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1. INTRODUCTION

Model predictive control (MPC) is a popular control
strategy widely used in industry for plants with con-
straints (Qin and Badgwell, 2003). We are concerned
with demonstrating the robustness of linear MPC to
plant uncertainty with stable plants. Linear MPC has a
linear state space model, linear equality and inequality
constraints and a quadratic cost function with weights
on both predicted states and inputs.

It might seem intuitively obvious that with sufficiently
high weighting on the control input such a controller
would be both nominally and robustly stable. However
there are remarkably few results in the literature con-
cerning constrained linear MPC’s robustness to model
uncertainty. A sufficient condition for robust stability
of state feedback MPC is provided by (Zheng, 1999),
while sufficient conditions for nominal stability of
output feedback MPC are provided by (Zheng and
Morari, 1995) and (Findeisen et al., 2003). More gen-

erally, the majority of the literature is devoted to the
further augmentation of the MPC cost or constraints
to guarantee stability: see (Mayne et al., 2000) for
a survey of methodologies for guaranteeing nominal
state feedback stability and more recently (Kerrigan
and Maciejowski, 2004; Sakizlis et al., 2004) and
references therein for guaranteeing robustness. How-
ever we believe Zafiriou’s critique of such approaches
(Zafiriou, 1990) remains pertinent (briefly Zafiriou ob-
served that such augmentation “dramatically increases
the computational load” and recommended as an al-
ternative the study of existant control structures for
robustness).

We have recently shown that the multivariable circle
criterion can be used to guarantee the closed-loop sta-
bility of certain MPC schemes (Heath et al., 2004),
provided the constraints allow zero as a feasible solu-
tion to the associated constrained optimisation prob-
lem. This is always true (for example) if the only
constraints are simple bounds on the inputs.



φ
x(t) φ(x(t))

G(z)

Fig. 1. Feedback around the nonlinearity.

In this paper we use the result to provide a sufficient
condition for the robust stability of both state feedback
and output feedback MPC, with and without integral
action. In particular, if there is no integral action,
it is sufficient that both plant and model are stable
and the input weighting is sufficiently high. We also
consider the case with integral action. In particular
we consider the two-stage form corresponding to the
scheme of (Muske and Rawlings, 1993) where the
input and state steady state values are computed via a
separate optimization at each control stage. We require
an additional condition for stability that the steady
state behaviour of the plant and model should be
sufficiently close (in some sense).

Although the results are both conservative and lim-
ited to open-loop stable plants, we should note that
the model and plant are not assumed to match, no
terminal constraints are introduced and the results are
independent of signal norms. Furthermore there is no
requirement that the steady state should lie on the
interior (as opposed to the boundary) of the constraint
set.

The paper is structured as follows. In Section 2 we
quote two sufficient conditions for closed-loop asymp-
totic stability. Each is derived from the discrete multi-
variable circle criterion. In Section 3 we introduce the
MPC notation. Sections 4 and 5 contain the main con-
tributions of the paper, where we provide a stability
analysis of linear MPC with (Section 5) and without
(Section 4) integral action.

For brevity proofs of the lemmas are omitted. They
may be found in a longer version of this paper (Heath
and Wills, 2004). This also includes further discus-
sion, simulation examples and the application of the
results to velocity form integral action, corresponding
to the scheme of (Prett and Garcı́a, 1988) where only
input and output changes are weighted in the cost
function.

2. PRELIMINARIES: SPR RESULTS

The discrete version of the multivariable circle crite-
rion (Haddad and Bernstein, 1994) states that if φ is a
continuous static map satisfying φ(x)T (φ(x)+ x) ≤ 0
and if I +G(z) is SPR (strongly positive real) then the
closed loop system x(t) = G(z)φ (x(t)) is stable (see
Fig 1).

