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1. INTRODUCTION

A dynamical system is a four-tuple {T,X,A, S}
where T denotes time, X is the state space (a
metric space with metric d), A is the set of initial
states and S denotes a family of motions. When
T = R+ = [0,∞) we speak of a continuous-
time dynamical system and when T = N =
{0, 1, 2, ...} we speak of a discrete-time dynamical
system. (For any motion x(., x0, t0) ∈ S, we have
x(t0, x0, t0) = x0 ∈ A ⊂ X and x(t, x0, t0) ∈ X
for all t ∈ [t0, t1) ∩ T , t1 > t0, where t1 may
be finite or infinite. The set of motions S is ob-
tained by varying (t0, x0) over (T × A).) When
X is a finite-dimensional normed linear space,
we speak of finite-dimensional dynamical systems,
and otherwise, of infinite-dimensional dynamical
systems. Also, when all motions in a continuous-
time dynamical system are continuous with re-
spect to t (relative to the metric d for X), we
speak of a continuous dynamical system and when
one or more of the motions are not continuous
with respect to t, we speak of a discontinuous
dynamical system (DDS). Finite-dimensional dy-
namical systems may be determined, e.g., by the
solutions of ordinary differential equations, or-
dinary differential inequalities, difference equa-
tions, difference inequalities, and the like, while
infinite-dimensional dynamical systems may be
determined, e.g., by the solutions of differential-
difference equations, functional differential equa-
tions, Volterra integrodifferential equations, vari-
ous classes of partial differential equations, and so
forth. Additionally, there are dynamical systems
whose motions are not determined by classical
equations or inequalities of the type enumerated
above (e.g., certain classes of discrete event sys-
tems whose motions are characterized by Petri
nets, Boolean logic elements, and the like). The

stability analysis of discrete-time dynamical sys-
tems and continuous dynamical systems of the
type enumerated above is a mature subject and
is addressed, e.g., in [Hahn 1967], [Michel et al.
2001], [Zubov 1964].

Discontinuous dynamical systems (DDS) arise in
the modeling process of a variety of systems, in-
cluding hybrid dynamical systems, discrete event
systems, switched systems, intelligent control sys-
tems, systems subjected to impulsive effects, and
the like (see., e.g., [Bainov et al. 1989], [Branicky
1998], [DeCarlo et al. 2000], [Liberzon et al. 1999],
[Michel 1999], [Michel et al. 1999], [Michel et al.
2001], [Ye et al. 1998]). The stability analysis of
such systems has thus far been concerned pri-
marily with finite dimensional dynamical systems
(defined on X = Rn with metric generated by
the Euclidean norm) determined by ordinary dif-
ferential equations; however, stability results for
general DDS defined on metric space (i.e., X is
an arbitrary metric space) have also been estab-
lished [Michel 1999], [Michel et al. 1999], [Michel
et al. 2001], [Ye et al. 1998]. In principle, these
results provide a general basis for the analysis of
DDS determined by the various types of equations
and inequalities enumerated earlier. However, the
applications of these results to specific classes of
DDS, especially infinite dimensional systems, are
normally not entirely straightforward, and usually
require further analysis. (This is also the case
for continuous infinite dimensional dynamical sys-
tems (see, e.g., [Hahn 1967], [Michel et al. 2001],
[Zubov 1964])).

In two recent papers, the stability analysis of
infinite dimensional DDS determined by a class
of functional differential equations [Sun et al.]
and by linear and nonlinear semigroups [Michel



et al. 2004] has been addressed. In the present
paper, we establish asymptotic stability results for
infinite dimensional DDS determined by Cauchy
problems on abstract spaces (differential equa-
tions on Hilbert and Banach spaces). This class
of systems includes as special cases DDS deter-
mined by the various types of equations discussed
earlier. (In a companion paper, we address expo-
nential stability results for the class of problems
considered herein [Michel et al. 2005].) We apply
our results in the analysis of DDS determined by
specific classes of functional differential equations,
Volterra integrodifferential equations, and partial
differential equations.

