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Abstract: This paper is concerned with a formal linearization problem for a general
class of nonlinear time-varying dynamic systems. To a given system, a linearization
function is made up of Chebyshev polynomials about its state variables. The
nonlinear time-varying system is transformed into a linear time-varying system
in terms of the linearization function using Chebyshev interpolation to state
variables and Laguerre expansion to time variable. An error bound formula of
this linearization which is derived in this paper explains that the accuracy of
this algorithm is improved as the order of Chebyshev and Laguerre polynomials
increases. As its application, a nonlinear observer is designed to demonstrate the
usefulness of this formal linearization approach. Copyright c©2005 IFAC
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1. INTRODUCTION

It has been received wide recognition to use lin-
earization method as an important tool in analysis
and synthesis of nonlinear dynamic systems. One
of the most popular and practical approaches is
the linearization by Taylor expansion truncated
at the first order (Yu, et al., 1970). This is pow-
erful but limited to implement in small regions
or almost linear systems. To relax this limita-
tion and improve the accuracy, various studies of
linearization problems have been made since the
early works of Poincaré and Sternberg (Sternberg,
1959). For the last few decades, this problem
has been explored from the viewpoint of differ-
ential geometry (Brockett, 1978; Krener, 1984).
Though many interesting results have been de-
veloped, they are generally not so easily applica-
ble to practical systems. Therefore, it is eager to
develop a linearization approach of easy imple-
mentation with the aide of computers (Kadiyala,

1993). Authors have been studied computer algo-
rithms of formal linearization for some kinds of
nonlinear systems (Takata, 1979; Komatsu and
Takata, 1996). In this paper we present a for-
mal linearization approach for a general class of
nonlinear time-varying dynamic system. This ap-
proach introduces a linearization function which
is made up of a finite number of Chebyshev poly-
nomials about state variables. A given nonlinear
time-varying system is transformed into a linear
time-varying system with respect to the lineariza-
tion function by applying Chebyshev interpola-
tion to state variables and Laguerre expansion
to time variable. A computer algorithm of this
formal linearization approach is presented, and
then its error bound formula is derived. As an
application of this approach, a nonlinear time-
varying observer is well designed. With the aid
of computers, we easily carry out the numerical
computation of this formal linearization and the



nonlinear observer. Numerical experiments show
that the accuracy of this approach is improved
as both the orders of Chebyshev and Laguerre
polynomials increase.

2. FORMAL LINEARIZATION

Consider a time-varying nonlinear system de-
scribed by

Σ1 : ẋ(t) = f(t,x),x(0) = x0 ∈ D (1)

where ˙ = d/dt and D is a compact domain

denoted by the Cartesian product : D =
n∏

i=1

[mi−

pi,mi + pi] ⊂ Rn where mi(mi ∈ R) is the
middle of the domain and pi(pi > 0) is half of
the domain (i = 1, · · · , n). x = [x1, · · · , xn]T ∈ D
is n state vector and T denotes transpose. Let
the time domain be Dt = [0,∞). Assume that
f is a sufficiently smooth nonlinear function on
Dt×D such as f(t, x) = [f1(t,x), · · · , fn(t, x)]T ∈

CN+1(Dt × D;Rn),

∞∫

0

f(t,x)T f(t,x)e−αtdt <

∞ for each x ∈ D. Here α > 0 and N is the
maximal order defined in Eq. (20) below. In order
to apply Chebyshev interpolation (Hildebrand,
1956), state variable x is changed into y so that y
has the basic domain of Chebyshev polynomials:
D0 =

∏n
i=1[−1, 1] and y is rewritten by

y = P−1(x−M) (2)
where

M =




m1
...

mn


 , P =




p1 0
. . .

0 pn


 ,y =




y1
...

yn


 .

The dynamics of y becomes

ẏ(t) = P−1f(t, Py + M) ≡ F (t, y) (3)

where ≡ is the definition notation. The Chebyshev
polynomials {Tr(·)} are defined by

Tr(yi) ≡ (−2)rr!
(2r)!

