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Abstract: A neural network (NN) based adaptive output feedback controller is proposed 
for a class of nonlinear systems. In this control scheme, the adaptive output feedback NN 
controller is proposed by using an observer to estimate the states of the system. The 
weights of the neural network can be adjusted in terms of Lyapnuov’s stability criterion. 
The proposed controller can be applied to nonlinear systems without exactly available 
knowledge of system dynamics. Copyright © 2005 IFAC 
  
Keywords: Adaptive control, neural network, nonlinear system, output feedback. 

  
  
  

  
1. INTRODUCTION 

It is known that output feedback control for nonlinear 
systems is a very attractive topic in practical 
applications such as robot manipulators control, 
chemical process control and smart actuator 
applications etc. However, the applications of this 
approach are quite limited because it relies on the 
exact knowledge of plant. In the past decades, research 
on neural network (NN) based output feedback control 
has become very active. The powerful capability of 
neural computing makes it possible to be a good 
candidate for implementing real-time adaptive control 
for nonlinear dynamical systems. Calise et al (2001) 
developed a direct adaptive feedback controller of 
highly uncertain nonlinear systems without states 
estimation. In their scheme, feedback linearizatoin 
coupled with an on-line NN, whose weights are 
updated by a linear combination of measured tracking 
error, was employed to compensate for dynamical 
model errors. Kim and Lewis (1999) proposed a 
robust NN output feedback scheme for the motion 
control of robot manipulators and a NN observer is 
used to estimate the joint velocities. Hovakimyan et al 
(2002) designed an adaptive output feedback 
controller for non-affine minimum phase nonlinear 
systems by using a three-layer NN adapted by output 
of a linear tracking error observer. Ge et al (1999) as 
well as Seshagir et al (2000) applied the output 
feedback control schemes to continuous-time 
nonlinear plants. Jankovic (1997) and Choil et al 
(2000) developed the output feedback controllers 

combined with high-gain observer and back-stepping 
strategy. 
In the paper, a neural network based adaptive output 
feedback controller is developed for a class of SISO 
nonlinear systems with high-gain observer for the 
estimation of unavailable states. The overall system 
is proved to be ultimately bounded and the tracking 
error converges to a small neighbourhood of origin.  
  

2. PROBLEM STATEMENT 
Consider a single-input single-output (SISO) nonlinear 
system 
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where 1 2[ , ]T n
nx x x x R= ∈" is the vector of system 

states, ,u y R∈ are respectively the system control 
input and measured output. ( , )f x u is a smooth 
nonlinear function which satisfies ( , ) 0f x u

u
∂

∂ ≠ . 
The control objective is to find a control, u , such that 
the system output tracks the prescribed trajectory, 

( )dy t , with an acceptable accuracy. Define desired 
state and tracking error as  

( 1)[ , , , ]n T
d d d d dx y y y y −= � �� " ,                (2) 



 

     

( ) de t x x= −                              (3) 
  

Assumption 1: ( )( ), nT
d dx y d≤  with a known positive 

constant d .  
If only the output y  is measurable and the rest states 
of the system are not available for feedback, it needs 
to estimate x2, x3, …., xn for the implementation of 
feedback control. The following high-gain observer is 
introduced to estimate the plant state x . 
Lemma 1 : Suppose the function y(t) and its first n 
derivative are bounded. Consider the following linear 
system 
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where the parameters 
1β …

1nβ −
 are chosen so that 

1
1 1 1n n

ns s sβ β−
−+ + + +"  is Hurwitz polynomial. 

Then, there exist positive constants , 2,3ih i n= "  
and T such that for all t T>  it leads to 
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where ρ  is a positive constant, 
1 1 1 1n n nz z zψ β β− −= + + +"  and ( )i

ihψ ≤ . ( )iψ  
denotes the ith derivative of ψ . (Behatsh, 1990)  
The estimate x̂ of plant state x  is defined as 
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T
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Also, define 
ˆoe x x= − ,                                (7) 

ˆd de x x= − ,                               (8) 

From (3), (7) and (8), we can obtain that 
d oe e e= +                                (9). 

