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Abstract: Alloy design is a challenging multi-objective optimisation problem, which 
consists of finding the optimal processing parameters and the corresponding chemical 
compositions to achieve certain pre-defined mechanical properties of steels. In this 
paper, we combine fuzzy modelling and Particle Swarm Optimisation (PSO) to address 
the multi-objective optimal alloy design problem. An adaptive weighted PSO algorithm 
is introduced to improve the performance of the standard PSO. Based on the established 
impact toughness fuzzy prediction models, the proposed optimisation algorithm has 
been successfully applied to the optimal design of heat-treated alloy steels. The 
experimental results have shown that the algorithm can locate the constrained optimal 
solutions quickly and provide a useful and effective guide for alloy steels design.    
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1. INTRODUCTION 
 
Multi-objective Optimisation (MO) problems are 
commonly encountered in science and engineering 
areas, due to the multi-criteria nature of many 
application problems. In complex engineering design, 
such as development of alloy steels, two or more, 
sometimes competing and/or incommensurable 
objective functions have to be considered 
simultaneously. In the development of alloy 
materials, the conjoint design and control of chemical 
composition and details of thermomechanical 
processing schedules to develop optimum mechanical 
properties always lead to a complex exercise. The 

required mechanical properties of modern alloy steels 
are achieved by obtaining an optimum microstructure 
through a careful combination of alloy compositions, 
rolling schedules and heat treatment. In the steel 
industry, heat treatments (containing hardening and 
tempering stages) are commonly used to develop the 
required mechanical properties in a range of alloy 
steels. The mechanical properties of the material are 
dependent on many factors, including the tempering 
temperature, the quench temperature, the types of 
quench medium, the content of chemical 
compositions of the steel, the geometry of the bar, 
etc. Determining the optimal heat treatment regime 

  



and the required weight percentages for the chemical 
composites to obtain the pre-defined mechanical 
properties of steel is a challenge for the steel 
industry. To address this problem, a metal design 
paradigm which combines mechanical property 
prediction and an optimisation mechanism has been 
established as shown in Fig. 1. As the available 
physical knowledge of the heat treatment process is 
not enough to allow one to compute the mechanical 
properties, it is crucially important to establish 
reliable property prediction models. These will be 
obtained through elicited data-driven models, such as 
Neural Network models (Tenner, Linkens, et.al. 
2001) and neural-fuzzy models (Chen & Linkens, 
2001). These predictive models are then used to 
predict the mechanical properties of steel such as the 
Tensile Strength (TS), the Reduction of Area (ROA), 
Elongation and Impact Toughness. The predicted 
properties can be used as the objectives of the 
optimal metal design. In this study, the emphasis is 
on impact toughness property oriented alloy design. 
Fuzzy models for impact toughness prediction are 
used to facilitate the optimisation process for multi-
objective approaches. For optimisation, the new 
paradigm of Particle Swarm has been used as an 
optimisation mechanism for alloy design.  
 
The remaining parts of the paper are structured as 
follows: Section 2 presents the data-driven fuzzy 
modelling approach for Charpy impact toughness 
prediction. Section 3 describes the adaptive weighted 
non-dominated sorting PSO algorithm and its 
application to multi-objective optimal alloy design. 
Finally, results discussions and conclusion will be 
given in Section 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Metal Design Optimisation 
 
 
 

2. FUZZY MODELLING FOR MECHANICAL 
PROPERTY PREDICTION 

 
Fuzzy modelling is one of the most active research 
fields in intelligent computation, which combines the 

facility of explicit knowledge representation in the 
form of if-then rules (the mechanism of reasoning in 
human understandable terms) and the ability of 
approximating complicated non-linear functions. A 
fuzzy model is a system description with fuzzy 
quantities, which are expressed in terms of fuzzy 
numbers or fuzzy sets associated with linguistic 
labels. Consider a collection of N data points {P1, 
P2,..., PN} in a m+1 dimensional space that combines 
both input and output dimensions. A generic fuzzy 
model is presented as a collection of fuzzy rules in 
the following form 
Ri:  If  x1 is Ai2  and x2 is Ai2  ...  and  xm  is Aim       

then  y = zi(x)             (1) 
 
where x = (x1 , x2 , ... , xm) )∈U and y∈V are 
linguistic variables, Aij are fuzzy sets of the universes 
of discourse Ui ∈R, and zi(x) is a function of input 
variables. Typically, z takes the following three 
forms: a singleton, a fuzzy set or a linear function. 
Fuzzy logic systems with the centre average 
defuzzifier, the product-inference rule and the 
singleton fuzzifier are of the following form: 
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where µ ij x( ) denotes the membership function of xj 
belonging to the ith rule. 
 