Simple multiplier theory (Khalil, 2002; Heath et al.,
2004) gives the following lemma as a corollary:

Lemma 1: Suppose φ is a continuous static map
satisfying φ(x)T Hφ(x)+φ(x)T x ≤ 0. If H is positive

definite and H + G(z) is SPR then the closed-loop
system x(t) = G(z)φ (x(t)) is stable. 2

We have shown that certain quadratic programmes can
be included in the class of such functions (Heath et
al., 2004). Hence the further lemma:

Lemma 2: Suppose we have the closed-loop equa-
tions

x(t) = G(z)φ(x(t))
φ(x(t)) = arg min

ν
νT Hν +2νT x(t)

s. t. Aν � b(t) and Cν = 0
(1)

with H positive definite, G(z) strictly proper and stable
and ν = 0 always feasible. Then a sufficient condition
for stability is that H +G(z) be SPR. 2

3. MPC NOTATION

Given a horizon N, let J = J(X ,U) describe the cost
function

J = ||xN − xss||
2
P +

N−1

∑
k=1

||xk − xss||
2
Q +

N−1

∑
k=0

||uk −uss||
2
R

(2)
Here X and U are sequences of predicted states and
inputs X = (x1,x2, . . . ,xN) with xk ∈ Rnx and U =
(u0,u1, . . . ,uN−1) with uk ∈Rnu . Where convenient we
will consider X and U to be stacked vectors X ∈ RNnx

and U ∈ RNnu without change of notation. The terms
xss and uss correspond to desired steady state values.
The weighting matrices P and Q are positive semi-
definite while R is positive definite.

We will consider two choices for the terminal cost
weighting matrix P. One possibility is simply to
choose P = Q. The other possibility, which we will
term LQR tuning, is to choose P to satisfy the discrete
algebraic Riccati equation (DARE)

AT PA−P−AT PB(R+BT PB)−1BT PA+Q = 0 (3)

With LQR tuning, unconstrained MPC is equiva-
lent to unconstrained LQR control with an infinite
cost horizon (Bitmead et al., 1990). Furthermore the
corresponding state-feedback constrained MPC with
LQR tuning is nominally optimal for open-loop stable
plants provided the horizon N is sufficiently large and
the set-point is away from boundaries (Muske and
Rawlings, 1993; Chmielewski and Manousiouthakis,
1996). Consequently LQR tuning with fixed N has
been proposed by (Muske and Rawlings, 1993) for
output feedback constrained MPC with integral ac-
tion. Its successful industrial application has been re-
ported, including by the current authors (Wills and
Heath, 2005).

Given a state evolution model xi+1 = Axi + Bui and
state and input constraint sets X and U we may define
the MPC law to be:
MPC: Set u(t) to u(t) = ĒU∗ where Ē =

[

I 0 . . . 0
]

and



[X∗
,U∗] = arg min

X,U
J(X ,U)

s. t. xi+1 = Axi +Bui,
xi+1 ∈ X and ui ∈ U

for i = 0, . . . ,N −1

(4)

We will consider the cases with and without integral
action (or “offset free” action) separately. With in-
tegral action we will only consider output feedback
MPC.

Without integral action, xss and uss are derived from
external variables, and for stability analysis may be
considered zero without loss of generality. In this case
state feedback MPC defines a law u(t) = κ(x(t)) for
some κ with x0 = x(t) where x(t) is the plant state
(Mayne et al., 2000). Similarly output feedback MPC
defines a law u(t) = κ(x̂(t)) with x0 = x̂(t) where x̂(t)
is some observed state value.

For two-stage form integral action xss and uss depend
on some disturbance term d0. In this case output
feedback MPC defines a law u(t) = κ(x̂(t), d̂(t)) for
some κ with x0 = x̂(t) as before and d0 = d̂(t) for
some disturbance estimate d̂(t).

It is standard to express MPC in implicit form by
projecting onto the equality constraints defined by the
model. Introduce the matrices

P̄ =











Q
. . .

Q
P











, R̄ =







R
. . .

R







Φ =











B
AB B
...

...
. . .

AN−1B AN−2B · · · B











, Λ =







A
...

AN







(5)

Note that P̄ = P when N = 1. Define H̄ = R̄+ΦT P̄Φ
and L̄ = ΦT P̄Λ. Also define Ix =

[

I · · · I
]T with

Ix ∈ R
nx,Nnx and Iu =

[

I · · · I
]T with Iu ∈ R

nu,Nnu .

