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Abstract: Let ¢(x) and p;(z),i = 1,...,m be quadratic forms of real variables
x € R™ In many problems of investigation of stability and estimation of the
attraction domain and attainability sets, one faces the following question: under
what conditions, do inequalities p;(x) > 0,i = 1,...,m,z # 0 imply the inequality
g(z) > 07 The commonly used S-procedure method (Yakubovich, 1977) consists
in checking of whether there exist values 7; > 0 such that the quadratic form

q(z) — Z Tipi(x) (1)

is positive definite. It is well known that, if m > 2, the S-procedure gives us only
sufficient conditions for positive definiteness of the quadratic form ¢(x) under the
constraints p;(z) > 0,7 = 1,...,m. These conditions are necessary only for m = 1.
This property is called ”lossness” of the S-procedure for multiple constraints.
The use of only sufficient conditions leads to additional conservatism of stability
criteria and attraction domains estimation. Necessary and sufficient conditions are
obtained in (Rapoport, 1989) and (Rapoport, 1996) for a special case of quadratic
constraints represented as products of two linear forms. This paper further extends
those results. The special case of m = 2, where additional conditions were imposed
on the quadratic forms p;(z) and p2(z) to make conditions (1) necessary and
sufficient, has been addressed in (Polyak, 1998). In this paper, the losslessness of
the S-procedure for m = 2 is proved under less restrictive additional conditions.
A case of one general-form quadratic constraint and m — 1 constraints presented
as products of two linear forms is also considered. Copyright ©2005 IFAC
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1. CONSTRAINTS OF SPECIAL FORM

The problem of positive definiteness of quadratic
forms in “sector-like” regions arises in the analysis
of stability of the Lur’e systems, estimation of
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attainability sets for the Lur’e systems, and in
other applications. The “sector-like” constraints
are inequalities imposed on the products of two
linear forms:

pi(z) = (fiz)(giz) >0, (2)
where f;,9; € R", i € 1,...,m. Let F and
G be R™ ™ matrices composed of the columns
fi and g; respectively. Results presented in the



following subsection allow us to analyze positive
definiteness of ¢(z) under constraints (2) using
inductive dimensions reduction.

1.1 Preliminary results

Let us denote @ = {& € R™\ {0} : pi(x) >
0,6 =1,...,m} and Q; = {z € Q: py(x) = 0}.
Note that some of the sets (2; may be empty.
Let ' denotes transposition. The quadratic form
q(z) = %m’Qx is assumed to be not positive
definite in the entire space R"; ie., q(y) < 0
for some y € R", y # 0. Otherwise, there is no
need to examine problem to investigate positive
definiteness of ¢(z) in the set Q.

Lemma 1. Let the quadratic form g¢(z) be not
positive definite in the entire space R™; i.e., there
exists a vector y € R", y # 0, such that ¢(y) <O0.
Then, g(z) > 0 in Q if and only if the following
conditions hold:

(a) g(z) >0 in sets Q;, i =1,...,m,

(b) y ¢ 9.

Remark 1. Lemma 1 says that, if g(x) > 0 on the
“facets” (2; of the set (2, then, together with a
certain vector y for which ¢(y) < 0, the set 2 does
not contain any other vectors z with ¢(z) < 0. In
other words, y ¢ Q implies {z : ¢g(z) <0}NQ = 0.

Let 7(q) and m(p;) be the numbers of positive
eigenvalues of the quadratic forms ¢(x) and p;(z),
respectively.

Lemma 2. Let w(q)+m(pj) < n for some j. Then,
¢(z) > 0in Q if and only if condition (a) of Lemma
1 holds.

Proofs of Lemmas 1 and 2 are similar to those of
two lemmas presented in (Rapoport, 1989).

1.2 Lossless extension of the S-procedure

Let s(w,u) be a quadratic form of 2m variables
w,u € R™ of the following form

1 1
s(w,u) = Ew'Vw +w'Tu + EUIUU’ (3)

where V,T,U are m X m matrices, with V
and U being symmetric. The following theorem
gives "lossless” extension of the S-procedure to
quadratic forms p;(z) of form (2). Let II =
{(w,u) : w = Flz,u = G'z,x € R"}. The
linear space II coincides with R*™ if and only if
rank[F | G] = 2m < n.

