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Abstract: In this paper, an algorithm for computing heteroclinic orbits of nonlinear
systems, which can have several hyperbolic equilibria, is suggested and analyzed both
analytically and numerically. The method is based on a representation of the invariant
manifold of a hyperbolic equilibrium via a certain exponential series expansion. The
algorithm for computing the series coefficients is derived and the uniform convergence of
the series is theoretically proved. The algorithm is then applied to computing heteroclinic
orbits numerically in the generalized Lorenz system, thereby theoretically justifying
the previously demonstrated existence of chaotic oscillations in this important class of
dynamical systems.Copyrightc©2005 IFAC.
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1. INTRODUCTION

To theoretically define and prove the existence of
chaotic behaviors in a particular system is perhaps
the most difficult task in the study of chaotic dynam-
ics. It is therefore common to study chaotic systems
numerically, based on time series data, especially in
the fields of engineering and applied physics. To an-
alyze chaotic systems theoretically, an important role
is played by the so-called homoclinic and heteroclinic
orbits, thanks to the now-classical result ofŠi’lnikov
(Shilnikov, 1965; Shi’lnikov, 1970; Silva, 1993; Wig-
gins, 1988), who characterized the existence of chaos
in terms of some simple properties of hyperbolic equi-
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libria and the existence of heteroclinic or homoclinic
orbits. Some studies on the heteroclinic or homoclinic
orbits can be found in (Vakakis et al, 1998; Robinson1,
1989; Robinson2, 1992; Robinson3, 2000; Huang,
2003; Hassard and Zhang, 1994; Lassoued and Math-
louthi, 1992; Champneys et al, 1996; Bai and Champ-
neys, 1996) and some applications of this criterion can
be found, for example, in (Zhou and Chen, 2004; Zhou
et al, 2004; Zhou et al, 2003; Zhou et al, 2005).

In this paper, an algorithm is developed for computing
heteroclinic orbits. Loosely speaking, a heteroclinic
orbit of a pair of hyperbolic equilibria is a solution
of the system that has a one-sided limit ast → ∞,
with another one-sided limit ast → −∞. Geomet-
rically, each heteroclinic orbit is the intersection of a
stable manifold of one equilibrium with an unstable
invariant manifold of another equilibrium. Therefore,



the key ingredient of this new approach to finding a
heteroclinic orbit in the proposed algorithm is to com-
pute these invariant manifolds and their dependence
on the system parameters. To this end, one is then
able to determine for which parameters a heteroclinic
connection exists.

Rather than presenting detailed and exhausting math-
ematical proofs for the existence, based on various
conditions, this paper describes clearly an easily-
implementable algorithm that can determine whether
or not a heteroclinic orbit exists and, if so, provid-
ing a good approximation of it. In such a way, the
algorithm contributes to computer-aided analysis of
various chaotic systems.

2. PRELIMINARIES

To specify the systems which the proposed algorithm
is applicable to, the following definition is needed.

Definition 1. Consider a smooth nonlinear dynamical
system,

ẋ = f(x), x ∈ Rn. (1)

This system is said to be almost everywhere (a.e.) real-
analytic eliminable, if there exists a smooth function,
h : Rn 7→ R, an almost everywhere real-analytic
mapping2 ψ : Rn 7→ Rn, such that

x = ψ(y, ẏ, ÿ, · · · , y(n−1)), (2)

where

y(0) := y := h(x), y(1) := ẏ :=
∂h

∂x
f(x),

y(j) :=
∂y(j−1)

∂x
f(x), j = 1, 2, . . . . (3)

Note thatx(t) is a solution of (1) if and only ify(t) is
a solution of

y(n) + ϕ(y, ẏ, ..., y(n−1)) = 0,

ϕ := −

(

∂y(n−1)

∂x
f

)

(

ψ−1(y, ẏ . . . , y(n−1))
)

. (4)

If all the above mappings are globally real-analytic
on Rn, then the system is said to be real-analytic
eliminable. Below, (4) is referred to as the (a.e.) real-
analytic eliminated form, while (4) is called the (a.e.)
real-analytic elimination transformation.

2 Functions or mappings are said to be almost everywhere analytic
if for every bounded subsetS of Rn there exists a finite collection of
open and mutually nonintersecting sets, the union of their closures
beingS, such that on each of them the corresponding function or
mapping has a converging Taylor series.

Typical (a.e.) real-analytical eliminable systems in-
clude quadratic systems, like the Lorenz and Rössler
systems (R̈ossler, 1996; Sparrow, 1982; Tucker, 1999).
It includes the generalized Lorenz system (Čelikovsḱy
and Chen, 2002;Čelikovsḱy and Vaňeček, 1994;
Vanĕc̆ek, andČelikovsḱy, 1996; Zhou et al, 2005), as
shown below.