Define the implicit cost

JI(U) = UT H̄U +2UT (L̄x0 −ΦT P̄Ixxss − R̄Iuuss
)

(6)
We can then replace (4) in the MPC law by expressing
U∗ as

U∗ = arg min
U

JI(U)

s. t. U ∈ Ū
(7)

where Ū is the natural generalisation of X and U to U .

4. STABILITY OF MPC WITHOUT INTEGRAL
ACTION

4.1 State feedback

Consider the plant

x(t) = Gx(z)u(t) (8)

quadratic�
programme

x0=x(t) U*

Gx(z)

u(t)_

E

Fig. 2. State feedback MPC.

with Gx(z) stable and strictly proper. We will model
the plant with some

Ĝx(z) = (zI −A)−1B (9)

Note that we do not necessarily assume the plant Gx(z)
and model Ĝx(z) to be equal.

We wish to establish the stability of the state feedback
system comprising Gx(z) with the MPC control law
u(t) = κ(x(t)). As stated above we assume xss and
uss to be zero without loss of generality. We further
assume the constraints U ∈ Ū can be written as a
set of (possibly time varying) linear inequalities and
equalities

AUU � bU and CUU = 0 (10)

with U = 0 always feasible. Since the control law
comprises a quadratic programme and linear multipli-
cation (see Fig 2) we may apply Lemma 2 to prove
stability. Specifically we may say:

Result 1. Consider the closed-loop feedback system
comprising the plant x(t) = Gx(z)u(t) and MPC con-
troller u(t) = κ(x(t)) with horizon N and with P cho-
sen either as P = Q or as the solution of the DARE
(3). If Gx(z) is strictly proper and stable, if A has all
eigenvalues in the unit circle, if the constraints on U
can be written in the form (10) with U = 0 feasible
and if R is sufficiently large then the system is stable.

Proof: From Lemma 2 and the implicit form of MPC,
it is sufficient that T (z) = H̄ + L̄Gx(z)Ē be SPR.
Suppose we put R = ρR0 for some positive definite
R0 and ρ > 0. If P is chosen as the solution of the
DARE (3) then for A stable P∞ = limρ→∞ P exists
(Kwakernaak and Sivan, 1972) and is the solution to
the discrete Lyapunov equation AT P∞A−P∞ +Q = 0.
Hence, for either choice of P,

lim
ρ→∞

1
ρ

T (z) = R̄0 for |z| = 1 and z = 0. (11)

where R̄0 = diag
([

R0 · · · R0
])

. Thus for sufficiently
large ρ , T (z) is SPR and the closed-loop system is
stable. 2

Result 1 is useful when the horizon N is small. But for
large N it becomes somewhat unsatisfactory on two
counts. Firstly the dimension of T (z) increases with
horizon N, and secondly we would like to find a ρ such
that the closed-loop is guaranteed stable for any N.

To address the first issue, note that following (Heath et
al., 2004) it is sufficient to examine the eigenvalues of

M(z) =

[

Ē
Gx(z)H L̄T

]

H̄−1 [ L̄Gx(z) ĒT ] (12)

We find M(z) ∈ C2nu,2nu with dimension independent
of horizon N.



In addressing the second issue we will consider only
LQR tuning, where P is chosen as the solution of the
DARE (3). Let e[X ] denote the non-zero eigenvalues
of matrix X . We have the following two lemmas:

Lemma 3: We have the identity

e [M(z)] = e
[

H̄− 1
2 (L̄Gx(z)Ē + ĒT Gx(z)H L̄T )H̄− 1

2

]

(13)
Furthermore with LQR tuning we may express M(z)
as

M(z) =

[

KGx(z) H−1

M2,1(z) Gx(z)H KT

]

(14)

with

M2,1(z) = Gx(z)H

(

N

∑
i=1

(AT )iPBH−1BT PAi

)

Gx(z)

(15)
We also have the identity H = R+BT PB and K is the
LQR gain K = H−1BT PA. 2

Lemma 4: For R sufficiently large and for all values
of z on the unit circle, 2 + mineig [M(z)] > 0 for all
N. 2

So we may say:

Result 2: Consider the closed-loop feedback system
comprising the plant x(t) = Gx(z)u(t) and MPC con-
troller u(t) = κ(x(t)) with LQR tuning. If Gx(z) is
strictly proper and stable, if A has all eigenvalues in the
unit circle, if the constraints on U can be written in the
form (10) with U = 0 feasible and if R is sufficiently
large then the system is stable for any horizon.

