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Abstract: The previously developed Predictive Pole Placement (PPP) controller is mod-
ified to give enhanced numerical and stability properties byembedding the method in
a linear-quadratic formulation to give a linear-quadraticPPP (LQPPP) controller. Input,
output and state constraints are considered using an natural quadratic programming (QP)
formulation of LQPPP. Illustrative examples are given.Copyright c©2005 IFAC.
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1. INTRODUCTION

Most approaches to model predictive control are de-
rived on the basis of discrete time models, but their
corresponding continuous counterpart is still in a rela-
tively immature state of development because of ob-
stacles in obtaining predictions and imposing con-
straints on the control variable. However, recent work
in the continuous-time context (Wang, 2001; Wang,
2004) shows that by using orthonormal functions (La-
guerre functions in particular) to describe the trajec-
tory of the control variable, these obstacles can be
readily overcome and continuous time predictive con-
trol can be solved in a similar framework to the cor-
responding discrete-time case. Importantly, because
of the parsimonious representation of the control tra-
jectory, the algorithm developed is computationally
efficient. Cannon and Kouvaritakis (2000) consider
quite general functions (including linear splines) to

represent deviations about the unconstrained optimal
control; Magni and Scattolini (2004) use a piecewise
constant set of functions.

Polynomial basis functions have been used in the lin-
ear context (Demircioglu and Gawthrop, 1991; Demir-
cioglu and Gawthrop, 1992) and in the nonlinear con-
text (Gawthropet al., 1998). Although polynomials
lead to a nice relationship (Gawthropet al., 1998) with
exact linearisation, they have the disadvantage that
they are unbounded. For this reason the use of basis
functions which are the initial condition response of
a stable linear time-invariant (LTI) system – theba-
sis generator – have been suggested. As shown by
Gawthrop and Ronco (2002) this leads, in the un-
constrained case, to a close relationship between the
closed-loop system and the basis generator; in partic-
ular, under mild conditions, they share the same poles



– hence the name predictive pole-placement control
(PPP).

The main motivation for predictive control in general
(and PPP in particular) is to handle constraints on
the system input, output and states. This is done by
embedding the unconstrained controller in a quadratic
optimisation which is then converted into a Quadratic
Programme (QP) to account for constraints. The real-
time solution of the QP is critical to real-time im-
plementation, particularly in the context of fast me-
chanical systems. As well as the choice of QP algo-
rithm, the conditioning of the QP is crucial in ob-
taining a fast and accurate solution. Unfortunately the
basic PPP algorithm doesnot give good conditioning
(Gawthrop, 2000); however the extended PPP algo-
rithm presented here, Linear-quadratic PPP (LQPPP),
has significantly better conditioning.

The key idea behind LQPPP is that (for linear SISO
systems) the solution of a steady-state linear-quadratic
regulator problem for a given system with a given set
of weighting matrices gives a unique set of closed-
loop poles. These closed-loop poles can then be used
to specify the basis generator and the original PPP
cost function is modified to include the LQ weighting
terms – thus the solution of the LQPPP (for the basis
function weights) is indeed that of the LQ problem.
In this paper, the resultant LQPPP controller is the
same as the PPP of Gawthrop and Ronco (2002), but
is embedded in the modified cost function. As will
be seen by example, this gives a significantly better
conditioned QP.

As discussed in more detail by Chen and Gawthrop
(2004), LQPPP incorporates a key idea of Rawlings
and Muske (1993): the LQ terminal weighting cor-
responds to the steady-state LQ solution. Because of
this, it turns out that unlike PPP, LQPPP has guaran-
teed stability properties; this is the subject of current
investigations (Chen and Gawthrop, 2004).

2. UNCONSTRAINED LQPPP

This section extends the unconstrained algorithm of
Gawthrop and Ronco (2002) to include input and ter-
minal state weighting thus embedding the PPP ap-
proach into an infinite horizon LQ optimisation. An
important advantage of the LQPPP approach is that
the lower time horizonτ1 = 0; this is not possible with
PPP (Gawthrop, 2000). The choice of basis generator
is then discussed.