According to the fuzzy modelling paradigm proposed 
by Chen and Linkens (2001), the data-driven fuzzy 
modelling consists of the following tasks: 1) 
generating an initial fuzzy rule-base from data, 
including initialising the membership function 
parameters; 2) determining the number of fuzzy 
rules; and 3) optimising the parameters both in the 
antecedent and consequent parts of the rules. All 
membership function parameters in the antecedent 
part and the linear weights in the consequent part of 
the fuzzy rules are optimised via a gradient-descent 
learning algorithm. The acquired fuzzy model should 
be validated under certain performance indices, such 
as accuracy, generality, complexity, interpretation, 
etc. Once the model performance achieves the pre-
defined criteria, the final model is produced. 
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In materials engineering, it is important to establish 
an appropriate composition-processing-property 
model for materials development. As one of the most 
important characteristics of alloy steels, toughness is 
assessed by the Charpy V-notch impact test. The 
absorbed impact energy and the transition 
temperature defined at a given Charpy energy level 
are regarded as the common criteria for toughness 
assessment. However, not much work has been done 
to date on establishing generic composition-
processing-impact toughness models. In this study, 
the aforementioned fuzzy modelling approach has 
been used to establish generic toughness prediction 
models which link materials compositions and 
processing conditions with Charpy impact properties. 
To build a Charpy toughness prediction model, 3804 
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heat treatment process data were collected and used 
for modelling. The data set contains chemical 
compositions, processing parameters and Charpy 
energy Cv(J) tested at different temperatures 
(between -60 and 23 oC). 50% of the data were used 
for model training and the remaining 50% of the data 
were used as testing data. The model inputs include 
chemical compositions (C, Si, Mn, S, Cr, Mo, Ni, Al, 
V), the geometry of the bar (width and thickness) and 
processing variables (Quench.T, Temp.T and Charpy 
test Temperature). The model output is the predicted 
Charpy impact energy Cv. Based on the obtained 
3804 heat treatment process data, the fuzzy model 
with 6 rules was developed to predict Charpy impact 
energy using the fuzzy modelling procedure 
described in the previous section. The predicted 
result with a Root-Mean-Square-Error of RMSE=18 
is shown in Fig. 2. This prediction model is then used 
for toughness assessment in optimal alloy design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2  Charpy impact energy prediction using fuzzy 

model 
 
 

3. MULTI-OBJECTIVE OPTIMAL ALLOY 
DESIGN USING PARTICLE SWARM 

OPTIMISATION 
 
As mentioned in the previous section, alloy design is 
a challenging multi-objective optimisation problem, 
which consists of finding the optimal chemical 
compositions and processing parameters for pre-
defined property requirement. The PSO is a relatively 
new technique for finding the optimal regions of 
complex search spaces via the interaction of 
individuals in a population of particles. It was 
originally introduced by J. Kennedy and C. Eberhart 
in 1995. Unlike evolutionary algorithms, which are 
based on the principle of survival of the fittest, the 
PSO is motivated by the simulation of social 
behaviour of flocks. As Kennedy stated (Kennedy J. 
1997), the algorithm is based on a metaphor of social 
interaction, searches a space by adjusting the 
trajectories of individual vectors, called “particles” as 
they are conceptualised as moving points in 
multidimensional space. The individual particles 
evaluate their positions relative to a goal at every 
iteration. They are drawn stochastically towards the 

positions of their own previous best performance and 
the best previous performance of their companions. 
The PSO algorithm has been shown to be a 
successful optimiser in a wide range of functions. It 
is easily implemented and usually results in faster 
convergence rates than the GA (Eberhart R. and Shi 
Y. 1998). In this paper, an improved PSO algorithm 
is introduced to address this multi-objective alloy 
optimal design problem. 
 