Proof: We require that T (z) be SPR. Given that Gx(z)
is both stable and strictly proper, it is sufficient to show
for all values of z on the unit circle that

mineig
[

2H̄ + L̄Gx(z)Ē + ĒT Gx(z)H L̄T ]
> 0 (16)

Equivalently it is sufficient that for all values of z on
the unit circle

2+mineig
[

H̄− 1
2 (L̄Gx(z)Ē + ĒT Gx(z)H L̄T )H̄− 1

2

]

> 0
(17)

Hence Lemmas 3 and 4 give the result. 2

4.2 Output feedback

A similar result for output feedback MPC follows
immediately. Specifically, suppose the plant is given
by

y(t) = Gy(z)u(t) (18)

and we have an observer for the state

x̂(t) = Ju(z)u(t)+ Jy(z)y(t) (19)

for some strictly proper stable transfer function matrix
Ju(z) and some stable transfer function matrix Jy(z).
Then we can combine the observer with the MPC law
u(t) = κ(x̂(t)); see Fig 3. We may say:

quadratic�
programme

U*

Gy(z)
u(t)

_

E x0=x(t)^

y(t)

observer

Fig. 3. Output feedback MPC with an observer.

Result 3: Consider the closed-loop feedback system
comprising the plant y(t) = Gy(z)u(t), the observer
x̂(t) = Ju(z)u(t)+Jy(z)y(t) and MPC controller u(t) =
κ(x̂(t)) with either P = Q or LQR tuning. If Gy(z)
is strictly proper and stable, if A has all eigenvalues
in the unit circle, if Ju(z) and Jy(z) are stable (with
Ju(z) strictly proper), if the constraints on U can be
written in the form (10) with U = 0 feasible and if R is
sufficiently large then for given horizon N the system
is stable. If furthermore we have LQR tuning and if R
is sufficiently large then the system is stable for any
horizon.

Proof: The is exactly the same form as the previous
case if we write Gx(z) = Ju(z) + Jy(z)Gy(z). Since
there is no requirement for the plant Gx(z) to match
the model (Iz−A)−1B, the result follows immediately
from Results 1 and 2. 2

5. INTEGRAL ACTION

Most practical applications of MPC require (when
feasible) the rejection of constant disturbances. In this
section we consider one scheme (Muske and Rawl-
ings, 1993) for achieving this which we term two-
stage form integral action; see also (Pannocchia and
Rawlings, 2003) for a recent discussion.

5.1 Controller structure

We will consider output feedback MPC for the plant
y(t) = Gy(z)u(t). For integral action we let xss and uss

be dependent on some disturbance estimate d̂ = d̂(t)
so that the MPC law may be expressed as u(t) =
κ(x̂(t), d̂(t)) for some κ . Specifically, given an output
disturbance model (the idea can be straightforwardly
generalised to an input disturbance)

xi+1 = Axi +Bui, yi = Cxi +di (20)

we put xss = (I−A)−1Buss with

uss = arg min
u

∣

∣

∣

∣C(I−A)−1Bu+ d̂− r
∣

∣

∣

∣

2
Qss

s. t. u ∈ U and (I −A)−1Bu ∈ X

(21)
Here r is the external set-point. We assume the weight-
ing matrix Qss to be positive definite.

Given plant input u(t) and output y(t) the state and
disturbance estimates are given by
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Fig. 4. Output feedback MPC with two-stage form
integral action.

x̂(t) = Ju(z)u(t)+ Jy(z)
(

y(t)− d̂(t)
)

d̂(t) = Jd(z)(y(t)−Cx̂(t)) (22)

with Ju(z) stable and strictly proper, Jy(z) stable and
Jd(z) stable with Jd(1) = I. See Fig 4.