(1− y2
i )

1
2

dr

dyr
i

(1− y2
i )r− 1

2 (4)

or, T0(yi) = 1, T1(yi) = yi, T2(yi) = 2y2
i −

1, T3(yi) = 4y3
i − 3yi, T4(yi) = 8y4

i − 8y2
i +

1, · · ·. The recurrence formula of Chebyshev poly-
nomials is described by Tr+1(yi) = 2yiTr(yi) −
Tr−1(yi), (r ≥ 1), T0(yi) = 1, T1(yi) = yi. The
derivative of Chebyshev polynomials Sr(yi) ≡
dTr(yi)

dyi
has the recurrence formula Sr+1(yi) =

2Tr(yi) + 2yiSr(yi)− Sr−1(yi), (r ≥ 1), S0(yi) =

0, S1(yi) = 1. The orthogonal condition of Cheby-
shev polynomials under summation over the zeros
of TNi+1(yi) is

Ni∑

`i=0

T(q)(yi`i)T(r)(yi`i) =





0 (q 6= r)
Ni + 1

2
(q = r 6= 0)

Ni + 1 (q = r = 0)

where yi`i
= cos

2`i + 1
2Ni + 2

π, (`i = 0, 1, · · · , Ni).

Using these Chebyshev polynomials of Ni−th
order (i = 1, · · · , n), we introduce a linearizing
function as

φ(y) = [T(10···0)(y), T(01···0)(y), · · · , T(0···01)(y),

T(11···0)(y), T(101···0)(y), · · · , T(10···1)(y),

T(20···0)(y), T(21···0)(y), · · · , T(r1···rn)(y),

· · · , T(N1···Nn)(y)]T (5)

where T(r1···rn)(y) =
n∏

i=1

Tri
(yi) . We derive the

dynamics of each element of φ :

Ṫ(r1···rn)(y) =
∂T(r1···rn)(y)

∂yT
ẏ = [Sr1(y1)

Tr2(y2) · · ·Trn
(yn), Tr1(y1)Sr2(y2) · · ·Trn

(yn),

Tr1(y1)Tr2(y2) · · ·Srn
(yn)]P−1f(t, Py + M)

=
n∑

i=1

S
(i)
(r1···rn)(y)

1
pi

fi(t, Py + M)

where

S
(i)
(r1···rn)(y) ≡ Tr1(y1)Tr2(y2) · · ·Sri

(yi) · · ·Trn
(yn).

Thus, φ̇(y) becomes

φ̇(y) =
[
Ṫ(10···0)(y), · · · , Ṫ(r1···rn)(y), · · · ,

Ṫ(N1···Nn)(y)
]T =

∂φ(y)
∂yT

F (t, y) ≡ G(t,y)

=
[
G(10···0)(t, y), · · · , G(r1···rn)(t,y),

· · · , G(N1···Nn)(t,y)
]T (6)

where

G(r1···rn)(t,y) ≡
n∑

i=1

S
(i)
(r1···rn)(y)

1
pi

fi(t, Py + M).

To this G(t, y), we exploit Chebyshev interpo-
lation of Ni-th order with respect to the state
variable yi and Laguerre expansion of NL-th order
to the time variable t. Laguerre polynomials are
defined on the domain Dt = [0,∞) by

Lr(t) ≡ et dr

dtr
(tre−t), (r = 0, 1, 2, · · ·),

whose general form for α > 0 is

Lr(αt) ≡ eαt dr

dtr
(tre−αt). (7)



The polynomials are in the form : L0(t) =
1, L1(t) = 1− t, L2(t) = 2− 4t + t2, L3(t) = 6−
18t+9t2−t3, L4(t) = 24−96t+72t2−16t3+t4, · · ·
. The orthogonal condition of the generalized La-
guerre polynomials is

∞∫

0

e−αtLK(αt)Lr(αt)dt =





0 (K 6= r)
(K!)2

α
(K = r)

.

Applying Chebyshev and Laguerre expansions,
G(r1···rn)(t,y) is approximated by

Ĝ(r1···rn)(t,y) ≈
NL∑

K=0

N1∑
q1=0

· · ·

Nn∑
qn=0

C
(r1···rn)
(Kq1···qn)LK(αt)T(q1···qn)(y),

where C
(r1···rn)
(Kq1···qn) ≡

α

(K!)2
2n−γ(

n∏

i=1

1
Ni + 1

)

∞∫

0

N1∑

`1=0

· · ·
Nn∑

`n=0

e−αtG(r1···rn)(t, y1`1 , · · · , yn`n
)

× LK(αt)T(q1,···,qn)(y1`1 , · · · , yn`n
)dt,

γ = {the number of qi = 0 : 1 ≤ i ≤ n}.
Substituting this Ĝ into Eq.(6) yields

Ṫ(r1···rn)(y) ≈
NL∑

K=0

N1∑
q1=0

· · ·

Nn∑
qn=0

C
(r1···rn)
(Kq1···qn)LK(αt)T(q1···qn)(y).