 
3.1 Improved Particle Swarm Optimisation 

algorithm 
 
The PSO algorithm defines each particle as a 
potential solution to a problem in a dimensional 
space, with particle i represented as: xi=(xi1, xi2, …, 
xid), i=1, 2, … N. Where d is the search dimension 
and N determines the number of particles in the 
population. The original formula developed by 
Kennedy and Eberhart was improved by Shi and 
Eberhart by introducing an inertia weight w into PSO 
algorithm (Shi Y. and Eberhart R. 1999). During 
each iteration, the particles’ position is modified 
according to the following equations: 
 
vi(t) = w vi(t-1)+c1r1(pi- xi(t-1))+ c2r2(pg- xi(t-1))    (3) 
xi(t) = vi(t)+ xi(t-1)            (4) 
 
where vi is the velocity, w is the inertia weight, c1 and 
c2 are positive constants, and r1 and r2 are random 
numbers obtained from a uniform random 
distribution function in the range [0, 1]. pi represents 
the best previous position of the ith particle and pg 
denotes the best particle among all the particles in the 
population. The inertia weight w plays the role of 
balancing the global and local searchers and its 
values may vary during the optimisation process. A 
large inertia weight encourages a global search while 
a small value pursues a local search. Shi and Eberhart 
(1999), suggested to change the inertia weight 
linearly from 1 to 0.4 to restrict the global search 
ability of the PSO algorithm at the end of a run. 
 
To improve the performance of the PSO for multi-
objective optimisation problems, we proposed an 
Adaptive Weighted PSO (AWPSO) algorithm 
(Mahfouf and Chen, 2004), in which the velocity in 
Eq. (3) is changed as follows: 
vi(t+1) = w vi(t)+α [r1(pi- xi(t))+ r2(pg- xi(t))]          (5) 
 
The second term in Eq. (5) can be viewed as an 
acceleration term, which depends on the distances 
between current position xi and personal best pi and 
global best pg. The acceleration factor α is defined 
as: 

α=α0+ t/Nt   t=1, 2, … , Nt           (6) 
where Nt denotes the number of generations, t 
represents the current generation, α0∈[0.5, 1] is a 
constant. As can be seen, the acceleration term will 
increase as the iteration increases, which will 

  



enhance the global search ability at the end of run 
and will help the algorithm to jump out of the local 
optimum especially in multi-modal problems. 
 
Instead of using a linearly decreasing inertia weight, 
we use random number as the inertia weight and 
change the inertia weight at every generation using 
the following formula: 

w=w0 +(1- w0) r  ;            (7) 
where w0∈[0, 1] is a positive constant, r is a random 
number uniformly distributed in [0, 1]. In this paper 
we set w0 = 0.4, which produces a randomly varying 
weight between 0.4 and 1 with a mean value of 0.7. 
 
To evaluate the performance of individual particles, 
an appropriate evaluation function should be defined. 
We simply use the weighted aggregation approach to 
construct the evaluation function F for multi-
objective optimization as follows: 
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where m is the number of objectives, i=1, 2, …, m, fi 
denotes the ith objective function. To approximate 
the Pareto front instead of a certain Pareto solution, 
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The function U(0,1) generates a uniformly distributed 
random number within [0,1]. In this way, we can get 
a uniformly distributed random weight combination, 
which are generated at every generation. The idea is 
to use dynamic weights instead of fixed weights to 
achieve the Pareto solutions. This dynamically 
weighted aggregation approach was introduced for 
the selection of best pg. To improve the convergence 
of the multi-objective optimisation, the non-
dominated sorting technique, which was proposed 
and improved by Deb et. al. (Deb K., Agrawal S., 
et.al. 2000, Deb K. and Goel T. 2001) and then 
introduced into the PSO algorithm by Li X. (2003) 
has been also used in the modified PSO algorithm. 
The effectiveness of the AWPSO algorithm has been 
demonstrated (Mahfouf and Chen, 2004). Compared 
to several widely recognised evolutionary algorithms, 
such as NSGA II and SPEA, the proposed algorithm 
achieved better convergence and diversity when 
tested challenging functions, such as ZDT1~ZDT4. 
 
 
3.2 Optimal design for heat-treated alloy steels  

The proposed algorithm has been applied for the 
optimal design of heat-treated alloy steels. In this 
section, details relating to the optimisation of Charpy 
impact toughness using the AWPSO algorithm are 
presented and discussed. The decision vector consists 
of the weight percentages for the chemical 
composites, namely: Carbon (C), Silicon (Si), 
Manganese (Mn), Chromium (Cr), Molybdenum 

(Mo), and Tempering temperature (Temp) 
respectively. As aforementioned, all optimisation 
experiments are based on the fuzzy property 
prediction models.  
 