2. NOTATION AND BACKGROUND
MATERIAL

Let R = (−∞,∞), R+ = [0,∞), let Rn denote
real n-space, and let | . | denote any one of the
equivalent norms on Rn. For a real n × n matrix
C (i.e., C ∈ Rn×n) and x ∈ Rn, let |C| denote the
norm of C induced by the vector norm |x|.

Let X and Z be Banach spaces and let ‖.‖ denote
norm on Banach space. Let H be a Hilbert space
with inner product < ., . >. In this case, the norm
of x ∈ H is given by ‖x‖ =< x, x >1/2.

Lp(G,U), 1 ≤ p ≤ ∞, denotes the usual space of
all Lebesgue measurable functions with domain
G and range U . The norm of Lp(G,U) will be
denoted by ‖.‖p (or ‖.‖Lp

if more explicit no-
tation is needed). When the range U does not
need emphasis, we utilize the notation Lp(G). In
particular, if G = R+ and U = Rm, we write
Lm

p = Lp(R+, Rm) and when m = 1, we write
Lp = Lp(R+, R). If 1 ≤ p < ∞, we have for
f ∈ Lp, ‖f‖p = (

∫∞
0
|f(t)|P dt)1/p. Finally, H2(Ω)

and H1
0 (Ω) denote the classical Sobolev spaces

(see, e.g., [Michel et al. 2001]).

3. CONTINUOUS DYNAMICAL SYSTEMS
DETERMINED BY ABSTRACT CAUCHY

PROBLEMS

A general form of a system of first order differ-
ential equations in a Banach space X is given by

ẋ = A(t, x) (GN) (3.1)
where t ∈ R+, x ∈ C ⊂ X, A : R+ × C → X
and ẋ = dx

dt . We say that a function x : [t0, t0 +
c) → C, c > 0 is a solution of (GN) if x ∈
C[[t0, t0 + c), C], if x is differentiable with respect
to t ∈ [t0, t0 + c) and if x satisfies the equation
(dx/dt)(t) = A(t, x(t)) for all t ∈ (t0, t0 + c).

Associated with (GN) we have the initial value
problem, called a Cauchy problem on abstract
space, given by

ẋ = A(t, x), x(t0) = x0 (IGN ) (3.2)
where t ∈ R+, t ≥ t0 ≥ 0 and x0 ∈ C.

Under appropriate assumptions which ensure the
existence of solutions of (GN), the initial value
problem (IGN ) determines a continuous dynami-
cal system (R+, X,A, SGN ), as defined in Section
1, which is determined by the solutions x(t) =
x(t, x0, t0) of (IGN ) with x(t0, x0, t0) = x0 for all
t0 ∈ R+ and all x0 ∈ C. For the conditions of
existence, uniqueness, continuity with respect to
initial conditions, and continuation of solutions
of the initial value problem (IGN ), refer, e.g., to
[Melnikova et al. 2000].

Differential equations (GN) include as special
cases differential-difference equations, functional
differential equations, Volterra-integrodifferential
equations, certain classes of partial differential
equations, and others. We note, however, that in
general, (GN) (resp., (IGN )) will not generate
semigroups.

A special class of (IGN ) are autonomous initial
value problems given by

ẋ = A(x), x(t0) = x0 (IN ) (3.3)

where A : C → X,C ⊂ X. If A is continuously
differentable (or at least locally Lipschitz continu-
ous), then the theory of existence, uniqueness and
continuation of solutions of (IN ) is the same as
in the finite-dimensional case (Dieudonné 1960).
If A is only continuous, then in general (IN ) may
not have a solution (see, e.g., [Godunov 1975]).
If (IN ) is to include nonlinear partial differential
equations, one must allow A to be only defined
on a dense set C = D(A) and to be discontinu-
ous. For such functions A, the accretive property
replaces (and generalizes) the Lipschitz property.