Thus, φ̇(y) is approximated by

φ̇(y) ≈ A(t)φ(y) + B(t) (8)

where η = η(r1, · · · , rn), ς = ς(q1, · · · , qn) ,

[Aης(t)] = [
NL∑

K=0

C
(r1···rn)
(Kq1···qn)LK(αt)],

[Bς(t)] = [
NL∑

K=0

C
(0···0)
(Kq1···qn)LK(αt)],

η, ς ∈ {1, · · · , (N1 + 1)(N2 + 1) · · · (Nn + 1)− 1}.

Using the same coefficients as in Eq.(8), we design
a formal linear system by

Σ2 : ż(t) = A(t)z(t) + B(t), (9)

z(0) = φ(y(0)) = φ(P−1(x0 −M)).

The inversion is simply obtained by Eqs.(2) and
(5) as

x(t) = Py(t) + M = PHφ(y(t)) + M (10)

where H = [I : 0] and I is an n × n unit matrix.
As a result, an approximate x̂(t) of the state x(t)
becomes

x̂(t) = PHz(t) + M (11)

by a solution of Eq. (9).

3. ERROR BOUNDS

Let ‖ · ‖ denote the norm ‖X‖ =
√

XT X to a
vector X and the corresponding induced matrix
norm to a matrix.

Theorem 1: An error bound of the formal lin-
earization is

‖x(t)− x̂(t)‖ ≤ pmax

{
eµt

∥∥φ
(
y(0)

)− z(0)
∥∥

+
n∑

K=1

eµt − 1
µ

M̄K

2NK (NK + 1)!

}
+

√
eαt − 1

α
λtεNL

≡ Eb(t,N1, · · · , Nn, NL) (12)

where pmax = max{pi : 1 ≤ i ≤ n} ,
µ = sup

{‖A(t) + AT (t)‖/2 : t ∈ Dt

}
,

M̄K = sup
{‖ ∂NK+1

∂yNK+1
K

ω[K−1]Ḡ(t,y)‖ : y ∈ D0,

t ∈ Dt

}
, λt = sup

{‖PHψ(t, τ)
∂φ

∂yT
P−1‖ :

0 ≤ τ ≤ t,y ∈ D0

}
, εNL

= sup
{[ ∞∫

0

‖f(τ, x)‖2e−ατdτ −
NL∑

K=0

‖C∗K(x)‖2]
1
2 : x ∈ D

}
.

Proof : A difference between Eq.(6) and Eq.(9)
is

d

dt

(
φ(y(t))− z(t)

)
=

∂φ(y)
∂yT

F (t,y)

−A(t)z −B(t) = A(t)
(
φ(y)− z(t)

)

+
(∂φ(y)

∂yT
F (t,y)−A(t)φ(y)−B(t)

)
.

The solution of this differential equation is

φ
(
y(t)

)− z(t) = ψ(t, 0)
{
φ
(
y(0)

)− z(0)
}

+

t∫

0

ψ(t, τ)ε
(
τ, y(τ)

)
dτ (13)

where the state transition matrix ψ(·, ·) satis-

fies the matrix differential equation
d

dt
ψ(t, τ) =

A(t)ψ(t, τ), ψ(τ, τ) = I and the linearization
error is

ε
(
t, y(t)

)
=

∂φ(y)
∂yT

F (t, y)−A(t)φ(y)−B(t).(14)



Note
d

dt
‖ψ(t, τ)‖2 = 2ψT (t, τ)ψ̇(t, τ) = ψT (t, τ)

(
A(t) + AT (t)

)
ψ(t, τ) ≤ 2µ‖ψ(t, τ)‖2, whose solu-

tion is ‖ψ(t, τ)‖2 ≤ ‖ψ(τ, τ)‖2e2µ(t−τ) = e2µ(t−τ),
where µ = sup

{‖A(t)+AT (t)‖/2 : t ∈ Dt

}
. Thus

we have ‖ψ(t, τ)‖ ≤ eµ(t−τ) , and

t∫

0

‖ψ(t, τ)‖dτ ≤
t∫

0

eµ(t−τ)dτ =
(eµt − 1)