Theorem 1. q(x) > 0 in the region ) defined by
quadratic forms (2) if and only if there exists a

quadratic form s(w,u) of form (3) such that the
following conditions hold:

(a) g(x) —s(F'z,G'z) >0 for x #0

(b) s(w,u) > 0 for (w,u) € II satisfying condi-
tions wyu; > 0,i=1,...,m, and (w,u) # 0.

Proof. Sufficiency is obvious. Let us prove neces-
sity. Positive definiteness of ¢(z) in the region 2
implies its positive definiteness on the subspace
L={z:F'z =0,G'x = 0}. The case of L = {0}
is not excluded and means positive definiteness of
s(w,u) on L = {0}. Let (w,u) € II. Then, the
linear algebraic system F'z = w,G'z = u is feasi-
ble, and the function ¢(z) has a unique minimum
under the constraints F'z = w,G'z = u. The
vector z*(w, u) on which the minimum is attained
depends linearly on w and w. Then, so(w,u) =
g(z*(w,u)) is a quadratic form, and so(w,u) > 0
for nonzero (w,u) satisfying conditions (w,u) €
I and w;u; > 0. Hence, for sufficiently small
e > 0, the quadratic form s(w,u) = so(w,u) —
e(ll w ||* + || u ||?) also satisfies condition (b) of
the theorem. Further,

q(z) — s(F'e,G'x) >
q(z*(F'e,G'x)) — s(F'x,G'x) =
so(F'z,G'z) — s(F'z,G'z) =
(1 F'z | + 11 G |P),
from which inequality (a) follows for « ¢ L. If
x # 0 and © € L, then inequality (a) follows

from positive definiteness of ¢(z) on L. Theorem
is proved. W

Remark 2. If the condition rank[F' | G] = 2m <
n holds, then II = R*™, and condition (w,u) € 11
may be removed.

Let us consider the question of verification of
condition (b) of Theorem 1. For the sake of
brevity, we suppose that rank[F' | G] = 2m < n.
In this case,

Q ={(w,u) € R*™\ {0} : )

pi(w,u) = wiu; > 0,i =1,...,m}
and
mpi))=L1li=1,...,m
Application of Lemmas 1 and 2 requires the ver-
ification of positive definiteness of s(w,u) in the
regions (2;. This problem has the same form as the
original one and differs from it only in that it does
not contain the constraint ¢ and either w; or u; is
equal to zero. In other words,
Q; ={(w,u) € R*™ : wju; >0,j #i,w; =0}
U{(w,u) € R*™ :wju; >0,j #i,u; = 0}.

In order to apply Lemmas 1 and 2, let us introduce
the notation

M={1,...,m}



and, for three nonintersecting subsets Ng, N1, Ny C
M satisfying the condition No U Ny U Ny = M,

Q(N07N17N2) =
w;u; > 0 for i € Ny,

(w,u) € R*™\ {0} : w; =0 for i€ Ny,
u; =0 for 7 € N».
In particular,
Q = Q(M7 Z? Z)?

0 = Q(M \ {Z}a {Z}a Z) U Q(M \ {Z}a a, {Z})
Lemmas 1 and 2 take the following form. Suppose
that the quadratic form s(w,u) is not positive
definite in the entire space R*™ and (wpq,ug) is
a nonzero vector for which s(wg,ug) < 0.

Lemma 3. s(w,u) > 0 in the region Q of form (4)
if and only if the following conditions hold:

(a) s(w,uw) > 0 in the regions Q(M \ {i}, {i}, @)
and Q(M \ {i},@,{i}),i € M,

(b) (’wo,Uo) ¢ Q.

Lemma 4. Let (s) <n —1. Then, s(w,u) > 0 in
the region Q of form (4) if and only if condition
(a) of Lemma 3 holds.

