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1. INTRODUCTION

Orthogonal functions like Walsh (Chen and Hsiao,
1965; Rao, 1983), block pulse (Krueger and Knoop,
1990; Rao and Rao, 1979), Laguerre (Hwang and
Shin, 1981), Legendre (Chang and Wang, 1984) play
an important role to establish algebraic methods for
the solution of problems described by differential
equations, such as analysis of linear time invariant or
time varying systems, model reduction, optimal
control and system identification.

Time domain techniques for solving differential
equations have received increased attention in the
literature in the comparison to frequency domain
methods. Wavelet transform (Burrus, et al., 1998) as
a new technique for time domain simulations based
on the time-frequency localization, or multiresolution
property, has been developed into a more and more
complete system and found great success in practical
engineering problems. Recently, some of the
attempts are made in solving surface integral
equations, improving the finite difference time
domain method, solving linear differential equations
and nonlinear partial differential equations and
modelling nonlinear semiconductor devices (Ohkita
and Kobayashi, 1986; Razzaghi and Ordokhani,
2002). Recently, in (Karimi, et al., 2004a; Karimi, et

al. 2004b) a computational method based on Haar
wavelet in time-domain for solving optimal control
and parameter estimation of the linear time invariant
systems for any finite time interval was proposed.

In the sequel of the work by (Karimi, et al., 2004b),
we extend the computational method based on Haar
wavelet to the optimal control problem of linear
singularly perturbed systems. Singularly perturbed
systems often occur naturally because of the presence
of small parasitic parameters multiplying the time
derivatives of some of the system states. Singularly
perturbed control systems have been intensively
studied for the past three decades and a popular
approach adopted to handle these systems is based on
the so-called reduced technique; see (Kokotovic, et
al., 1986). The composite design based on separate
designs for slow and fast subsystems has been
systematically reviewed by (Saksena, et al., 1984). In
this paper, by utilizing the properties of Haar
functions and the integral operation matrix and
Kronecker product, we can find the approximated
optimal slow and fast dynamics and approximated
optimal composite control with respect to a quadratic
cost function by solving only the linear algebraic
equations instead of solving two Riccati differential
equations of the slow and fast subsystems. We
demonstrate the applicability of the proposed
technique in a simple example.



2. COMPOSITE CONTROL FOR SINGULARLY
PERTURBED SYSTEMS

In this paper continuous-time singularly perturbed

linear system is given by the state-space
representation

{5‘1(0}:{‘411 A12:|{xl(t):|+|:Blj|u(t) (1)
£X,(1) 4y Ay | x(0)] | B,

where x, e R", x,eR™ and n (=n+n,) is the order
of the whole system, and u(r) e R’ is control vector.
The matrices 4, eR™™, A,eR""™, 4, eR>",
A, e R, B eR™, B,eR?’ are constant and
£>0 is scalar and real. The quadratic cost function to
be minimized is given by
T
J= f (O x(t) +u” () Ru(?)) dt )
0
x= [xf x ]’ e®” and the matrices
Q = diagonal (0,,0,) and R are positive semi-definite
and positive definite matrices, respectively.
Using the singular perturbation method (Kokotovic,
et al., 1986), we establish slow and fast subsystems,
and we will derive slow and fast cost functions for
the each subsystem. A composite control for the
singularly perturbed system is obtained as a
combination of optimal control laws of the slow and
fast subsystems; i.e.
u=u, =u +u; 3)

where

where u, and u,are optimal controls for the slow

and fast subsystems, respectively.
2.1. Slow subsystem

First we consider the optimal control for the slow
subsystem. Let ¢£=0 and assume that 4,, is non-

singular, then we obtain the slow subsystem as

3,(0) = Ay, (1) + By, (1) “)
X,,(£) = = Ay; (A %, (0) + By, 1, (1) )
where x,(0)=x,(0)and x,(r) and x, (r) are vectors in
R" and R respectively, and u,(r) e R’ represents the

control input vector. And the coefficient matrices
B, 4, and B, are given by

B, =B -4, A;zl By, Ay=4,- 4, A;zl Ay 5 By =B, (6)
Replacing x(r) with x ()= [xlf & xI. (t)]r yields the

following quadratic cost function for the slow
subsystem

Ty
J, = [ 00 x, 0+ 200w, () +ul ORu @ de - (7)
0

where

0y = O + 43, (47,) ' 0, 4y, 4y,
O = 4, (43,)7 0, 4B, ®
R=R+By, (A7)0, 4y By, -

To remove the cross product term, 2x%()Qu,(r), in
the cost function (7) we define

0, =u,()+R Q" x,(0) 5 ©)
then the slow subsystem (4) and the cost function (7)
are rewritten as follows:

%,(8) = 4y x,, () + B, 0, (1) (10)

Ty

J, = [l O0, x,(0+7 O R, 0) di (1n
0

where 4,=4,-8,k"0/ and 0, =0,-QR"Q.