Example 1.Generalized Lorenz system in the hetero-
clinic canonical form (Zhou et al, 2005)
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dx1

dt
= ξx1 + x2

dx2

dt
= (ξ(λ1 + λ2 − ξ) − λ1λ2)x1

+ (λ1 + λ2 − ξ)x2 − x1x3

dx3

dt
= λ3x3 + x1x2,

(5)

whereξ ∈ (−∞, 0). This system is (a.e.) real-analytic
eliminable, since fory = h(x) := x1

x1 = y, x2 = ẋ1 − ξx1, (6)

x3 = −
ẍ1 − (λ1 + λ2)ẋ1

x1
− λ1λ2, (7)

d

dt

(

ẍ1 − (λ1 + λ2)ẋ1

x1

)

−λ3

(

ẍ1 − (λ1 + λ2)ẋ1

x1

)

+x1ẋ1 − ξx2
1 − λ1λ2λ3 = 0. (8)

One can proceed in a straightforward way to obtain
the corresponding eliminated form:

y(3) − (λ1 + λ2 + λ3)ÿ + λ3(λ1 + λ2)ẏ − λ1λ2λ3y

−ξy3 + y2ẏ −
ÿẏ + (λ1 + λ2)ẏ

2

y
= 0. (9)

The last expression can be decomposed on any
bounded set into two converging Taylor series. For any
A > 0, one has
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1

−A

∞
∑
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(

A+ y

A

)k

for y ∈ (−2A, 0)

where both series converge in the given range, so for
large enough value ofA the above statement holds.

Example 2. Lur’e systemThe special case of the
Lur’e system, considered in (Alvarez et al, 2002) for
synthesis and synchronization of chaos, has the fol-
lowing form:

ẋ1 = x2, . . . , ẋn−1 = xn, ẋn = α(x1, . . . , xn),

which is (a.e.) real-analytic eliminable ifφ is an (a.e.)
real-analytical function. The corresponding elimina-
tion transformation is

y = x1, ẏ = x2, ÿ = x3, . . . , y(n−1) = xn,



resulting in the following elimination form:

y(n) − α(y, ẏ, . . . , y(n−1)) = 0.

The following Lemma is straightforward.

Lemma 1. Consider an equilibriumxE of system (1)
and suppose that its eliminated form as well as elim-
ination transformation are well defined at this point
(i.e., the denominators of the corresponding rational
expressions are nonzero). Then, every eigenvalue of
the approximate linearization of system (1) atxE is
a solution of the characteristic equation of the linear
part of system (4) w.r.t. the point

y = h(xE), ẏ = 0,

ÿ = 0, · · · , y(n) = 0, ϕ(h(xE), 0, · · · , 0) = 0.

3. THE ALGORITHM FOR COMPUTING THE
HETEROCLINIC ORBIT

3.1 Computation of stable and unstable manifolds

Suppose that system (1) has a hyperbolic equilibrium
xE and letyE = h(xE) be the corresponding equi-
librium of its (a.e.) real-analytic eliminated form (4)
such that both the eliminated form and the elimina-
tion transformation are well defined atxE , yE . To
demonstrate the key ideas in the computational algo-
rithm, for brevity, assume that there aren real distinct
eigenvalues, while the cases of multiple and complex
eigenvalues may be treated analogously. Assume that
there arens negative andnu positive eigenvalues, due
to the hyperbolicity, withns + nu = n. Denote also
byλ1, ..., λns

the corresponding negative eigenvalues,
while byλns+1, ..., λn, the positive ones.

It is now to discuss how to compute a stable invariant
manifold. The same algorithm will then be applied to
computing an unstable invariant manifold by replacing
t 7→ −t and negative eigenvalues7→ positive eigenval-
ues throughout the algorithm.

First, search for a particular trajectoryφ(t), belong-
ing to the stable manifold of the equilibriumxE , as
follows:

φ(t) = yE

+

∞
∑

k1,...,kns
=1

ak1,...kns
exp

(

t

ns
∑

i=1

λiki

)

, (10)

whereak1,...kns
, k1, ..., kns

= 1, 2, ... are undeter-
mined coefficients.

Then, it is straightforward but tedious to show that
one has to use the above basis of the expansion if
a series expansion with negative exponents is to be
used. As a matter of fact, first-order terms in the
expansion constitute the solution of the linearized

system of (4) atyE , and higher-order terms represent
the nonlinearity.