The matrix of the quadratic form s(w, u) is given

by
s:[g, ﬂ 5)

For subsets of indices N1, No C M,N1 NNy = &
let S(N1,N2) be the matrix obtained from S
of form (5) by deleting the rows and columns
with indices ¢ € N; and m + ¢ for ¢ € Ns.
Analysis of positive definiteness of the quadratic
form s(w,u) in the set €; is equivalent to two
problems: analysis of positive definiteness in the
set Q(M \ {i},{i}, o) and analysis of positive
definiteness in the set Q(M \ {i}, @, {i}). Both
problems have one constraint less than the initial
problem has (wju; > 0,7 # i) and one variable
less. The matrix of the quadratic form of the first
problem is obtained from S by striking out the
row and the column with the index i. The matrix
of the quadratic form of the second problem is
obtained from S by deleting the row and the
column with the index m + i.

When reducing the dimension of the quadratic
form by one the number of positive eigenvalues
either reduces by one or remains unchanged. Con-
sider the inequality 7(s) < n — 1 in the condition
of Lemma 4. When eliminating one variable, the
number n — 1 on the right-hand side of the in-
equality decreases by one. The number 7 (s) either
decreases or remains unchanged. Thus, condition
of Lemma 4, which was satisfied for the initial
quadratic form, may be violated after reducing the

dimensions by one. Hence, together with verifying
the condition (a) of Lemma 3, there may arise
necessity to verify also condition (b) for some
vector (wg, ug) for which s(wp, ug) < 0.

On the other hand, suppose that this condition
was satisfied when testing positive definiteness
of the quadratic form s(w,w) in the set Q(M \
{i},{i}, @) or QM \ {i},@,{i}) by means of
Lemma 3. Then, this condition will also be sat-
isfied when verifying positive definiteness s(w,u)
in the original set 2.

Let us call the matrix S(Ny, N2) minimal if it has
only one nonpositive eigenvalue and all matrices
S(N1U{i}, N2) and S(Ny, NaU{i}), obtained from
S(N1, N3) deleting the row and the column with
any of indices ¢ or m + 4, are positive definite.

For every minimal matrix, one can find a nonzero
vector y of the corresponding dimension such that

y'S(N1, N2)y < 0;
i.e., there exists (w, ) such that

s(w,u)y <0,
ijOfOI“jENl, (6)
iy, = 0 for k € N».

The above discussion, together with inductive ap-
plication of Lemmas 3 and 4, lead to the following
result.

Theorem 2. Let the quadratic form s(w, u) be not
positive definite in the entire space R?™. Then,
s(w, u) is positive definite in the region 2 of form
(4) if and only if the following conditions hold:
(a) every matrix S(N, M \ N) is positive definite,
NCM,

(b) for every minimal matrix S(Ni,N3), the
corresponding vector (w,a) satisfying condition
(6) does not belong to the set Q(M \ (N U
N»), Ni, N»).

Remark 3. Condition (a) means positive definite-
ness of the quadratic form s(w,u) in the regions
Q(@, N, M \ N), which are subspaces w; = 0 for
i € N,u; =0 fori e M\ N. In other words,
this condition means positive definiteness of all
2™ m x m matrices obtained from S given by
(5) by deleting the rows and columns with indices
i€ Nand m+i fori € M\ N for all subsets
N C M. This is necessary for positive definiteness
of s(w,u) in the region ().

Remark 4. The case of positive definiteness of the
quadratic form s(w,u) is trivial. That is why
the matrix S is supposed to be not positive
definite. Together with condition (a), this means
the existence of minimal matrices.



Theorems 1 and 2 can be applied to the analysis
of the Lur’e systems to obtain the results reported
in (Rapoport, 1989), (Rapoport, 1996). Another
possible application is analysis of attainable sets
for linear control systems with several component-
wise bounded control inputs.

2. TWO GENERAL FORM CONSTRAINTS

Let m = 2. Consider conditions on the quadratic
forms g(z), p1 (z), p2(z) that guarantee losslesness
of the S-procedure. This problem has been studied
in (Polyak, 1998). We prove a closely related result
under less restrictive assumptions using a different
method. Namely, condition n > 3 is removed. Let
us denote

Qi = {z e R": pi(x) >0} for i =1,2.

Then, Q = Oy N Q,. For any subset X C R", let
T(X) denote the mapping R™ — R? defined by
the relations

T(X) ={(&n) € R*:
f = q(l‘)an = pl(.’E),VIL' € X}
The well-known Dines theorem (Yakubovich, 1977)
says that T'(R") is a convex cone. Losslessness
of the S-procedure for m = 1 follows from just

this fact. Let us study the set T'()), which is
obviously a closed cone.