If A is w-accretive and if A generates a quasicon-
tractive semigroup on C, then the solutions of (IN )
allow the estimate (see [Michel et al. 2001])
‖x(t, x0, t0)− x(t, y0, t0)‖ ≤ ew(t−t0) ‖x0 − y0‖(3.4)

for all t ∈ R+ and for all x0, y0 ∈ C. If in
particular, A satisfies the Lipschitz condition

‖A(x)−A(y)‖ ≤ K ‖x− y‖ (3.5)

for all x, y ∈ C, where K > 0 is a constant, then
(3.4) assumes the form
‖x(t, x0, t0)− x(t, y0, t0)‖ ≤ eK(t−t0) ‖x0 − y0‖ .(3.6)

A special class of (IN ) are linear initial value
problems given by

ẋ = Ax, x(t0) = x0 ∈ D(A) (IL) (3.7)

for t ∈ R+. Here A : D(A) → X is assumed to
be a linear operator with domain D(A) dense in
C ⊂ X and A is assumed to be closed, or else to
have an extension Ā which is closed.

If A generates a C0 − semigroup, then the solu-
tions of (IL) admit the estimate

‖x(t, x0, t0)‖ ≤Meω(t−t0) ‖x0‖ (3.8)

for all t ≥ t0 and x0 ∈ D(A). If in particular, A is
a bounded linear operator, then we have in (3.6)
K = ‖A‖ and (3.8) assumes the form



‖x(t, x0, t0)‖ ≤ e‖A‖(t−t0) ‖x0‖ (3.9)

for all t ≥ t0 ≥ 0, x0 ∈ X (see [Michel et al.
2001]).

If A generates a differentiable C0-semigroup and
if Reλ ≤ −α0 for any λ ∈ σ(A), then given any
positive α < α0, there is a constant K(α) > 0
such that (see [Michel et al. 2001])

‖x(t, x0, t0)‖ ≤ K(α)e−α(t−t0) ‖x0‖ (3.10)

for all t ≥ t0 ≥ 0, x0 ∈ X (σ(A) denotes the
spectrum of A).

In the remainder of this section, we consider more
specific cases.

Example 3.1. Autonomous first order retarded
functional differential equations (with delay −r)
are given by

ẋ(t) = f(xt), t > 0
x(t) = φ(t),−r ≤ t ≤ 0

}
(3.11)

where f : Cr → Rn, X = Cr = C[[−r, 0], Rn] is a
Banach space with norm defined by

‖φ‖ = max{|φ(t)| : −r ≤ t ≤ 0} (3.12)

and xt ∈ Cr is the function determined by xt(s) =
x(t+ s) for −r ≤ s ≤ 0. System (3.11) is clearly a
special case of (IN ).

Assume that f satisfies a Lipschitz condition
|f(ξ)− f(η)| ≤ Kf ‖ξ − η‖ (3.13)

for all ξ, η ∈ Cr. Under these conditions, the initial
value problem (3.11) has a unique solution for
every initial condition φ ∈ Cr, denoted by ψt(., φ)
which exists for all t ∈ R+ (see, e.g., [Kuang
1993]). In accordance with (3.6), we have for the
solutions of (3.11) the estimate

‖ψt(., ξ)− ψt(., η)‖ ≤ eKf t ‖ξ − η‖ (3.14)

for all t ∈ R+ and all ξ, η ∈ Cr. 2

Example 3.2. If in (3.11), f = L is a linear
mapping from Cr to Rn defined by

L(φ) =

0∫
−r

[dB(s)]φ(s), (3.15)

we obtain the initial-value problem

ẋ(t) = L(xt), t > 0
xt = φ(t),−r ≤ t ≤ 0

}
(3.16)

In (3.15), B(s) = [bij(s)] is an n × n matrix
whose entries are assumed to be functions of
bounded variation on [−r, 0]. Then L is Lipschitz
continuous on Cr with Lipschitz constant KL less
or equal to the variation of B in (3.15). It has
been shown [Hille et al. 1957] that the operator
L generates a differentiable C0-semigroup. The
spectrum of L consists of all solutions of the
equation

det(

0∫
−r

eλsdB(s)− λI) = 0. (3.17)