  
3. OUTPUT FEEDBACK CONTROL 

From (1), the plant can be described by 
( , )nx f x uδ= + ��                          (10) 

ˆ ( , )f y uδ =                              (11) 

1ˆ ( , )u f y δ−=                            (12) 

ˆ( , ) ( , ) ( , )f x u f x u f y u= −� .               (13) 

and ˆ ( , )f y u  is invertible with respect to u  and 

satisfies (Hovakimyan et al, 2002) 
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The pseudo-control signal δ  is designed as 
( )n

d ad r dKe yδ δ δ= − − + +                 (14) 

where 1 2[ , ]nK k k k= " is a vector of gains chosen as 
the cefficients of Hurwitz polynomial; adδ  is 
designed to cancel f�  ; rδ  is the term for robust 
design that will be specified in the sequel.  
From (9), (10) can be expressed as 

( , )n ad r oe Ke f x u Keδ δ= − + − + −�� .       (15) 

A three-layer NN, which is consisted of 2n  hidden 
neurons and 3n  output neurons with linear activation 
function, can be written by vectors i.e. 

( )T T
nny W V xσ= .                        (16) 

where ,[ ]i jV V=  11, 2,i n= " ; 20,1j n= " ; and 
,[ ]j kW W= , 31,k n= " are interconnecting weights 

(.)σ  are the sigmoidal function which satisfies  
2(.) nσ ≤ . 

It is well known that any smooth function can be 
approximated on a compact set using a three-layer NN 
with appropriate weights. This implies that function 
error ( )f C∈ Ω� , with Ω  compact subset, can be 
written as 

( )( , ) ( )T T
nn nnf x u W V x xσ ε= +�             (17) 

where ( )nnxε  is the NN reconstruction error and 
( )nn Nxε ε≤ with a positive constant Nε ; W and 

V are optimal weights that minimize ( )nnxε  for all 
nnx ∈ Ω .  

From the equations shown in (12), (13), (14) and (34) 
that will be presented later, the network input can be 
chosen as 
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where ˆ ˆ,W V  are the estimate of ,W V . And 
ˆ ˆ,W W W V V V= − = −� � . 

Assumption 2: The optimal weights W  and V  are 
bounded by the pre-specified positive values 

PW , PV , PZ so that PFW W≤  and PFV V≤ , and 
PFZ Z≤ , where . F  represents Frobenius norm.  

adδ  is chosen as output of a three-layer network 

ˆ ˆ ˆ( )T T
ad nnW V xδ σ= ;                      (20) 

and the NN input is chosen as 
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From (8) and (20), we can obtain that 
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Combining with Assumption 1-2, one can obtain that 
ˆnnx is bounded by 

0 1 2ˆ nn d F
x c c e c Z≤ + + �                  (22) 



 

     

with the computable positive constants 0 1 2, , 0c c c > .   
Using (20), (15) can be expressed as 
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The error dynamics of the closed-loop system can be 
written as 
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A is an asymptotically stable matrix. Therefore, given 
any positive definite symmetric matrix Q , there exists 
a unique positive definite symmetric matrix P  such 
that  

 TA P AP Q+ = − .                         (25) 

From (5) and (6), we can obtain that, for a known 
3 0c >  

 3oe c≤ .                                (26) 

And the following inequality holds  
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where 4 5,c c  are computable positive constants. 
The Taylor series expansion of ( )ˆT

nnV xσ  for the 

given ˆnnx  can be described by 

( )2
ˆ ˆ ˆ ˆT T

nn nnV x V xσ σ σ ο′= + +� �              (28) 

where ˆˆ ˆ ˆ: ( ), : ( )T T
nn nnV x V xσ σ σ σ= = , ˆˆ ˆ: ( )T

nnV xσ σ′ ′= ; σ ′ is 

the Jacobian  matrix of ˆ ˆ( )T
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with some computable and positive constant 
6 7 8 9, , ,c c c c . 

For the stability proof, the following representation is 
also considered 
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Combining (22), (29), (31) and (32), one can obtain  
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for some specified positive constant 0 1 2 3, , ,l l l l . 

Theorem 1: Suppose that assumptions 1 and 2 hold. 