2.2. Fast subsystem

Next we consider the fast subsystem with the
assumption that the slow variables are constant in the
boundary layer. Redefining the fast variables as
x,, =x, —x,, and the fast controls u, =u-u,, then the

fast subsystem is formulated as follows:

. 1 1

x2f(t)=;A22x2f(t)+;BZ”f(t) (12)
with the initial condition x, (0) = x,(0)-x,,(0). The

performance criterion for the fast subsystem is given
by

Ty

J,= j(xzrf»(r)szzf(T)+u;(T)Ru,~(r)) dr . (13)
0

The near-optimality of the composite control law is
stated in the following lemma.

Lemma 1 (Kokotovic, et al., 1986). The composite
control law of the system (1) with respect to the
quadratic cost function (2) is suboptimal in the sense

u? () =u, () +0(g), t=0

x(t)=x,@#)+0(e), t=0

X, (1) =%, () + %, (1) +O(g), 20

where the composite control,u (), is defined as
u () =u () +u,(t) and O(¢)is high degree terms of &

parameter.

3. HAAR WAVELETS

The oldest and most basic of the wavelet systems is
named Haar wavelet that is a group of square waves
with magnitude of +1 in certain intervals and zeros
elsewhere (Haar, 1910), in other words,

1

1 0<t<—
for 5

wity=<-1  for %sr<1 (14)
0 otherwise

and the normalized scaling function is also defined as
#()=1 for 0<r<1 and zeros elsewhere. We can

easily see that the ¢() and w() are compactly

supported, they give a local description, at different
scales j, of the considered function. The wavelet

series representation of the one-dimensional function
y(t) in terms of an orthonormal basis in the interval

[0,1) is given by
y(0) =Yy (0), (15)
=0



where y, (1) =w(2/t —k) for i>1 and we write i=2’ +k
for j>0 and 0<k <2/ and also defined w,(t)=¢() .

Since, it is not realistic to use an infinite number of
wavelets to represent the function y(r) and if y() is

piecewise constant by itself, or maybe approximated
as piecewise constant during each subinterval, then
(2) will be terminated at finite terms and we consider
the following wavelet representation of the function
(&) , namely j(z) as follows:

m-1

FO=Ya,y,() =a" ¥, (1) (16)
i=0

where a=la,aa,,]" and
¥ ()= v, v, v, ] for m=2/ and the Haar

coefficients a, are determined to minimize the mean
1
integral square error & :J(y(z)—ar ¥, ()*dt and are
0
given by
1
a,=m[ () v, (o) dr. (17
0

If = (m) = y(®)- (1) is the approximation error, then it
means that $(r) can approximate y(¢) to any desired

accuracy, which depended on the resolution n .
The matrix H, can be represented as

H,y = [, (1), 8,0, 8, 0,0) ] (18)
where - < t, < 1 and using (3), we get

m m
[ 5@ .. 5,.]=a" H,. (19)

For further information see (Hsiao and Wang, 2000).
t 1t

The matrix 7, =< [¥,() dr, ¥, >=[ [ ¥, dr ¥} @) dr
0 00

represents the integral operator for wavelets on the
interval at the resolution m. Hence the wavelet
integral operational matrix P, is obtained by

m

[¥,@di=P,w,0. (20)
0
For Haar functions, the square matrix P, satisfies the
following recursive formula (Chen and Hsiao, 1997):
1 2mP, -H,

2

— 2 2
m = -1
2m f]ﬁ 0
2

with P, :% and H,' :LH; diagonal (r) Where H,
m

defined in (6) and

r=(L122,4.4.44. (. (5" for m>2.