The linear systems considered in this paper are de-
scribed by:















d
dt

x(t) = Ax(t)+Bu(t)

y(t) = Cx(t)

x(0) = x0

(1)

wherex ∈ ℜnx , y ∈ ℜny andu ∈ ℜnu . x0 is the system
initial condition. For simplicity, it is assumed hereafter
thatnu = ny = 1; the general case is discussed by Chen
and Gawthrop (2004). It is assumed that the pair[AB]
is controllable. Given the statex(t) at time t, we are
interested in the evolution of themoving horizon state
x?(t,τ) and outputy?(t,τ) where















d
dτ

x?(t,τ) = Ax?(t,τ)+Bu?(t,τ)

y?(t,τ) = Cx?(t,τ)
x?(t,0) = x?

0

(2)

The differential equations 1 and 2 are related by hav-
ing thesame state space matrices and by imposing the
cross-coupling conditions:

{

x?
0 = x(t)

u(t) = u?(t,0)
(3)

In this paper, themoving horizon control signalu?(t,τ)
is linearly parameterised by thenU components of the
column vectorU(t) so that:

u?(t,τ) = U?(τ)U(t) (4)

whereU?(τ) is a nU row vector of functions ofτ.
The components ofU?(τ) can be regarded as a set of
basis functions for the control signalu?(t,τ) and the
components ofU(t) the corresponding weights.

Because Equation 4 generates the moving-horizon
controlu?(t,τ) with no feedback fromx?(t,τ), it will
be referred to as anopen-loop control in the sequel.

Similarly, themoving horizon setpointw?(t,τ) is lin-
early parameterised by thenW components of the col-
umn vectorW (t) so that:

w?(t,τ) = W ?(τ)W (t) (5)

whereW ?(τ) is a ny × nW matrix of functions ofτ.
Typically the componentsW ?

i (τ) of W ?(τ) will be
constant:

W ?
i (τ) =

{

1 for tracking

0 for regulation
(6)

In a similar fashion to Equations 3 the actual setpoint
w(t) is the value of themoving horizon setpoint at
τ = 0:

w(t) = w?(t,0) (7)

The vectorU(t) is to be chosen to minimise (at a given
time t) the (unconstrained) quadratic cost function:

J(U(t),x(t),W (t)) =

1
2

Z τ2

τ1

(y?(t,τ)−w?(t,τ))T Q(y?(t,τ)−w?(t,τ))dτ

+
1
2

Z τ2

τ1

u?(t,τ)T Ru?(t,τ)dτ

+(x?(t,τ2)− xw(τ))T P(x?(t,τ2)− xw(τ)) (8)

whereQ ∈ ℜny×ny , R ∈ ℜ, P ∈ ℜnx×nx are positive
definite matrices weighting the system output, input
and terminal state respectively.xw(τ)∈ℜnx is the state



corresponding to the the steady-state solution of (2)
corresponding toy?(t,τ) = w(t). In the case of LQPPP,
τ1 = 0.

To streamline the notation:J(U(t),x(t),W (t)) will be
written asJ in the sequel.

The derivatives of this cost function are denoted by
JU = ∂J

∂U , JUU = ∂2J
∂U2 , JUx = ∂2J

∂U∂x and JUW = ∂2J
∂U∂W .

However, these subscripts donot imply derivatives
when attached to other symbols apart fromJ.

With this notation, Lemma 1 gives the solution of this
optimisation problem.

Lemma 1. (Explicit solution of unconstrained problem).
When the system (within the moving horizon) is given
by Equation 2, the cost functionJ has a global mini-
mum with respect toU(t) if JUU is not singular. The
corresponding minimisingU(t) is then given by:

U(t) = KwW (t)−Kxx(t) (9)

where
Kw = J−1

UU JUW , Kx = J−1
UU JUx (10)

and the derivatives are given by

JUU =
Z τ2

τ1

y?
U (τ)T Qy?