5.2 Sector bound result

We now have two quadratic programmes in the closed-
loop system, so can no longer apply Lemma 2 for
stability analysis. Instead we will show that the map-
ping from a linear combination of x̂(t) and d̂(t) to a
linear combination of U∗ and uss takes the form of φ
in Lemma 1. We will assume the conditions U ∈ Ū,
u ∈ U and (I − A)−1Bu ∈ X can be written as the
(possibly time varying) linear inequality and equality
constraints (10) with U = 0 feasible (and hence u = 0
also feasible). We will also define

F̄ =−
1
2
(

ΦT P̄Ix(I−A)−1B+ R̄Iu
)

Fss = BT (I −A)−TCT Qss

Hss = BT (I −A)−TCT QssC(I −A)−1B

¯̄H =

[

H̄ F̄
F̄T µHss

]

(23)

Then we may say:

Lemma 5: Let φ define the map
[

U∗

uss

]

= φ
([

L̄x0
µFss(d̂− r)

])

(24)

For any µ > 0 we find φ(.) is a continuous func-
tion satisfying φ(x)T ¯̄Hφ(x) + φ(x)T x ≤ 0. Also ¯̄H is
positive definite provided µ > 0 is chosen sufficiently
big. 2

5.3 Stability analysis

If we put U∗ = U∗(t) and uss = uss(t) we have the
dynamic relationship

[

x̂(t)
d̂(t)

]

=

[

I Jy(z)
Jd(z)C I

]−1[ Gx(z)
Jd(z)Gy(z)

]

×
[

Ē 0
]

[

U∗(t)
uss(t)

]

(25)

where, as before Gx(z) = Ju(z)+Jy(z)Gy(z). It follows
from Lemmas 1 and 5 that the system is closed-loop
stable provided Tµ(z) is SPR with

Tµ(z) =

[

H̄ F̄
F̄T µHss

]

+

[

L̄ 0
0 µFss

][

I Jy(z)
Jd(z)C I

]−1

×

[

Gx(z)
Jd(z)Gy(z)

]

[

Ē 0
]

(26)

Define the model and model error as

Ĝy(z) =C(zI −A)−1B

∆Gy(z) = Gy(z)− Ĝy(z) (27)

Furthermore put

Ĝx(z) = Ju(z)+ Jy(z)Ĝy(z) (28)

We will assume Ju(z) and Jy(z) take the form

Ju(z) = (zI −A+LC)−1B

Jy(z) = (zI −A+LC)−1L (29)

so that (28) is consistent with (9).

Omitting the argument z for brevity, we may express
Tµ = Tµ (z) as:

Lemma 6:

Tµ =

[

H̄ F̄
F̄T µHss

]

+

[

L̄W1
µFssW2

]

[

Ē 0
]

(30)

with

W1 = Ĝx + Jy [I − JdCJy]
−1 [I− Jd]∆Gy

W2 = [I− JdCJy]
−1 Jd [I −CJy]∆Gy (31)

2

The following results for special cases follow imme-
diately:

When Jd(z) = 0, we have the relation

Tµ(z) =

[

H̄ + L̄Gx(z)Ē F̄
F̄T µHss

]

(32)

Thus Tµ (z) is SPR when Jd(z) = 0 and µ is sufficiently
big.

If we put Jd(z) = I we have

Tµ(z) =

[

H̄ + L̄Ĝx(z)Ē F̄
F̄T µHss

]

+

[

0 0
µFss∆Gy(z)Ē 0

]

(33)
Thus Tµ(z) is positive definite provided the model
is sufficiently close to the plant and provided µ is



sufficiently large. Note that we always have, at steady
state, Jd(1) = I.

Thus, if there is sufficiently small uncertainty at low
frequency, stability can be guaranteed by ensuring
R is sufficiently large and Jd(z) has sufficiently low
bandwidth. To be specific:

Result 4: Consider the feedback system compris-
ing the plant y(t) = Gy(z)u(t), the state and distur-
bance observers (22) satisfying (29) and MPC con-
troller with two stage form integral action u(t) =
κ(x̂(t), d̂(t)) with horizon N. The weighting matrix P
is chosen either as P = Q or via LQR tuning. If Gy(z)
is strictly proper and stable, if A has all eigenvalues in
the unit circle, if Ju(z) and Jy(z) are stable (with Ju(z)
strictly proper), if the constraints on U can be written
in the form (10) with U = 0 feasible, if R is sufficiently
large, if Jd(z) has sufficiently low bandwidth, and if
a µ can be found such that both Tµ(1) + Tµ(1)T is
positive definite and Tµ(z) evaluated with Jd(z) = 0
is SPR then the system is stable in closed-loop. 2