(&) elements

In this paper, we need to evaluate the integration of
¥, ¥l and according to (Hsiao, 2004) the
integration relation is as follows:

m

1 T
j ¥ (o)W (o) do = Hunlln (22)
0 m

4. SOLUTION OF SLOW AND FAST
SUBSYSTEMS

Since for finding solution of slow and fast
subsystems we use Haar wavelets defined on the
interval [0,1], we have to rescale the finite time
interval; this can be done by considering the variable
owith =T, o. In the sequel, we present an
algebraic method to calculate solutions of the slow
and fast subsystems approximately.

4.1. Solution of slow subsystem

First we focus on solving the slow subsystem. By
normalizing (10) with the time scale, we find

3,(0) = T, (4 %,(0) + B, 1,(0) - (23)
By using the methodology introduced by (Karimi, et
al., 2004b), we find the solution of (23) in terms of
Haar wavelet basis functions in this form

vec(X,,) = Klsvec(ljv) + K, vec(X,,) (24)
where

Ky =T, (L., =T, (P ® 4)) (B, ®B,), (25)
Ky =(l,, T, (B ®4,))" (26)

with x,(0)=X, ¥,(0) and u (0)=U, V¥, (c), which

m

U,:Ixm
coefficients of x, (¢)and u, (o) after their expansions

X,, :n, xm and denote the wavelet

in terms of wavelet basis functions and initial
condition  x,,(0)=X,, ¥, (c) where the matrix

X, :m xm 1is defined as X, = [xls(O) 0 ... 0} .
(m-1)

Consequently, using (24) and the property of
Kronecker product, vec(4BC)=(C" ® 4)vec(B), the
solution of slow subsystem (23) is

x,(0) = (¥, (0)®1,) vec(X,,) . (27)
According to (25) and (26), it is trivial that we have
to calculate the inverse matrix (7, —T, (B ®4,)",

mny

with dimension mn, .

4.2. Solution of fast subsystem

We consider the fast subsystem and using the related
time scale, we find the normalized system (12) as
follows:

T
iy (0) =—L(4yy %,/ (0) + Byu (o)) - (28)
&

Similar to Section 4.1, we find the solution of the fast
subsystem as

vec(Xzf) = Klfvec(Uf) + Kzf vec(Xof) (29)
where

Ky == Uy~ © ) (B 9B, (30)
Ka=(pr, L (P @ 4" 31)



suchx, (0)=X,, ¥,(c) with X, :=[x2,»(0) 0 .. 0] and
‘ (m=1)

x,,(0) = X,, ¥, (o), then the solution of (28) is
%(0) = (¥, (0)®1,,) vec(Xy,) . (32)
From (30) and (31), it is clear that we have to once

. ) T,
calculate the inverse matrix, (I, ——~(P! ® 4,,))",
> e

m

with dimension mn, .

5. APPROXIMATED OPTIMAL COMPOSITE
CONTROL

In this section, the problem is to find the optimal
control of the linear singularly perturbed system of
(1) with respect to a quadratic cost functional (2)
approximately.

5.1. Optimal control of slow subsystem

For the slow subsystem, we normalize (11) with the
related time scale as follows

1
J, =T, [ ((0)0,, x,(0) +& ()Rt (0)) do . (33)
0

Using wavelet transformations of x,(c)and u (o),

we have

1
J =T, [ (¥ X0, X, ¥, () +¥}(0)U/RU, ¥, (0)) do
0

s om

(34)
using the property of trace operator, the cost function
above can be rewritten as follows
=Ty (tr(M X[, X,,) +tr(MU/RU,)) 35)

1
where M :J‘P,,,(a)‘l’,f(a) do . Using the property of
0

Kronecker product, we can write (33) as follows:

J, = (vec" (X, )T, vec(X,,) +vec” (U)TT,, vec(U,) (36)
where 11, =T,(M" ®0,) and I1,, =T,(M" ®R).