Lemma 5. Let q(z) > 0 in the set @ = {z € R" :
p1(z) > 0,p2(x) > 0}. Then, the cone T'(22) \ {0}
is linearly connected.

Proof. Let y; = (&,m) € T(Q) \ {0} and
Y2 = (E2,m2) € T(Q) \ {0}. First, let us assume
that y1 # ay» for all real o and construct the
path y(7) € T'(22) \ {0}, where 7 € [0,1],y(0) =
y1,Y(1) = y2. The case of y; = ay, reduces to
the first case by choosing y3 such that y; # ays
and ys # ays. Then, we construct two paths g(7)
and g(7) connecting y; with y3 and ys with ys,
respectively.

Let z; € 0y \ {0} and 2z, € Q, \ {0} satisfy the
conditions y; = T'(z;), ¢ = 1,2. The vectors z;
satisfy the condition z; # fz2 because, otherwise,
y1 = B%y> which contradicts our assumption that
y1 # ays. Thus, the line z(7) = (1 — 7)x1 + T2
does not pass through the origin:

x(1) # 0 for 7 € [0,1].

Consider the function ps(2(7)), which is quadratic
with respect to 7 and satisfies the conditions
p2(x(0)) > 0 and p2(x(1)) > 0. The two following
cases are possible:

(1) p2(z(7)) > 0 for all T € [0, 1];

(2) there are two roots 7 and 7 such that
p2(x(7)) = 0, p2((7)) = 0, and pa(a(r)) < 0
for 7 € (7,7).

In the first case, z(1) € Oy \ {0} for all 7 €
[0, 1]. Moreover, T'(x(7)) # 0, because, otherwise,
q(z(7)) = 0,p1(x(7)) = 0,p2(x(7)) > 0 for some
7 € [0,1], which contradicts the assumptions of
the lemma. Thus, y(7) = T'(z(7)) € T(Q,) \ {0}
for all 7 € [0,1], which completes the proof of
the lemma for the first case. Consider the second
case. Let T = «(7). Then, p,(Z) = £+Z'Px = 0
and Lpy(x(7))|r=+ = & P2(x2 — 71) < 0. Further,

(1=7)2'Py(xy —71) = ' Py(22 — %) <0

since 7 < 1. Taking into account ' P, = 0, we
have
T Pyxs < 0. (7)

Let us denote

gz(T)z—m;_T

—(zy + Z) for T € |7, 1].

Then, the path Z(7) satisfies the conditions
Z(T) = —% and #(1) = z». Further,

d . 1

%P2($(T))|r:f T 1_7

and it follows from (7) and Z'P»Z = 0 that

(=)' Py(x2 + T),

L pa(@(1))]=r > 0.

Thus, the function p(#(7)) has no roots on the
segment (7,1). In other words, Z(7) € Q, for
T € (7,1). Let

Q(T):{x(ﬂ T €[0,7),

Z(r) Te(7,1].

Then, &(7) € Q. Further, it is continuous at the
point 7 = 7 because T'(&(7)) =T(z) = T(-2) =
T(&(7 + 0)). Thus, T(&(r)) € T(). Finally, it
can be proved that T(&(7)) € T(€) \ {0} in the
same way as it was proved in the first case. The
lemma is proved. B

Theorem 3. Let q(z) > 0 in Q. If there exist
real values A and p such that the quadratic form
Aq(z) 4+ pp (x) is positive definite or the quadratic
form Ag(z)+ pp2 () is positive definite, then there
exist 7 > 0 and 7 > 0 such that the quadratic
form

q(z) — ipr(x) — 2p2(7) (8)
is positive definite.

Proof. Let us assume that the quadratic form
Ag(x) + ppi(x) is positive definite. The case
Aq(x) + pp2(x) > 0 will follow from symmetry
of the problem setup. The condition Ag(z) +
up1(z) > 0 for  # 0 implies that T'(R") # R%. In
other words, the set T'(R™), which is a convex cone
by virtue of the Dines theorem, does not cover the
entire plane R?. Being a convex cone, it belongs
to some half plane of R2. However, T'();) C

T(R™) and, therefore, int(T()) C T'(R™). In the



two-dimensional case, the linearly connected set
int(T()) (by Lemma 5), which belongs to the
half plane of R2, is a convex set. Hence, the set
T(€) is a convex cone. Thus, the S-procedure is
lossless for this case, and there exists 71 > 0 such
that
q(x) — up1 (&) > 0 for o € Qs.