It is important to note that the undetermined coef-
ficients can be determined recursively, thanks to the
(a.e.) real-analyticity of the corresponding eliminated
form, by comparing coefficients in the same exponen-
tials. In other words, if one lets

a1 := a1,0,...,0, . . . , anS
:= a0,...0,1, (11)

then each coefficientak1,...,knS
, k1, ..., kns

= 2, 3, ...,
is completely determined by the system parameters,
a1, ..., anS

, in the following way:

ak1,...kns
= φk1,...kns

ns
∏

i=1

ak1

1 ...a
kns

nS
, (12)

whereφk1,...,km
are some known constants depending

on the systems parameters. Botha’s andφ’s may be
determined by the following scheme:

Algorithm for solving the undetermined exponential
series:

First, let Pchar(·) be the characteristic polynomial of
the linear part of the corresponding eliminated form
(4) at yE , and denote byν the operator given by
higher-order terms of this eliminated form in Taylor
expansion atyE . Then, the undetermined coefficients
are recursively computed as follows:

(1) Initial step. Choose arbitrary

a1 := a1,0,...,0, . . . , anS
:= a0,...0,1.

(2) Recursive (inductive) step.Suppose (12) holds
for all ak1,...,kns

such that
∑nS

i=1 ki ≤ j, and
consider anyak′

1
,...,k′

ns

with
∑nS

i=1 k
′
i = j + 1.

Substituting (10) into the corresponding elimi-
nated form of (1) and re-grouping the terms, one
has

Pchar

(

ns
∑

i=1

λik
′
i

)

ak′

1
,...,k′

ns

exp

(

t

ns
∑

i=1

λik
′
i

)

+

∑

nS

i=1
ki=j

∑

k1,...,kns
=1

Pchar

(

ns
∑

i=1

λiki

)

ak1,...,kns

× exp

(

t

ns
∑

i=1

λiki

)

= ν
{

∑

nS

i=1
ki≤j

∑

k1,...,kns
=1

ak1,...,kns
exp

(

t

ns
∑

i=1

λiki

)

+

∑

nS

i=1
ki>j

∑

k1,...,kns
=1

ak1,...,kns
exp

(

t

ns
∑

i=1

λiki

)

}

= ν







∑

nS

i=1
ki≤j

∑

k1,...,kns
=1

ak1,...,kns
exp

(

t

ns
∑

i=1

λiki

)






+β,



where inβ there are only coefficientsak′′

1
,...,k′′

ns

with
∑nS

i=1 k
′′
i > j + 1. Therefore,ak′

1
,...,k′

ns

with
∑nS

i=1 k
′
i = j + 1 may be computed from

ak1,...,kns
such that

∑nS

i=1 ki ≤ j, and so the
recursive step is well defined.

In addition to its usefulness for computing the appro-
priate coefficients, this algorithm may also serve as
a theoretical proof by induction of the solvability for
an eliminated form in terms of the above exponential
series. In doing so, it can be rigorously proved that the
expansion (10) is uniformly convergent for allt ≥ 0,
which is omitted here.

Notice also that in the expansion (10), there arens

free parameters. This is quite natural, since the stable
manifold has dimensionns.

3.2 Computing the heteroclinic orbit

A heteroclinic orbit is by definition the intersection of
a stable invariant manifold of one equilibrium and an
unstable invariant manifold of another equilibrium.

Suppose that we are given two equilibria,xE1, xE2,
with the correspondingyE1, yE2, both hyperbolic
with only distinct real eigenvalues. First, compute the
stable-manifold and unstable-manifold expressions as
discussed in the previous subsection, yielding

φS(t) = yE1

+
∞
∑

k1,...,kns
=1

aS
k1,...,kns

exp

(

t

ns
∑

i=1

λS
i ki

)

, (13)

φU (t) = yE2

+
∞
∑

k1,...,knU
=1

aU
k1,...,knU

exp

(

−t

nU
∑

i=1

λU
i ki

)

. (14)

Now, the remaining step is to compute the condi-
tions under which both stable and unstable manifolds
mutually intersect. For simplicity, consider the case
when the obtained eliminated form is a global one.3

Then, both (13) and (14) should definethe same time
function, i.e., for all t ∈ (−∞,∞) one should have
φS(t) = φU (t). As a matter of fact, this givesn equa-
tions to be satisfied by differentiating (aftern− 1 dif-
ferentiations; further relations are consequence of the
previous ones, due to thenth-order eliminated form).
Thanks to the “nice” structure of the parameters,4 one
of them, saya1, can be “sacrificed,” leading to

a1 = exp(tλ1), t =
log(a1)

λ1
.

3 For the almost-everywhere situation, it is analogous but more
technical, as one has to glue both solutions on a singular boundary
between two Taylor representations by limiting arguments.
4 The power of some parameterai is the same as theki in the
corresponding exponent.

This eliminates the time variablet from all equations.
Thus, one hasnS + nU − 1 free parameters andn
equations to be satisfied.