If in particular, all the solutions of (3.17) satisfy
the relation Reλ ≤ −α0, then for any positive
α < α0, there is a constant M(α) > 0 such that

‖ψt(., ξ)‖ ≤M(α)e−αt ‖ξ‖ (3.18)

t ≥ 0, ξ ∈ Cr. When the roots of (3.17) have
positive real parts, then we obtain, in view of
(3.14), the estimate

‖ψt(., ξ)‖ ≤ eKLt ‖ξ‖ (3.19)

t ≥ 0, ξ ∈ Cr. 2

Example 3.3. A class of initial and boundary value
problems determined by the heat equation is given
by

∂u

∂t
= a∆u, (t, x) ∈ [t0,∞)× Ω

u(t0, x) = φ(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [t0,∞)× ∂Ω,

(3.20)

where Ω ⊂ Rn is a bounded domain with smooth
boundary ∂Ω, ∆ =

∑n
i=1

∂2

∂x2
i

denotes the Lapla-
cian and a > 0 is a constant.

It has been shown that for each φ ∈ X =
H2[Ω, R]∩H1

0 [Ω, R] there exists a unique solution
u = u(t, x), t ≥ t0, x ∈ Ω for (3.20) such that
U , defined by U(t) = u(t, .), is a continuously
differentiable functions from [t0,∞) to X with
respect to the H1-norm (to be specified later)
[Michel et al. 2001]. Then (3.20) can be written as
an abstract Cauchy problem in the space X with
respect to the H1-norm,

U ′(t) = AU(t), t ≥ t0 (3.21)

with initial condition U(t0) = φ ∈ X, where
the operator A is linear and is defined as A =∑n

i=1
d2

dx2
i

.

In establishing an estimate of the H1-norm of the
solutions of (3.20), we choose the function

v(φ) = ‖φ‖2H1 =
∫
Ω

(|∇φ|2 + |φ|2)dx (3.22)

for any φ ∈ X. Let u(t, .) denote a solution of
(3.20) and let U(t) = u(t, .) ∈ X. Evaluating
dv/dt along the solutions of (3.20), we have

d[v(U)]
dt

=
∫
Ω

∂

∂t
[

n∑
i=1

(
∂u

∂xi
)2 + u2]dx

=
∫
Ω

[
n∑

i=1

2(
∂u

∂xi
)
∂2

∂xi∂t
+ 2u

∂u

∂t
]dx

=−
n∑

i=1

2
∫
Ω

∂2u

∂x2
i

∂u

∂t
dx+ 2a

∫
Ω

u∆udx

=−2a
∫
Ω

(∆u)2dx− 2a
∫
Ω

|∇u|2 dx

≤−2a
∫
Ω

|∇u|2 dx. (3.23)



By Poincaré’s inequality [Michel et al. 2001], we
have ∫

Ω

|u|2 dx ≤ γ2

∫
Ω

|∇u|2 dx, (3.24)

where γ can be chosen as δ/
√
n and Ω can be put

into a cube of length δ. Hence we have

d[v(U)]
dt

≤ −a(
∫
Ω

|∇u|2 dx+
1
γ2

∫
Ω

|u|2 dx)

≤ −c ‖U‖2H1

(3.25)

for all φ ∈ X, where c = min{a, a
γ2 } > 0.

Therefore,
‖U(t)‖H1

≤ e−
c
2 (t−t0) ‖U(t0)‖H1

(3.26)

for t ≥ t0. 2

4. DISCONTINUOUS DYNAMICAL
SYSTEMS DETERMINED BY

DIFFERENTIAL EQUATIONS IN BANACH
SPACE

We first consider a family of initial-value Cauchy
problems in Banach space X of the form

ẋ(t) = Ak(t, x), t ≥ τk
x(τk) = xk

}
(ICk

)

for k ∈ N . For each k ∈ N , we assume that Ak :
R+×X → X and that ẋ = dx/dt. Throughout, we
will assume that for every (τk, xk) ∈ R+×X, (ICk

