)) (12)

is defined, and satisfieg (u*) > J; (u) for all u(-) €

Uaa (I1,).

4. OPTIMALITY CONDITIONS

In what follows, optimality conditions for Problem
P1’ will be derived under the assumption that a so-
lution exists. Let

)= Mn{ U f}(xu(Tv*TO))}

Tl

wy (t; 7o (13)
with w,, (0;2,) = pa{V(x,)}. It is required to find
the smallest time¢} € Rt = [0,00[ and an admis-
sible controlu* = w*(t) defined onl;: such that
Wy (t7520) = Co-

A necessary condition for optimality can be derived
by considering the augmented system:

d[m]_{Ax+wwq,

dt g9(z) (14)

[w(t + dt) — w(t)]

bt Y

7€l 5¢

U V(w(ﬂ)}], (15)

Tel;
and the initial state at = 0 is given bys(, .,)(0) =
(%o, tn{V(z0)}) € R™ x R*. Since forst > 0,

Urer, V(@(1)) € Usrer,,,, V(@(7)), g(z(t)) can be
rewritten as

1
lim sup —
dt—0t p ot

= lim sup —
5t~>0+

g(x(t))=6t111r5+sup —uw{[ |J V@
7€l 15t
[ U V@)]} (16)

TEl
wherec® denotes the complement of the seih R™.

The target set is a hyperplane specified By =
{(z,w) € R" x R" : w = ¢,}. Thus, ProblenP1’
can be restated in the form of a standard time-optimal
control problem, i.e. find an admissible contidl(-)
which steers the initial state ,,)(0) of system (14)
at¢ = 0 to the target sef in minimum timet;.

Let the Hamiltonian for (14) be defined by:
H(z,n,u) = —147" (Az+(u)+n119(), (17)

wheren = (1,70, 1)’
state of the adjoint system:

corresponds to the

i1 =—ATi — 0,41V29(2), Tas1 =0, (18)

wheres) = (n1,...,1,)T, andV, denotes the gradi-
ent operator with respect ta

If the real-valued functionr — g(x) on Q — R*

is smooth, then the following necessary condition
for optimality follows from the Pontryagin Maximum
Principle (Lee and Markus (1967)):

Theorem 4.1 Suppose that the functian — ¢g(x)
onR"” — Rt is Cy. Letu* = u*(t) be an optimal



control for Problem P1 with corresponding response
r* = z*(t) defined onl;:. Then there exists an
absolutely continuous functiofi* = 77*(¢) satisfying
(18) for almost allt € I;» with

H(2™ (1), 0" (t),u" (1))

= M(z*(t),n"(t)) foralmostallt € I;=, (19)
wheref) = (n1,...,n,)T, and
M(a* (£), " (1) = max H(a" (1), 0" (1), w). (20)
Moreover,
M(z*(t),n"(t)) = 0only, (21)

and the transversality condition=n(t;) = (0,x)T
for somex > 0 (the normal to the target sef at
(z*,w*)(¢7) in the positivew-direction), or

(t7) =0,

~ %

n
is satisfied.

77:,+1(t’f) =—K (22)

From Theorem 4.1, it is evident from (17) that the
optimal controlu* is a function of7; only. For the
special case wher¢(u) = v andU = U, as in
system (1)u*(t) takes on the form:

u; (t) = u;sgn(n; (t)), (23)
Equations (14),(18)-(21) with initial conditiong0) =
zo,w(0) = p,{V(z,)}), and terminal conditions
w(t1) = ¢, N(t1) = 0,Mp41(t1) = —~k form a family
of two-point-boundary-value problems (TPBVP) with
the terminal timet; as a variable parameter. The op-
timal trajectory is a solution of the TPBVP with the
smallest terminal timé;. It is evident from the second
equationin (18) and (22),+1(t) = —x on 1. Thus,
(18) can be rewritten agi = — A" + £V ,g(x).

1=1,...,n.

Now, consider Problem P2’ with the assumption that
an optimal controk.* = w*(¢) defined onl;, exists.
Let éu be a control perturbation such that= u* +

ou is admissible. Let the solutions of (10) at time
corresponding ta, andv*, and the same initial state
z, be denoted by, (t) and z,-(t) respectively. To
derive optimality conditions, consider

AT E T (%)

— [ (Pl 0)) = (P () i,
: 24)

— Jy(u* + 6u)

Using the identity:

V(s (1)) = V(wu(t))

(V(@a(6)) NV (@u- 1)UV (@ (1)) NV (2a(1))),
(25)

AJ; can be rewritten as:
AJ{ = / 1(Mn{(f}($u*+5u(t)))c n f)(xu* (t))}
0
—n{ (V@ (1)) O V(@ p5u(t) . (26)

Thus, a sufficient but not necessary condition for opti-
mality is given by

pnd V(@ 5u () NV (e (1)}
> V(@ (1) NV (@ur45u()}  (27)

foralmostallt € I;, and all admissible™ +du, where
Zy+ 4o (t) CaN be written in the form:

Tur45u(t) = Tus (t) + 6(t) + o([|0z(2)]]),
with

(28)

t
T+ (t) = ez, —|—/ eA(t_T)w(u* (1))dr,
0

ox(t) = /O AT 1 (w* (7)) du(r)dr,  (29)

where J,;, denotes the Jacobian matrix @f with
respect tau.