There are only two cases to consider: transversal and
non-transversal.

In the transversal case, the sum of dimensions of the
stable manifold of one equilibrium and the unstable
manifold of another equilibrium is strictly greater than
n. In this case,nS +nU −1 ≥ n, and one may guaran-
tee the existence and computability of the heteroclinic
connection for all system parameters on an open set in
the parameter space. Such a heteroclinic connection
is also said to be structurally stable, as small system
parameter perturbations may slightly change the hete-
roclinic orbit, but not break it completely.

In the non-transversal case,nS +nU = n. In this case,
one has to use some additional system parameters
to fulfill the required equality, so that a heteroclinic
orbit exists only for some special values of the system
parameters. This case is called a structurally unstable
heteroclinic connection, since it is completely broken
by some arbitrary small variations of system parame-
ters.

In addition, the above computational method for het-
eroclinic orbits can be similarly applied to compute
homoclinic orbits.

The proposedAlgorithm is summarized as follows:

Step 1. Calculate the system equilibria, assuming that
they are hyperbolic saddle foci.

Step 2. Use the undetermined coefficient method to
calculate the corresponding coefficients of the time-
expansion series of the solutions belonging to stable
and unstable manifolds withnS +nU free parameters.

Step 3.Eliminate the time variable and find parame-
ters that solve numerically the finite-order truncations
of the corresponding equations up to the selected or-
der.

Step 4. Use these parameters to determine the hetero-
clinic orbit approximation.

4. AN APPLICATION TO GENERALIZED
LORENZ SYSTEM IN CANONICAL FORM

To demonstrate the above-developed algorithm, con-
sider the generalized Lorenz canonical form (GLCF)
(5) and its rational form (9). It can be easily seen
that (5) has two hyperbolic saddle foci, denoted by
E1(y0, −ξy0, −λ1λ2) and

E2(−y0, ξy0, −λ1λ2), wherey0 =
√

−λ1λ2λ3

ξ
. Ac-

cording to the above discussion, it is assumed that

y(t) ≡ ϕ(t) = −y0 +
∞
∑

k=1

ake
kαt, (15)



whereα < 0 is an undetermined constant, so are all
ak (k ≥ 1).

Substituting (15) into (9) and then comparing the
coefficients ofekαt (k ≥ 1) of the same power terms,
one finds that the exponentα satisfies

α3 − (λ1 + λ2 + λ3)α
2

+λ3

(

λ1 + λ2 −
λ1λ2

ξ

)

α+ 2λ1λ2λ3 = 0, (16)

while coefficientsak can be recursively determined
(see (Zhou and Chen, 2004) for more details), as

an = ϕn · an
1 , n > 1, (17)

whereϕn (n > 1) are some known functions depend-
ing onα, λ1, λ2, λ3 andξ, anda1 is a free parameter.

To this end, part of the stable manifold of the het-
eroclinic orbit is determined. Similarly, part of its
unstable manifold can be determined with a free pa-
rameter, denoted byb1. Thus, one component of the
corresponding heteroclinic orbit has the form

ϕ(t) =
























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

−γ +

∞
∑

k=1

ake
kαt for t > 0

0 for t = 0

γ +
∞
∑

k=1

bke
−kαt for t < 0.

(18)

The remaining question is how to glue these two parts
together, so that they tranversally intersect. For this
purpose, one needs to impose the following condi-
tions:

ϕ(0−) = ϕ(0+),

ϕ′(0−) = ϕ′(0+), ϕ′′(0−) = ϕ′′(0+), (19)

which can be validated by suitably utilizing the two
free parametersa1 andb1.

Finally, a numerical simulation result is shown in
Figure 1.

5. CONCLUSIONS AND RESEARCH
OUTLOOKS

An algorithm for computing heteroclinic orbits has
been developed. Existence of heteroclinic orbits is
known to be an important indicator of a possible
chaotic attractor in a system. Therefore, the new al-
gorithm facilitates chaos synthesis, i.e., an active de-
sign of systems parameters via some control action to
create chaotic behaviors purposefully. The algorithm
has been tested on the generalized Lorenz system
(Čelikovsḱy and Chen, 2002), but still needs further
investigation on its numerical properties for more gen-
eral classes of systems. Nevertheless, the generalized
Lorenz system is already general enough with rich
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Fig. 2. Two typical chaotic attractors of the general-
ized Lorenz system.

chaotic behaviors, as demonstrated in (Čelikovsḱy and
Chen, 2002), as also shown in Figure 2. The present
work is the first step towards establishing more theo-
retical fundamentals for chaos existence in the gener-
alized Lorenz system and perhaps also in some other
complex systems.
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