Applying the S-procedure that is lossless for the

case of single constraint p.(z) > 0, we finally
obtain positive definiteness of (8). W

3. THE CASE OF ONE GENERAL FORM
CONSTRAINT AND SEVERAL
CONSTRAINTS OF SPECIAL FORM

Let us consider the case of m+1 constraints, where
p1(z) is a general quadratic form and p;(z),i =
2,...,m ~+ 1 are presented in form (2). The con-
dition 2m < n is also assumed to hold. Following
the scheme of the previous section, let

Q={zecR":pi(x)>0,i=2,...,m+1}. (9)

Lemma 6. Let g(z) > 0 in the set Q = {x € R™:
pi(z) 2 0, ¢ = 1,...,m + 1 }. Then, the cone
T(Q) \ {0} is linearly connected.

Proof is similar to the proof of Lemma 5, but the
path connecting points x; and z, is constructed as
combination of two segments: [z, o] and [zg, z2],
where x # 0 satisfies the linear equations

(flzo) =0 and (gizo) =0, i =2,...,m+ 1.

Theorem 4. Let q(z) > 0 in Q. If there exist
real values A and p such that the quadratic form
Aq(z) + ppi(x) is positive definite, then there
exists 7 > 0 such that the quadratic form

q(z) = mp1(2) (10)

is positive definite in the region  of form (9).

Proof is similar to the proof of Theorem 4.

4. APPLICATION TO THE ANALYSIS OF
ABSOLUTE STABILITY OF LUR’E SYSTEMS

Consider the control system

& =Az + Bu + Dr,
y=C'z, z = E'z, (11)
ui(t) =pi(yi(t)), i=1,...,m,
where x € R"™ is state, u € R™ - control,
r € R? is disturbance, y € R™ and z € R'

are outputs. Matrices A, B,C,D, and E have
appropriate dimensions, and matrix A is Hurwitz.

Let b; be the ith column of the matrix B (¢;, d;,
and e; are defined similarly). Nonlinear functions
vi(y) satisfy the “sector-like” conditions

0 <ypily) <piy® yeR. (12)

Here, 0 < p; < 0o. Absolute stability of the closed
system (11),(12) means stability of the origin =z =
0 for all feedback functions ¢;(y) satisfying (12).

Disturbances r(-) are supposed absent in the abso-
lute stability problem setup. Therefore, we start
with the system (11) without variables r and z.
The well-known Lyapunov function

U
c;w
0

Viz) = %x’Pdﬁ + 291/ vi(y)dy, (13)

is used, where P is a positive definite matrix and
#; are scalars. The classical Popov criterion was
obtained for the case of m = 1: let the pair {4, b}
be controllable, the pair {A, ¢} be observable, and

1
Re(inWu(iw)+Wu(iw))+; >0, we (—o0,00),

(14)
where W, (iw) = ¢'(4 —iwl)™b, i = /—1, and
I is the identity matrix. Then, the system (11),
(12) is absolutely stable. It is well known that
the frequency inequality (14) holds if and only if
there exists Lyapunov function (13) with negative
definite derivative with respect to system (11),
(12):
av

Fra (Az + bu)' (P + Ocu) < 0.

These conditions are equivalent for m = 1. For
m > 1,

av _ (Az 4+ Bu)'(Pz + COu),  (15)

dt
where © = diag(f,,...,0,,). Condition % <0
leads to the problem described in the abstract,

where

q(z,u) = — (Az + Bu)'(Pz + COu)

pi(,u) =(ciw — p; tui)ug,
Application of the S-procedure gives only suffi-
cient conditions of existence of matrices P and
© that guarantee g¢(z,u) > 0 in the region
pi(x,u) > 0. The use of only sufficient conditions
leads to conservative criteria of absolute stability.
Necessary and sufficient conditions of existence
of the Lyapunov function (13) are obtained in
(Rapoport, 1989) and (Rapoport, 1996). Here,
these conditions are obtained in the form of feasi-
bility of LMI. Suppose that rank(C) = m. Then,
Theorem 1 takes the following form.