Now, consider perturbed admissible controls of the
form v* + adu, wheredu is a given control pertur-
bation, andd) < « < 1. If the real-valued function

z — pun{V(z)} onR" — RT is Oy, then the Gateaux
differential of.J; ata,- () with incrementz(-) exists.
Thus, we have the following necessary condition for
optimality:

Theorem 4.2Suppose that an optimal contrat =
u*(t) defined onl;, for Problem P2’ exists, and the
functionz — u,{V(z)} onQ — Rt is C;. Then
u* () must satisfy the following variational inequality:

D.Jy (u*; 6u) =

/t1
0

—pn{ V(@ () N V(@ asu(t)})dt >0 (30)
for all admissibleu* + adu.

. 1 Y c N
lim — (/in{v(xu*-&-(xéu(t)) N V((ﬂu* (t))}

a—0

Another necessary condition for optimality can be
obtained by introducing a new state varialeThe
evolution ofy(¢) with time ¢ is described by

J(t) = pn{V(zu(t)}, y(0)=0.  (31)

Thus,J; (u) = y(t;). Let the Hamiltonian associated
with the augmented syste(@0) and (31) be defined
by:

H(@,m,u) = p{V(2)} + 0" (Az +(u)), (32)

wheren = (n1,...,7,)T corresponds to the state of
the adjoint system:

n=-V.H. (33)

Again, if the functionz — u,{V(z)} onR" — R*
is smooth, then a necessary condition for optimality is
given by:

Theorem 4.3 Suppose that the functionz

— pun{V(z)} oONR* — Rt is Cy. Letu* = u*(t)
be an optimal control for Problem P2’ with corre-
sponding responsg* = x*(t). Then there exists an
absolutely continuous functiof* = 7n*(t) satisfying
(33) given explicitly by

n= _vwﬂn{f}(l‘)} - AT77 (34)



for almost allt € I, and terminal conditionn* (1)
= 0 with

H(z"(t),n"(t), u"(t)) = M(z"(t),n"(t)) (35)
for almost allt € I, , where
M(a*(8). " (£) ™ max H(a* (£), 7" (1), ).~ (36)

Thus, (10),(31) and (34) with terminal condition
n(t1) = 0 and initial condition(z,y)(0) = (z,,0)
along with (35) and (36) constitute a nonlinear TPBVP
for which the optimal trajectoryz*, y*, n*)(-) must
satisfy. For the special case whef¢u) = « and

U = U,, Theorem 4.3 implies that*(¢) has the form
given by (23).

The main difficulty in applying Theorems 4.1-4.3 to

concrete problems such as the motion planning prob-

lem is that the mappinyy derived from physical situ-
ations (e.g. the visible se§((x, Sc(x))) for x € Q)
cannot be expressed analytically in termzofConse-
quently, the Gateaux differential in (3Q)z), V. g(z)
and V,u,{V(z)} in (14),(18) and (34) respectively
cannot be readily computed.

5. EXAMPLE

Consider a simple case of the optimal motion planning
problems discussed in Sec.2 in which the visible sets

at any point inGs, can be computed analytically.
Let Q2 be the normalized spatial domain specified by
the unit disk{z € R? : ||z|| < 1}, wherez has
been normalized with respect to the radiysof the

actual spatial domain. The surface under observation

corresponds to the graph of the real-valued funcion
given by

S(z) =1~ ||,
wherex = (x1,25), and||z||?> = 27 + 22. It can be
verified by elementary computations that for any given
e > 0, the projection of the visible set from a point
(z,S:(x)) € Gg. ontof) is simply the intersection of
the unit disk with the disk centered atwith radius
Ve e IgV((z, Se(x))) = QN {a’ = (2f,24) €
R? : ||z — 2’| < y/e}. Moreover, for0 < ¢ < 1,

p2{V((z, Se(x)))}
er, fO0<r<1-—./¢

:{ﬁ@f%ﬁ1v€<r§L

wherer = ||z|, 7 = (1 — e + r?)/2r, and

) i
(39)