Since the cost functional of J, becomes a function of
vec(U,) , then for finding the optimal control law to
minimize the cost functional J, we have to satisfy the
following necessary condition

aJ
i =0.
ovec(U,) (37)

We find the approximated optimal control by solving
(37) as follows (Karimi, et al., 2004b):

vee(U,) = =T, KT, vee(X,,) (38)
and from (24) and (38), we can find

vec(Xi;) =, +Ki o, KT K, [In‘ 0 - O]T x1,(0)
(39)
vec(U,) = *H; KIC I, (1, m t K, H; KITv Hls)ilKZ.r (40)

<[, 0 - of %,
and according to (9) the wavelet coefficients of u, (o)

after expansion in terms of wavelet basis functions
will be

vec(U,)=vec(U,)—(I,, ® R O )vec(X,,) 41
then using u,(0)=(Y! (o) ®1,) vec(U,) and
x,(0)=(¥,(c)®1,) vec(X,,), we can calculate the
approximated optimal control u (c) and optimal
trajectory x, (o), respectively. Then, by eliminating
x,(0), we obtain the following result for the slow

subsystem:
Theorem 1. Consider the slow subsystem (23) with
the cost function J, in (33). By using the Haar

wavelets, the approximated optimal feedback control
of the slow subsystem is obtained as follows:
1, (0) == (¥, (0) ® [N, K[ 11, (1, + Ky, Ty Ky T1,)™
x Ky, [1,,, 0 - O]T((‘f’rf(ﬁ)®1,)(l,,,nl + K TG K T )
<Ky 1, 0 o) x,(0)

“2)
and also the approximated slow dynamics will be
%,(0)=(¥, (@) ®1,) (I, + K\ T K TL) ™ K,

<1, 0 - 0] x,00.

n

(43)

5.2. Optimal control of fast subsystem

Next we consider the fast subsystem, then
normalizing (13) with the related time scale as

1
J, =Tfj (x3,(0) 0y X, (0) +u(0) Ru () do (44)
0

Using wavelet transformation x,,(c)=X,, ¥,(c) and
u (6)=U, ¥,(c), which X, :n,xm and U,:Ixm
denote the wavelet coefficients of x,(c)and
u, (o) after their expansions in terms of wavelet basis

functions, we have

m

1
Iy =T, (¥1(0) XL, 0, X, ¥,(0) +¥] ()URU ¥, (0)) do
0

45
using the property of trace operator, the cost func(tiorz
above can be rewritten as follows:

J, =T (tr(M X;, 0, X, ) +tr(MUJRU,)). (46)

Using the property of Kronecker product,
tr (ABC) =vec’ (4") (I, ® B) vec(C) , we can write (46) as

J, =(ec” (X, ), vee(X, ) +vec" (U )T, vec(U ) (47)

where 11, =T, 4" ®Q,)and II,, =T, (M" ®R).

Since the cost functional of J, becomes a function of
vecU,) , then for finding the optimal control law to
minimize the cost functional J, we have to satisfy the

following necessary condition
a‘]f —
ovec(U,) =0 (48)
According to (Karimi, et al., 2004b), we find the
approximated optimal control by solving (48) as
vec(U,) =-T1,, K|, 11, , vec(X,,) (49)

and from (29) and (49), we can find vec(X,,) and

vec(U,) as



Vec(Xzf):(lmn2 +K;, H;lerf’Hlf)ilKZf

50
<[, 0« of x,0 °0)
vec(U,)=-TI,, K[ 11, (I, + K, T, K[, 11, )"
(51)
<Ky, [, 0 - of x,,0
then using u,(0)=(¥,(c)®1) vec(U,) and

X, (0)=(¥, (0)®1,,) vec(X,,), the approximated
optimal control u,(c) and optimal trajectory x,,(c)
are calculated. Then, by eliminating x,.(0), we

obtain the following result for the fast subsystem:

Theorem 2. Consider the fast subsystem (28) with the
cost function J, in (44). By using the Haar wavelets,

the approximated optimal feedback control of the fast
subsystem is obtained as follows:

U (0)= *(lPZ(O') ®1) H;lf Klrf' Hlf (Imnz + Klf Hglf KITf H1f)71
of (¥l(@)® 1)U, +K, T} K/, 0,y

of )" x,,(0)

xK,, [1,,2 0 -

<Ky, 1, 0 -
(52)

and also the approximated fast dynamics will be

%,(0)= (¥, (0)®1,,) (I, + Ky, Ty Ky T ) Ky

(1, 0 - of x,,(0
Using Lemmal, Theorem 1 and Theorem 2, the
composite control law of the system (1) with respect

to the quadratic cost function (2) can be obtained as
follows:

. (53)

u () =u,()+u (6)+0(e), 0<r<T, (54)
x () = x, (1) + O(e), 0<¢<T, (55)
X, () = X, () + X, (1) +O(e), 0<r<T,. (56)

where x, (r) can be calculated with (5).