3.2.1 Toughness oriented optimal design 
 
Companies in the steel industry value highly the 
achievement of the required levels of toughness 
properties of hot rolled steel products. The optimal 
alloy toughness design aims at finding the 
appropriate chemical compositions and tempering 
temperature with the criterion of a minimum Charpy 
impact energy of 54J at -20°C, which is equivalent to 
the ductile-brittle transition temperature at 54J 
energy level which is below -20°C. In order to 
achieve the pre-defined toughness requirement, the 
model prediction error band should be taken into 
account in the selection of objectives. It is worth 
noting that the error band, which depends on the 
model accuracy and training data density, provides 
an accurate guide to the model prediction error. The 
objective functions for alloy toughness design are 
defined as: 
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Minimise:   f2 = EBc           (11) 
 
Where Cv0 =54J, which stands for the required 
Charpy energy level, and EBc is the 95% confidence 
error band for the prediction model. The objective 
functions f1 and f2 represent the requirement for 
Charpy toughness and the corresponding model 
prediction error band. Fig. 3 illustrates the 
optimisation results with Charpy energy values 
against error band corresponding to the obtained 
Pareto solutions with the target value Cv0 =54J. It 
indicates that the two objectives are in conflict, as 
any improvement in one objective causes 
deterioration in the other. Table 1 displays different 
solutions selected from the Pareto solutions. It can be 
seen that the algorithm converged to a specific area 
that minimised the objective functions and provided 
optional solutions (with different combinations of 
chemical compositions and tempering temperature), 
which meet the pre-defined toughness requirement 
even when taking the error band into account. 
 
3.2.2 Optimal alloy design with economic factors 
 
This experiment aims at finding the optimal chemical 
compositions and heat-treatment process parameters 
in order to obtain the required toughness while 
minimising the production costs. The production 
costs of heat-treated steels include the costs of 
addition of alloying elements, such as Cr, Mo, V, etc. 
and the costs of energy consumption during the heat-
treatment process. Based on the expert’s knowledge, 

  



a new objective function to reflect such costs was 
introduced as follows: 
  f3=18Mn+21Cr+52.25Mo3+4.88Temp/600;       (12) 
Fig. 4 displays the optimisation results of optimising 
f1, f2, and f3 defined by Equations (10)-(12) using the 
AWPSO algorithm. Table 2 shows the five different 
solutions selected from all the Pareto-solutions. 
Again, it can be seen that the optimisation method 
produced well-converged and spread Pareto-optimal 
solutions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Pareto-solutions for the two-objective alloy 

design 
 
Table 1 Optional solutions selected from the Pareto  

solutions 
 
 C Mn Cr Mo Temp Cv EB 
1 0.447 0.811 1.002 0.291 697 88 26.6 
2 0.385 0.865 1.243 0.279 706 105 27.3 
3 0.337 0.933 1.044 0.342 730 127 29.7 
4 0.264 1.024 1.315 0.335 726 146 33.3 
5 0.212 1.197 1.123 0.420 725 169 39.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Optimisation results for the three-objective   
           alloy design. 
 

Table 2. Optional solutions for three-objective 
optimal alloy design 

 
 C Mn Cr Mo Temp Cv EB Cost  
1 0.39 0.82 0.94 0.25 730 105 27 73.2 
2 0.37 1.06 0.39 0.17 730 111 30 50.4 
3 0.25 1.03 0.49 0.12 730 135 34 51.4 
4 0.30 0.89 1.03 0.01 730 118 31 65.7 
5 0.40 0.83 0.31 0.17 719 93 29 42.9 
 

 
 

4. CONCLUDING REMARKS 
 
A multi-objective optimisation mechanism using 
fuzzy modelling and Particle Swarm Optimisation 
techniques has been successfully applied to the 
optimal design of heat-treated alloy steels. The main 
aim of the research was to determine the optimal heat 
treatment regime and the required weight percentages 
for the chemical composites to obtain the desired 
mechanical properties of steel. Based on the data-
driven fuzzy model, the Charpy impact toughness 
can be predicted effectively and then used to 
facilitate optimal alloy design. The experimental 
results have shown that the optimisation algorithm 
can locate the constrained minimum design with very 
good convergence, and also provide a range of 
optional solutions which fit the pre-defined property 
requirement. The simulations also indicate that the 
algorithm produced very consistent solutions and can 
be effectively used in other industrial optimisation 
problems. Further investigations on multi-objective 
optimal alloy design involving more mechanical 
property criteria, such as Tensile Strength, 
Elongation, Reduction of Area, etc. should be 
beneficial for the steel industry as a whole. 
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