µ
. (15)

From now on we shall consider Laguerre expansion
about t. First, let us introduce a Hilbert space
Zα(Dt;Rn) ≡ {u : Dt → Rn;

∫∞
0

e−αt‖u(t)‖2dt <

∞} with inner product 〈u,v〉α ≡ ∫∞
0

e−αt

u(t)T v(t)dt for u,v ∈ Zα(Dt;Rn). It should be
noticed that, since {ϕK(t) = 1

K!e
− t

2 LK(t) : K =
0, 1, 2, · · ·} forms a complete orthonormal system
in L2(Dt) (Nakamura, 1981), {

√
α

K! LK(αt);K =
0, 1, 2, · · ·} forms a complete orthonormal system
in Zα(Dt) ≡ Zα(Dt;R). Therefore, it holds that

f(t,x) =
∞∑

K=0

√
α

K!
C∗K(x)LK(αt)

where C∗K(x) =

√
α

K!

∞∫

0

e−αtf(t, x)LK(αt)dt

for each f(t, x) ∈ Zα(Dt;Rn) at any fixed x. Thus
we have

εNL
(x) ≡

{ ∞∫

0

‖ε(t)NL
(t, x)‖2e−αtdt

} 1
2

=
{ ∞∫

0

‖f(t,x)‖2e−αtdt−
NL∑

K=0

‖C∗K(x)‖2
} 1

2
(16)

where f(t, x) =
NL∑

K=0

√
α

K!
C∗K(x)LK(αt)+ε

(t)
NL

(t,x),

which indicates that εNL
(x) → 0 as NL →∞.

Note that the Hölder inequality indicates
t∫

0

‖ε(t)NL
(t, x)‖dt ≤ [ t∫

0

eατdτ
] 1

2
[ t∫

0

‖ε(t)NL
(τ, x)‖2

e−ατdτ
] 1

2 ≤
√

eαt − 1
α

εNL
(x). (17)

We here introduce an operator = which approx-
imates a vector function f(t, x) by Laguerre ex-
pansion with respect to t:

= : f(t, x) →
NL∑

K=0

√
α

K!
C∗(K)(x)LK(αt) (18)

so that εNL
(x) =

{∫∞
0
‖f(t,x) − =f(t,x)‖2e−αt

dt
} 1

2 . Next we shall consider Chebyshev interpo-
lation about y. Define π(yi) ≡ (yi − yi0)(yi −

yi1) · · · (yi − yiNi) using the zeros {yij : j =
0, · · · , Ni} of TNi+1(yi) for each yi (i = 1, · · · , n).
Then it holds that

min
{yij}

max
yi∈D0

|π(yi)| = 2−Ni . (19)

Note that f(t, x) ∈ CN+1(Dt × D;Rn) or
G(r1···rn)(t, y) ∈ CN+1(Dt ×D0) where

N = max{Ni : i = 1, · · · , n}. (20)

It should be noticed that, the function Ḡ(t, y)
defined by Ḡ(t,y) ≡ =G(t,y) in Eq.(6) can be
expressed by Chebyshev interpolation as

Ḡ(t, y) =
Ni∑

qi=0

C(qi)(t, ȳi)Tqi
(yi) + ε

(yi)
Ni

(t, y) (21)

where ȳi ≡ [y1, · · · , yi−1, yi+1, · · · , yn]T ,

C(qi)(t, ȳi) =
21−γ

Ni + 1

Ni∑

`i=0

Ḡ(t, y1, · · · , yi`i
,

· · · , yn)Tqi
(yi`i

), γ =
{

0, (qi = 0)
1, (qi 6= 0) ,

ε
(yi)
Ni

(t, y) =
1

(Ni + 1)!
∂Ni+1

∂yNi+1
i

Ḡ(t, y)
∣∣
yi=ξi

π(yi),

(ξi ∈ [−1, 1]). (22)

Ḡ(t,y) is in CNi+1-class with respect to yi at
fixed (t, ȳi). We here introduce an operator ωi

which approximates a vector function Ḡ(t, y) by
Chebyshev interpolation in Eq.(21):