)
possesses a unique solution x(k)(t, xk, τk) which
exists for all t ∈ [τk,∞) and which is continuous
with respect to initial conditions. We express this
by saying that (ICk

) is well posed. In addition,
for each k ∈ N , we assume that Ak(t, 0) = 0,
t ∈ R+. This ensures the existence of the zero
solution x(k)(t, xk, τk) = 0, t ≥ τk, with xk = 0,
which means that xk = 0 ∈ X is an equilibrium of

ẋ(t) = Ak(t, x). (Ck) (4.1)

We now consider discontinuous initial-value prob-
lems in Banach space X given by

ẋ(t) = Ak(t, x), τk ≤ t < τk+1

x(τk+1) = gk(x(τ−k+1)), k ∈ N,

}
(DC)

where for each k ∈ N , Ak is assumed to possess
the identical properties given in (Ck), where gk :
X → X, and

x(t−) = limt′→t,t′<tx(t′). (4.2)

For each k ∈ N , we assume that gk(0) = 0.
The set E = {τ0, τ1, τ2, ...}, denoting the set of
discontinuities, is assumed to be an unbounded
closed discrete subset of R+ with τ0 < τ1 < τ2 <
... < τk < ....

Under the above assumptions for (DC) and (Ck),
it is now clear that for every (t0, x0) ∈ R+ × X,
t0 = τ0, (DC) has a unique solution x(t, x0, t0)
which exists for all t ∈ [t0,∞). This solution
is made up of a sequence of solution segments

x(k)(t, xk, τk), defined over the intervals [τk, τk+1),
k ∈ N , with initial conditions (τk, xk), where
xk = x(τk), k = 1, 2, ... and where (τ0 = t0, x0)
are given. Furthermore, (DC) admits the zero
solution x(t, x0, t0) = 0 for t ≥ t0 (with x0 = 0),
and therefore, x0 = 0 ∈ X is an equilibrium for
(DC).

Remark 4.1. Consistent with the characterization
of discontinuous dynamical system (DDS) given
in Section 1, it is clear from the above that
(DC) determines a discontinuous dynamical sys-
tem {T,X,A, S}, where T = R+, A = X, the met-
ric on X is determined by the norm ‖.‖ defined on
X (i.e., d(x, y) = ‖x− y‖), and S denotes the set
of all the piecewise continuous solutions of (DC)
corresponding to all possible initial conditions
(t0, x0) ∈ R+ ×X. In the interests of brevity, we
will refer to this DDS simply as “system (DC)”,
or simply as “(DC)”. 2

In finite dimensional spaces all norms are equiv-
alent and therefore, when addressing convergence
properties for such systems, such as stability, the
choice of norm plays no important role. This is
not the case in infinite dimensional systems and
the various stability concepts depend intricately
on the particular norm (i.e., on the particular
Banach space) on hand. For the usual Lyapunov
stability definitions for differential equations in
Banach space, refer, e.g., to [Michel et al. 2001].

5. MAIN STABILITY RESULT

In the present section we will make use of com-
parison functions (Kamke functions), defined as
follows.

Definition 5.1. A function ψ ∈ C[R+, R+] is said
to belong to class K, i.e., ψ ∈ K, if ψ(0) = 0 and
if ψ is strictly increasing on R+. 2

Theorem 5.1. Assume that there exists a function
V : X×R+ → R+ and functions ψ1, ψ2 ∈ K such
that

ψ1(‖x‖) ≤ V (x, t) ≤ ψ2(‖x‖) (5.1)

for all x ∈ X and t ∈ R+.

a) Assume that for every x(., x0, t0), V (x(t, x0, t0), t)
is continuous for all t ≥ t0 ≥ 0 except on a set
of discontinuities E = {t0 = τ0, τ1, τ2, ...}. Also,
assume that there exists a neighborhood U ⊂ X
of the origin 0 ∈ X such that V (x(τk, x0, t0), τk) is
nonincreasing for all x0 ∈ U and all k ∈ N , and as-
sume that there exists a function h ∈ C[R+, R+],
independent of x(., x0, t0), such that

h(0) = 0,

V (x(t, x0, t0), t) ≤ h(V (x(τk, x0, t0), τk)),
t ∈ (τk, τk+1), k ∈ N.