Take the control law given by (12) and (14) with the 

term for robust design, thus 
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and 2K lδ >  where 2l the is the constant in (33). Let 
the weight adaptation laws be provided by 
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with any constant matrices 0,TF F= >  
0TR R= > and 0 3,lκ >  ( )2

1 3 5 / 2c l Pbκ > , where 
P satisfies (25) for the matrix Q  with the minimal 
eigenvalue min ( ) 1Qλ > ; 5l  is defined by (39). Then, 
if the initial errors belong to the compact set 

rΩ defined in (49), the NN controller guarantees that 
all the signals in the closed-loop system are all 
ultimately bounded. 
Proof: Define the Lyapunov function candidate 
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Considering (24), the derivative of L with respect to t 
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Using (9), (25) and (30), (36) can be written as 
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From (33), we have 
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Using (34), rδ  is bounded for 4 5, 0l l >  

4 5r d d F
l e l e Zδ ≤ + � .                  (39) 

Combining (34) and (39), (38)becomes 
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Considering (26) and 2K lδ > , (40) can be rewritten as 
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Combining 3c Pb Pb eς ≤ +  with 0 3lκ > , (42) 
becomes 
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The above results are valid provided (17) holds on the 
compact set nnx ∈ Ω  for all t>0. From (18), nnx can 
be considered as a function of ( ), , , , ,n

d de Z x z y Z� , i.e. 
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According to the assumption 1, 2 and (4), there exists 
the corresponding compact set 
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From (35), one obtains that 
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where max max( ), ( )Pλ λ Γ  are the maximal eigenvalues 

of P and Γ , respectively; and 
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For any ( , )e Z ∈� { }( , ) ( , )e Z e Z r=� � , we can obtain 
that 2

minL rλ≥ , where minλ  is the minimal 
eigenvalue of P and Γ . The requirement of 
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Then ,e Z� are semi-globally uniformly ultimately 
bounded for { }(0), (0) re Z∀ ∈ Ω� as long as Ω  is 
sufficient large such that (52) holds. From the 
assumption and structure of observer, we can conclude 
that all the signals of the closed-loop are all semi-
globally, uniformly and ultimately bounded. 
  

4. SIMULATION 
Consider the following  nonlinear plant 
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The tracking objective is to make the output, y(t), 
follow a desired output, yd(t)=sin0.5t+e-0.1tsint. The 
initial states are set to x(0)=[0.6, 1.6]T. Then, the 
corresponding observer for x2 is designed as 
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A three-layer NN with n1=8, n2=15, n3=1 is utilized. 
The hidden-layer activation functions are chosen as 

1
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network are initialized to zeros. The other parameters 
are respectively chosen as 

5F R I= = , 0 1 0.1κ κ= = , 
[1, 2]K = , 1.5Kδ = , 5PZ = , 1 2β = , 0.001ρ = , 

(0) [0,0]Tz = , 
7.5 2.5
2.5 2.5

P ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, ˆ ( , )f u y u= .  

where I is an identity matrix. In order to avoid the 
peaking phenomenon, the saturation of the control 
input u(t) is 10± . Fig.1 and Fig. 3 respectively show 
the tracking results for 50s. The observer error eo(t) 
is plotted in Fig. 4. We see that the tracking error and 
the observer error converge to a small neighborhood 
of origin. Fig. 5 shows the history of the control 
input u(t). The norm of weight estimates is also given 
in Fig.6 to illustrate the boundedness of the NN 
weight estimates. A PID controller is also designed 
to make comparison with the NN controller. The 
integral gain and the proportional gain are 
respectively chosen as 4.0 and 2.0 which are 
specified through the off-line optimizing procedure. 
The control signal is chosen as u(t)=-5e2-20∫e1dt-
20e1. The tracking performances are respectively 
plotted in Fig. 2 and Fig. 3. We can see from 
simulation results that the performance of the 
proposed NN controller is better than that of the PID 
controller.  
  

5. CONCLUSION 
A scheme of ouput feedback neural controller is 
proposed for nonlinear systems with hysteresis. 
Comparing with previous adaptive controller, the 
proposed controller can be applicable to more 
extensively nonlinear systems. In order to handle the 
case where some of the states are not measurable, a 
high gain observer to estimate the states of the system. 
The overall system is proved to be ultimately bounded 
and the tracking error converges to a small 
neighborhood of the origin. The theoretical analysis 
and simulation results show that the proposed 
controller is rather promising for the control of non-
smooth nonlinear systems.. 

  

 
Fig.1 Tracking performance of the NN controller 

 
Fig.2 Tracking performance of the PID controller 

 
 Fig. 3 Tracking error of the NN and PID controller 
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Fig.4 The estimate state error 2 2x̂ x−  

     

Fig.5 Control input of NN controller 



 

     

 

  Fig. 6 The Norm of estimate NN weights || Ẑ ||F 
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