ωi : Ḡ(t, y) →
Ni∑

qi=0

C(qi)(t, ȳi)Tqi(yi),

so that

Ḡ(t,y)− ωiḠ(t,y) = ε
(yi)
Ni

(t,y). (23)

Define a product of the operator by ω[i] ≡ ωi ◦
· · · ◦ ω2 ◦ ω1, where ω[0]Ḡ(t, y) = Ḡ(t,y). Us-

ing this operator, we have ω[n]=∂φ(y)
∂yT

F (t,y) =

ω[n]Ḡ(t,y) = A(t)φ(y)+B(t) from Eq.(6) through
Eq.(8). Therefore, Eq.(14) becomes

ε(t,y) = { ∂φ

∂yT
F (t, y)−= ∂φ

∂yT
F (t, y)}+ {Ḡ(t,y)

−ω[1]Ḡ(t,y)}+ {ω[1]Ḡ(t, y)− ω[2]Ḡ(t,y)}
+ · · ·+ {

ω[n−1]Ḡ(t, y)− (A(t)φ(y) + B(t))
}

=
∂φ

∂yT
P−1

{
f(t, Py + M)−=f(t, Py + M)

}



+
n∑

K=1

{ω[K−1]Ḡ(t,y)− ω[K]Ḡ(t,y)}. (24)

From Eqs.(23), (22) and (19),

‖ω[K−1]Ḡ(t, y)− ω[K]Ḡ(t, y)‖
=

∥∥(ω[K−1]Ḡ(t,y))− ωK(ω[K−1]Ḡ(t,y))
∥∥ =

∥∥ 1
(NK + 1)!

∂NK+1

∂yNK+1
K

ω[K−1]Ḡ(t,y) |yK=ξK
π(yK)

∥∥

≤
sup

{‖ ∂NK+1

∂y
NK+1
K

ω[K−1]Ḡ(t, y)‖‖π(yK)‖}

(NK + 1)!

≤ M̄K

2NK (NK + 1)!
(25)

where sup
{‖π(yK)‖ : yK ∈ D0

}
= 2−NK , M̄k =

sup
{∥∥∥∥ ∂NK+1

∂y
NK+1
K

ω[K−1]Ḡ(t,y)
∥∥∥∥ : y ∈ D0, t ∈ Dt

}
.

From Eqs.(10) and (11), it follows that

x(t)− x̂(t) = PH
(
φ
(
y(t)

)− z(t)
)
. (26)

Substituting Eq.(24) into Eq.(13) and then to
Eq.(26) yields

x(t)− x̂(t) = PHψ(t, 0)
(
φ(y(0)− z(0)

)
+

t∫

0

PH

ψ(t, τ)
∂φ

∂yT
P−1(f(τ, x)−=f(τ, x))dτ +

t∫

0

PH

ψ(t, τ)
[ n∑

K=1

{
ω[K−1]Ḡ(τ, y)− ω[K]Ḡ(τ, y)

}]
dτ.

Thus it follows that

‖x(t)− x̂(t)‖ ≤ ‖PH‖‖ψ(t, 0)‖‖φ(y(0))− z(0)‖

+sup
{
‖PHψ(t, τ)

∂φ

∂yT
P−1‖

} t∫

0

‖(f(τ, x)

−=f(τ, x))‖dτ + ‖PH‖
n∑

K=1

‖ω[K−1]Ḡ(τ, y)

−ωK

(
ω[K−1]Ḡ(τ, y)

)‖
t∫

0

‖ψ(t, τ)‖dτ. (27)

Note that ‖PH‖ ≤ ‖P‖‖H‖ ≤ pmax, pmax =
max{pi > 0 : 1 ≤ i ≤ n}, λt ≡ sup

{‖PH

ψ(t, τ)
∂φ

∂yT
P−1‖ : 0 ≤ τ ≤ t, y ∈ D0

}
. (28)

From Eqs.(15), (17), (25) and (28), Eq.(27) be-
comes

‖x(t)− x̂(t)‖ ≤ pmaxeµt
∥∥φ

(
y(0)

)− z(0)
∥∥

+λt

√
eαt − 1

α
εNL

+pmax

n∑

K=1

eµt − 1
µ

M̄K

2NK (NK + 1)!

which is reduced to Eq.(12). 2

This theorem indicates that the 1st, 2nd and 3rd
terms of Eq.(12) come from the errors of initial
state, Chebyshev interpolation, and Laguerre ex-
pansion, respectively. In this formal linearization,
the error becomes ‖x(t) − x̂(t)‖ → 0 for any
t ∈ Dt, as x(0) − x̂(0) → 0, NK → ∞ (K =
1, 2, · · · , n) and NL →∞.