(5.2)

Then the zero solution of (DC) is uniformly stable.



b) If in addition to the assumptions in part (a),
there exists a function ψ3 ∈ K defined on R+ such
that

DV (x(τk, x0, t0), τk) ≤ −ψ3(‖x(τk, x0, t0)‖),(5.3)

for all x0 ∈ U , k ∈ N , where

DV (x(τk, x0, t0), τk)

=
1

τk+1 − τk
[V (x(τk+1, x0, t0), τk+1)

−V (x(τk, x0, t0), τk)],

(5.4)

then the zero solution of (DC) is uniformly
asymptotically stable.

6. APPLICATIONS

The proofs of Propositions 6.1-6.3 are direct con-
sequences of Theorem 5.1.

Example 6.1. (Time-invariant differential equa-
tions in Banach space)
If in (Ck) we let Ak(t, x) ≡ Ak(x), then (ICk

)
takes the form

ẋ(t) = Ak(x)
x(τk) = φk

}
(I ′Ck

)

k ∈ N , t ∈ [τk,∞), and (DC) assumes the form

ẋ(t) = Ak(x), τk ≤ t < τk+1

x(τk+1) = gk(x(τ−k+1))

}
(DC ′)

k ∈ N . Assuming that for all k ∈ N , Ak(0) = 0
and that Ak satisfies the Lipschitz condition

‖Ak(x)−Ak(y)‖ ≤ Kk ‖x− y‖ (6.1)

for all x, y ∈ X, we obtain, in accordance with
(3.6), the estimate∥∥∥x(k)(t, φk, τk)

∥∥∥ ≤ eKk(t−τk) ‖φk‖ (6.2)

for all t ≥ τk and all φk ∈ X. In system (DC ′) we
assume that for all k ∈ N , gk(0) = 0 and that

‖gk(x)‖ ≤ γk ‖x‖ (6.3)

for some γk > 0 and for all x ∈ X and we let
τk+1 − τk = λk.

Proposition 6.1. Let Kk, γk and λk be the pa-
rameters for system (DC ′) given in (6.1)-(6.3).

a) If for all k ∈ N , γke
Kkλk ≤ 1, then the zero

solution of (DC ′) is uniformly stable.

b) If for all k ∈ N , γke
Kkλk ≤ α < 1, where α > 0

is a constant, then the zero solution of (DC ′) is
uniformly asymptotically stable. 2

Example 6.2. (Time-invariant linear functional
differential equations)
If in (Ck) we let X = Cr and Ak(t, x) = Ak(x) =
Lkxt, where Cr, xt and Lk are defined as in
Examples 3.1 and 3.2, then (ICk

) takes the form

ẋ(t) = Lkxt

xτk
= φk,

}
(6.4)

k ∈ N , t ∈ [τk,∞). If in (DC) we let gk(η) = Gkη,
then (DC) assumes the form

ẋ(t) = Lkxt, τk ≤ t < τk+1

xτk+1 = Gkxτ−
k+1

,

}
(6.5)

k ∈ N . For each k ∈ N , Lk is defined, as in (3.15),
by

Lk(φ) =

0∫
−r

[dBk(s)]φ(s). (6.6)

We suppose that all assumptions that we made
for L given in (3.15) hold as well for Lk. Then
Lk is Lipschitz continuous on Cr with Lipschitz
constant Kk less or equal to the variation of Bk,
and as such, condition (6.1) still holds for (6.4).
As in (3.17), the spectrum of Lk consists of all
solutions of the equation

det(

0∫
−r

eλksdBk(s)− λkI) = 0. (6.7)

In accordance with (3.18), when all solutions of
(6.7) satisfy the relation Reλk ≤ −α0, then
for any positive αk < α0, there is a constant
Mk(αk) > 0 such that the solutions of (6.4) allow
the estimate∥∥∥x(k)(t, φk, τk)