16
1=1,...,m. (16)

Theorem 5. Let rank(C) = m < n. Then,
g(z,u) > 0 in the region ) defined by the con-
ditions (cfz — u;lui)ui > 0,4 € M, if and only if
there exists a quadratic form s(w,u) (3) such that
the following conditions hold:



(a) ¢(z,u) — s(C'z — ptu,u) > 0 for (z,u) #0,
(b) s(w,u) > 0 for wsu; > 0,4 € M, (w,u) #0.

Let u = diag(u, ..., um). To check condition
(b) of Theorem 5, Theorem 2 is used. Condition
(a) of Theorem 2 requires positive definiteness of
all matrices S(Ny1,N2) for Ny N Ny = @, N; U
Ny = M. To check condition (b) of Theorem 2,
one needs to describe all minimal matrices. For
every ¢ € M and subsets Ny C M Ny, C M
satisfying the conditions
{i}UNl UNy, =M,
NiNN; =2, (17)
i ¢ Ni,i ¢ Ny
let us consider the matrix S(Ny, N2) and show
that, if condition (a) of Theorem 5 holds, then
this matrix is minimal. Indeed, S(Ny, Ny) is the
matrix of restriction of the quadratic form s(w, u)
onto the subspace w; = 0,5 € Ny, up =0,k € Ny.
Let (x,u) satisfy the conditions
o — ,uj_luj =0 for j € Ny,
ur = 0 for k € N».
For every N C M, denote
AN) = (A+ ) pibid)),
JEN

P(N) = (P+)_ p;bc;c}).
JEN

(18)

Then, it follows from condition (a) of Theorem 5
that

s(C'e — ptu,u)

< —(A(Nl)l‘ + biui)'(P(Nl)x + cﬂzuz)
All matrices A(N) are Hurwitzian. Adding the
condition

(19)

U; = ]-7 T = _A(Nl)_lbia (20)
to conditions (18), we find from (18)-(20) that
;=0 j € Ny,
Uy :17

o :,u,:lc;ca_: k € Ny,
1

w=C't — p'u,
s(w, ) <0,
’le =0 k € Nl,

from which it follows that the matrix S(Ny, N2) is
not positive definite. On the other hand, matrices
S(Ny U {i}, N3) and S(Ny, Na U {i}) are positive
definite by condition (a) of Theorem 2. Hence, the
matrix S(Ny, N»2) is minimal and, to guarantee
the fulfillment of condition (b) of Theorem 2, it is
sufficient to require that (w,a) ¢ Q({i}, N1, N2).
In other words, w;u; < 0 or

—cLA(Ny) 7 — it < 0. (21)

Let C(N) and B(NN) be matrices consisting of
columns c¢; and b; of the matrices C and B,

respectively, 7 € N C M. The diagonal matrix
1(N) is constructed similarly. By the Shur lemma,

—A B(Ny U {i})
det [cuvl U{i}) p(Ny U {z’})—l]

_ -4 B(M)
= det [O(Nn' H(Ny)!

(il 260 [5)+o7)

ST A B T e
= det [C(Nl): M(Nl)—l} (cLA(Ny) ™ b, +,:i ))
22

X

On the other hand,
-4 B(M) ]
C(Ny)' p(Ny)~!
= det(u(N1)™' + C(N1) A7 B(Ny))det(—A).

det [

Combining the last identity with (21) and (22),
we find that all the expressions

det(u(N)"* + C(N)' A 'B(N))

must have the same sign for all N C M. Thus, the
following theorem is proved.

Theorem 6. Let rank(C) = m < n. Then,
g(z,u) > 0 in the region ) defined by the con-
ditions (cjz — u;lui)ui > 0,4 € M, if and only if
there exists a quadratic form s(w, ) (3) such that
the following conditions hold:

(a) ¢(z,u) — s(C'w — p~tu,u) > 0 for (z,u) #0,
(b) every matrix S(N, M \ N) is positive definite
for N C M,

¢) all principal minors of the matrix u~'+C’A"'B
have the same sign.

The last theorem reduces the problem of existence
of the Lyapunov function (13) to the problem of
feasibility of the LMI.
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