In a similar manner to before, it is sufficient to
check 2 + mineig[(Mts(z)] > 0, where the dimension
of Mts(z) is independent of the prediction horizon N,
and Mts is given by

Mts =

[

Ē 0
W H

1 L̄T µW H
2 FT

ss

][

H̄ F̄
F̄T µHss

]−1

×

[

L̄W1 ĒT

µFssW2 0

]

(34)

6. CONCLUSION

We have demonstrated the closed-loop asymptotic sta-
bility of constrained linear MPC for stable plants.
Without integral action we simply require the input
weighting to be sufficiently high. With integral action
a further condition on the accuracy of the steady state
model is required. The results are equally applicable
to state feedback and output feedback MPC schemes.

The model and plant need not match, no terminal con-
straints are introduced, and the results are independent
of signal norms. The steady state may lie on either the
boundary or the interior of the constraint set.

Proofs of the lemmas as well as further discussion and
some illustrative simulation examples may be found in
a longer version of this paper (Heath and Wills, 2004).
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Foss (2003). State and output feedback nonlinear
model predictive control: an overview. European
Journal of Control 9, 190–206.

Haddad, W. M. and D. S. Bernstein (1994). Explicit
construction of quadratic Lyapunov functions for
the small gain, positivity, circle, and Popov theo-
rems and their application to robust stability. Part
II: discrete-time theory. International Journal of
Robust and Nonlinear Control 4, 249–265.

Heath, W. P., A. G. Wills and J. A. G. Akkermans
(2004). A sufficient robustness condition for con-
strained model predictive control. UKACC Con-
trol 04, University of Bath, 6th-9th Sept.

Heath, W. P. and A. G. Wills (2004). The inherent ro-
bustness of constrained linear model predictive
control. Report EE04005, University of Newcas-
tle.

Kerrigan, E. C. and J. M. Maciejowski (2004). Feed-
back min-max model predictive control using a
single linear program: robust stability and the ex-
plicit solution. International Journal of Robust
and Nonlinear Control 14, 395–413.

Khalil, H. K. (2002). Nonlinear Systems (third edi-
tion). Prentice Hall. Upper Saddle River.

Kwakernaak, H. and R. Sivan (1972). Linear Optimal
Control Systems. John Wiley & Sons, Inc.. New
York.

Mayne, D. Q., J. B. Rawlings, C. V. Rao and
P. O. M. Scokaert (2000). Constrained model pre-
dictive control: Stability and optimality. Auto-
matica 36, 789–814.

Muske, K. R. and J. B. Rawlings (1993). Model pre-
dictive control with linear models. AIChE Jour-
nal 39(2), 262–287.

Pannocchia, G. and J. B. Rawlings (2003). Distur-
bance models for offset-free model-predictive
control. AIChE Journal 49, 426–436.

Prett, D. M. and C. E. Garcı́a (1988). Fundamen-
tal Process Control. Butterworth-Heinemann.
Boston.

Qin, S. J. and T. A. Badgwell (2003). A survey of
industrial model predictive control technology.
Control Engineering Practice 11, 733–764.

Sakizlis, V., N. M. P. Kakalis, V. Dua, J. D. Perkins
and E. N. Pistikopoulos (2004). Design of robust
model-based controllers via parammetric pro-
gramming. Automatica 40, 129–201.

Wills, A. G. and W. P. Heath (2005). Application of
barrier function based model predictive control to
an edible oil refining process. Journal of Process
Control 15, 183–200.

Zafiriou, E. (1990). Robust model predictive control
of processes with hard constraints. Computers &
Chemical Engineering 14(4–5), 359–371.

Zheng, A. (1999). Robust stability analysis of con-
strained model predictive control. Journal of Pro-
cess Control 9, 271–278.

Zheng, A. and M. Morari (1995). Stability of model
predictive control with mixed constraints. IEEE
Transactions on Automatic Control 40, 1818–
1823.