∥∥∥ ≤Mk(αk)e−αk(t−τk) ‖φk‖(6.8)

for all t ≥ τk ≥ 0 and φk ∈ Cr. When the
above assumption is not true, then in accordance
with (3.19), the solutions of (6.4) still allow the
estimate∥∥∥x(k)(t, φk, τk)

∥∥∥ ≤ eKk(t−τk) ‖φk‖ (6.9)

for all t ≥ τk and φk ∈ Cr. Thus, in all cases we
have ∥∥∥x(k)(t, φk, τk)

∥∥∥ ≤ Qke
wk(t−τk) ‖φk‖ (6.10)

for all t ≥ τk ≥ 0 and φk ∈ Cr, where Qk = 1 and
wk = Kk when (6.9) applies and Qk = Mk(αk)
and wk = −αk, αk > 0, when (6.8) applies.

Finally, for each k ∈ N , Gk in (6.5) is assumed to
be a linear operator, Gk : Cr → Cr. We have

‖Gkη‖ ≤ ‖Gk‖ ‖η‖ (6.11)

for all η ∈ Cr, where ‖Gk‖ is the norm of Gk

induced by the norm ‖.‖ defined on Cr.

Proposition 6.2. Let wk, ‖Gk‖ , Qk, λk be the pa-
rameters for system (6.5) defined above.

a) If for all k ∈ N , ‖Gk‖Qke
wkλk ≤ 1, then the

zero solution of (6.5) is uniformly stable.

b) If for all k ∈ N , ‖Gk‖Qke
wkλk ≤ α < 1, where

α > 0 is a constant, then the zero solution of (6.5)
is uniformly asymptotically stable. 2



Example 6.3. (Heat equation)
We consider a family of initial and boundary value
problems determined by the heat equation

∂u

∂t
= ak∆u, (t, x) ∈ [τk,∞)× Ω

u(τk, x) = φk(x), x ∈ Ω
u(t, x) = 0, (t, x) ∈ [τk,∞)× ∂Ω,

(6.12)

where Ω ⊂ Rn is a bounded domain with smooth
boundary ∂Ω and ak ∈ R+ are constants. Next
we consider a DDS determined by

∂u

∂t
= ak∆u, (t, x) ∈ [τk, τk+1)× Ω

u(τk+1, .) = gk(u(τ−k+1, .)),
u(t, x) = 0, (t, x) ∈ R+ × ∂Ω

(6.13)

where all symbols are defined similarly as in
(6.12), gk : X → X, X = H2[Ω, R] ∩ H1

0 [Ω, R]
with theH1-norm (see, (3.22)), k ∈ N . We assume
that gk(0) = 0 and there exists γk such that
‖gk(φ)‖H1 ≤ γk ‖φ‖H1 for all φ ∈ X, k ∈ N .

Along any solution u(k) of (6.12), similarly as in
Example 3.3 (see, (3.26)), we obtain the estimate∥∥∥U (k)(t)

∥∥∥
H1

≤ e−
ck
2 (t−τk)

∥∥∥U (k)(τk)
∥∥∥

H1

(6.14)

for t ≥ τk, where ck = min{ak,
ak

γ2 }, where γ is a
constant determined by Ω (see, (3.24)). Each solu-
tion u(t, x, φ, t0) of (6.13) is made up of a sequence
of solution segments u(k)(t, x, φk, τk), defined on
[τk, τk+1) for k ∈ N , which are determined by
(6.12) with φk = u(τk, .). 2

Proposition 6.3. For system (6.13), let ωk = − ck

2
and λk = τk+1 − τk, k ∈ N .

a) If for all k ∈ N , γke
ωkλk ≤ 1, then the zero

solution of (6.13) is uniformly stable.

b) If for all k ∈ N , γke
ωkλk ≤ α < 1, where α > 0

is a constant, then the zero solution of (6.13) is
uniformly asymptotically stable. 2
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