6. NUMERICAL RESULTS

Let us consider the singularly perturbed system and
related quadratic cost function with initial condition
x,(0) = x,(0) =1 and the perturbed parameter ¢=0.1as

(57

a0 | _[-1 2] xo] 1 o
exn,| |1 -1 x0] |1

J =j () + w2 (1)) dt . (58)

According to section 2.1, the slow subsystem of (57)
and its cost function, x,,(0) = x,(0), are as follows:

x%,(0) ==5x,(0) - iL,(t), (59)

1
J,= [ 5x20) +05 (1) dr (60)
0
By solving the Riccati differential equation, the
analytical solution of (59-60) is obtained as (Athans
and Flab, 1996)
1.5 (1—eM700)y

54247 + (247 = 5)e7CD

To calculate the approximate solution of the slow
sate, x . (r), and compare with the analytic solution

x, ()= u(t). (61)

(61), we choose the resolution level ;=3 and both
the approximate values of state and optimal control
using Haar functions and the exact values of state and
optimal control are tabulated in Table 1 for
comparison. Referring to Section 2.2, the fast
subsystem of (57) and its cost function would be
found as:

. 1 1

() = ——xp (O +—u, (1), (62)
1

J, = j (2, () +ud @) dr (63)
0

where  the  initial  condition  of X, (t) ,

x,,(0) =x,(0)—x,,(0), after some calculations will be
x,,(0)=L,(0)=0.1457. The analytical solution of (62-
63) is stated as

(64)

X, (8) = 3

1+42 + (W2 -1)e ¢
Also, according to Lemma 1 the approximated
optimal composite control and approximated states of
the system (57), i.e. x(r) and x,(r) = x,, (1) +x,,(¢) , With

(1)

respect to the cost function (58) are given in Table 2
and compared with those exact values.

Table 1 Approximate values of x  (+)and u, (r) by Haar wavelets at resolution level ;=3

and those exact values

Haar wavelets

Analytic solution

! 2 xi, (8) u,(t;) xi, (£;) u,(t,)
0 0.0000 0.9972 -0.1435 1.0000 -0.1458
1 0.1250 0.5235 -0.0750 0.5256 -0.0795
2 0.2500 0.2715 -0.0412 0.2763 -0.0434
3 0.3750 0.1410 -0.0218 0.1452 -0.0236
4 0.5000 0.0705 -0.0105 0.0763 -0.0128
5 0.6250 0.0400 -0.0045 0.0401 -0.0068
6 0.7500 0.0205 -0.0018 0.0211 -0.0035
7 0.8750 0.0100 -0.0005 0.0111 -0.0015




Table 2. Approximate values of x, (1), x,(?) and «* (rf) by Haar wavelets at resolution level ;-3

and those exact values

Haar wavelets

Analytic solution

i £, x, () x, () u(t,) x, () x, () u®(t,)

0 0.0000 0.9972 0.9950 -0.1505 1.0000 1.0000 -0.1518
1 0.1250 0.5235 0.4630 -0.0750 0.5256 0.4657 -0.0.795
2 0.2500 0.2715 0.2518  -0.0412 0.2763 0.2539 -0.0433
3 0.3750 0.1410 0.1365 -0.0218 0.1452 0.1385 -0.0236
4 0.5000 0.0705 0.0700  -0.0105 0.0763 0.0755 -0.0128
5 0.6250 0.0400 0.0400  -0.0045 0.0401 0.0413 -0.0068
6 0.7500 0.0205 0.0210  -0.0018 0.0211 0.0227 -0.0035
7 0.8750 0.0100 0.0105  -0.0005 0.0111 0.0127 -0.0015

Since the Riccati differential equation is a nonlinear
equation, the merits of the Haar wavelets should be
appreciated from the transformation of these
nonlinear differential equations into algebraic
equations systematically.

7. CONCLUSION

An implementation of the Haar wavelet to the
optimal control of linear singularly perturbed
systems for any finite time interval was proposed. By
using results of (Karimi, et al., 2004b), the
approximated composite control with respect to a
quadratic cost function by solving only the linear
algebraic equations were calculated and the results
were illustrated with a simple example.
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