4. NONLINEAR OBSERVER

We synthesize a time-varying nonlinear observer
as an application of the above linearization. As-
sume that a nonlinear dynamic system is the same
as Eq.(1) : ẋ(t) = f(t,x), and a measurement
equation is

η(t) = h(t, x) ∈ Rm (29)

where η is measurement data. The h(t,x) is a
sufficiently smooth nonlinear function which holds
the same condition as f(t,x). The dynamic sys-
tem (Eq.(1)) is transformed into a time-varying
linear system (Eq.(9)) by the formal lineariza-
tion mentioned above. From Eq.(2), Eq.(29) is
rewritten as η(t) = h(t, Py + M). Substituting
h(t, Py +M) instead of G(·)(t, y) into Eq.(6) and
applying Chebyshev interpolation and Laguerre
expansion yields η(t) = C(t)z(t)+d(t) in a similar
manner to that described in Section 2. To this
linearized system, we apply the linear observer
theory (Luenberger, 1971) so that the identity
observer is obtained as

˙̂z(t) = A(t)ẑ(t) + B(t)+

K(t)
(
η(t)− C(t)ẑ(t)− d(t)

)
(30)

where K(t) = 1
2Σ(t)C(t)T R(t), Σ̇(t) = A(t)Σ(t)+

Σ(t)A(t)T + Q(t)− Σ(t)C(t)T R(t)C(t)Σ(t). Here
Q(t), R(t) and Σ(0) are arbitrary real symmet-
ric positive definite matrices. From Eq.(11), the
estimate becomes

ˆ̂x(t) = PHẑ(t) + M. (31)

5. NUMERICAL EXPERIMENTS

We illustrate numerical experiments of the above
formal linearization and observer.



5.1 Formal Linearization

Consider the following system :

ẋ = −e−2t loge(x + 1), x(0) = 1.

We linearize it by the formal linearization ap-
proach. The parameters of Eq.(2) are set as M =
0.85, P = 0.16. Figure 1 shows the errors de-
fined by J(t,N,NL) ≡ ‖x(τ) − x̂(τ)‖ whose x̂
is the solution of Eq.(1) and the error bounds
Eb(t,N,NL) of Eq.(12), when the order of Cheby-
shev and Laguerre polynomials are N = NL = 2
and N = NL = 3.

Eb(t, 2, 2)
Eb(t, 3, 3)

t (s)

J,
 E

b

J(t, 2, 2)

J(t, 3, 3)

0 0.05 0.1

0

0.025

0.05

Fig. 1. Aprroximation errors and error bounds

5.2 Nonlinear Observer

Consider the following system:

ẋ1(t) = − 3x2
1

1 + x2 + sin t
, ẋ2(t) = −x2

1,

η(t) = x2
1 + x2, D = [0, 1]× [0.3, 1] ⊂ R2.

Set the parameters for the formal linearization as

M =
(

0.5
0.68

)
, P =

(
0.51 0
0 0.33

)
,

and the unknown initial value is x(0) = [1, 1]T .
Put Q(t) = I, M(t) = 50, Σ(0) = I, ˆ̂x(0) =
[0.3, 0.3]T , in the nonlinear observer of Eq.(30).
Figure 2 shows the true value x , the estimates ˆ̂x
when N1 = N2 = 3, NL = 3, and the observer es-
timate (Taylor) by the 1st order Taylor expansion
as a conventional method .

6. CONCLUSIONS

This paper has developed the formal lineariza-
tion approach for a general class of time-varying
nonlinear systems using Chebyshev interpolation
and Laguerre expansion. The error bound explains
that the accuracy of this linearization is improved
as the order of Chebyshev and Laguerre polyno-
mials increases. The nonlinear observer has been
synthesized as its application. Simulation results
have been presented which are very encouraging.
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Fig. 2. Estimates x1 and x2 by nonlinear observers
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