Note that fore = 1, the surface?,,, is not smooth at
the origin. Moreoverge = 1 corresponds to the critical
heighth, at the origin defined in Sec.2.

z € Q, (37)

(38)

r—r

Ve

B(r,7) = cos ! (F) + ecos ™! (

Consider the Minimum-Time Total Visibility Problem
P1. To compute the trajectory and control that satisfy
the necessary condition for optimality for Probl&th
given by Theorem 4.1, it is convenient to introduce
a normalized timer = t/t; and solve the TPBVP
stated in Theorem 4.1 with a variable parameter
However, even for the simplé given by (37), the
computation ofg(z) defined by (16) for anyr €

Q is a tedious task. The characterization of optimal
control given by (23) suggests seeking “bang-bang”
controls with a finite number of switchings to achieve
total visibility in minimum time. Starting with the
case with no switchings in botl; and us, then
one switching inu; and no switching inus etc, we
obtain a trajectory in théz;,x)-plane with total
visibility with the smallest terminal time,. Figures
1-3 show the results for the case where= 1/4. It
can be seen from Fig.1 that the computed trajectory
in the (z1, z2)-plane approaches the circle with radius
e = 1/2 as fast as possible, and then stays in the
neighborhood of this circle for the remaining times
until total visibility is attained. At any point on this
circle, po{IIoV((x, Sc(x)))} takes on its maximum
valuere.

Next, consider the Maximum Visibility Problerf2.
Here, the augmented system corresponding to (1) and

(31) has the following form:
T (—=Dz +u)/M ] , (40)

d
d’fL pa{TloV((x, Se(x)))}

where pa{IIgV((x, Sc(x)))} is given by (38). The
adjoint system corresponding to (34) has the following
explicit form:

T T

X

m hi(z)
d | n ha(z)
- S 41
dt | 3 m — (Va1 /M)ns | (41)
M4 2 — (Va2/M)ny
wherehi(x) =
if0<r<1-./g
2mlx/1—r2/r ifl—vVe<r<l1, i=12.
(42)

Sincex — px{lIgV((x, Se(x)))} given by (37) i1,
it follows from Theorem 4.3 that the optimal control
u* has the form:

up(t) = wsgn(ns (1)), ua(t) = uzsgr(ny(t)). (43)

Consider the nonlinear TPBVP corresponding to (40)-
(43) with initial condition(z, &, y)(0) = (x(0), £(0),

w2 {IIoV((x(0), Se(x(0)))}) and terminal condition
n(t1) = 0. Numerical solutions for this problem
are obtained for specified values of the system pa-
rameters using the MATLAB algorithm “BVP4C”
by Shampine et al. Figures 4-6 show the results for

the case where = 1/4;2(0) = (— 10) #(0) =
(0.025,-0.05), 4(0) = p2{LloV((2(0), Se(z(0)))};
M = 10 kg, vz; = 0.01 N. sec./m,v,2 = 0.0



N.sec./m,t; = 25 sec., andu = 0.1 N/m. In the
computation, the signum function in (43) was approxi-
mated bytanh (5097 (¢)),¢ = 3,4. It can be seen from
Fig.5 that the main portion of the projected trajectory
on Q lies inside the diskD with radius/e = 1/2,
where po{IIoV((x, Sc(z)))} takes on its maximum
value 7re. This result is consistent with intuition that
in order to maximize/J;, the trajectory should enter
the diskD as quickly as possible and stay insibleas
long as possible for the remaining times.

6. CONCLUSIONS

In this paper, a class of optimal control problems
involving set measures motivated from optimal mo-
tion planning problems based on visibility has been
studied. These optimization problems are generally
non-smooth. The derived optimality conditions are not
easily applicable to problems derived form real-world
situations. Efficient algorithms are needed for the nu-
merical solution of these problems. Some progress
has been made in this direction recently for optimal
motion planning problems (See Balmes and Wang
(2000), Wang (2004)).
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Fig. 1. Projection of the computed trajectories onto the
(z1,x2)-plane for ProbleniP1 with e = 1/4.

o
o—\—r
-04]
% 5 10 25 EY 3
o
o 1*\—,7
-04]
o
B 10 2 E] s

Is
t

Fig. 2. Computed controlg; = w;(t) andus = usa(t)
for ProblemP 1
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Fig. 3. Time-domain plot ofw = w(t) along the
computed path for Problefl.
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Fig. 4. Computed controls; = w4 (¢) andus = ua(t)
for ProblemP2.

Fig. 5. Computed solution to TPBVP corresponding to
ProblemP2 projected onto thézq, z2)-plane.
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Fig. 6. Computed visibility functiona = y(¢) for
ProblemP2.