U (τ)dτ

+
Z τ2

τ1

U?(τ)T RU?(τ)dτ

+ x?
U (τ2)

T Px?
U (τ2) (11)

JUx =
Z τ2

τ1

y?
U (τ)T Qy?

x(τ)dτ

+ x?
U (τ2)

T Px?
x(τ2) (12)

JUW =
Z τ2

τ1

y?
U (τ)T QW ?(τ)dτ (13)

where theith columny?
Ui(τ) of y?

U (τ) is the solution of
the ode:















d
dτ

x?
Ui(τ) = Ax?

Ui(τ)+BU?
i (τ)

y?
Ui(τ) = Cx?

Ui(τ)
x?

Ui(0) = 0nx

(14)

where 0nx is a column vector with all of itsnx elements
zero andU?

i (τ) is the basis function forming theith
element of the matrixU?(τ).

Similarly theith columny?
xi(τ) of y?

x(τ) is the solution
of the ordinary differential equation1 :















d
dτ

x?
xi(τ) = Ax?

xi(τ)

y?
xi(τ) = Cx?

xi(τ)
x?

x(0) = 1i

(15)

where 1i is a column vector with all of itsnx elements
zero except for theith which is unity.

Remark 1. The condition number of the matrixJUU

is crucial for determining the numerical accuracy of
(10).

1 The corresponding equation (15) of (Gawthrop and Ronco, 2002)
is incorrect

PROOF. The corresponding proof in Gawthrop and
Ronco (2002) can be readily modified to include the
terms containingR andP. 2

As discussed by Gawthrop and Ronco (2002), the
closed-loop control is given by

u(t) = kww(t)− kxx(t) (16)

where:
kx = U?(0)Kx, kw = U?(0)Kw (17)

andw(t) is given by Equation 7.

2.1 Basis generator

In the SISO case, it is convenient to choose the follow-
ing special form ofU?(τ):

U?(τ) = Ũ?(τ)T (18)

WhereŨ?(τ) ∈ ℜnU is generated as the state of the
basis generator







d
dτ

Ũ?(τ) = AuŨ?(τ)

Ũ?(0) = Ũ?
0

(19)

Note that Equation 19 has the explicit solution:

Ũ?(τ) = eAuτŨ?
0 (20)

In this particular case the open-loop controlu?(t,τ) of
Equation 4 can be rearranged as:

u?(t,τ) = U?(τ)U(t) = Ũ(t)Ũ?(τ) (21)

In the case of PPP,Au is chosen to give the desired
(unconstrained) closed-poles, the eigenvalues ofAu;
in the case of LQPPPAu is chosen as follows:

(1) Q and R are chosen, andP is computed as the
unique positive definite solution of the Algebraic
Riccati Equation (ARE):

AT P+PA−PBR−1BT P+CT QC = 0 (22)

together with the corresponding closed-loop sys-
tem poles and state-feedback gainklq.

(2) Au is chosen to have the eigenvalues correspond-
ing to the closed loop poles from step 1. This
choice ofAu is not unique, here we use

Au = A−Bklq (23)

3. CONSTRAINED PPP

A major reason for using predictive control is the
possibility of including input, output and state con-
straints within the optimisation procedure. For the
usual discrete-time predictive control, it is known that
it is possible to formulate such constraints, together
with the optimisation, as a Quadratic Programme
(QP).



For the continuous-time PPP algorithm of this paper
to be useful, it is important that such constraints can
be included in a similar fashion. The purpose of this
section is to show that it is indeed possible to embed
linear PPP together with input, output and state con-
straints in a QP. The result is contained in Lemma 2.

Lemma 2. (Constrained optimisation). Consider the PPP
algorithm where the input functionsU?(τ) are given
by (19). Then givenncu input inequality constraints
ū?(t,τuk) at thencu timesτuk of the form:

u?(t,τuk) ≤ ū?(t,τuk) (24)

and thency output inequality constraints ¯y?(t,τyk) at
thency timesτyk of the form:

y?(t,τyk) ≤ ȳ?(t,τyk) (25)

the minimisation of the cost functionJ of Equation 8
subject to the constraints 24 and 25 is equivalent to the
solution of the QP:

min
U(t)

{

1
2

UT (t)JUUU(t)+UT (t)(JUxx(t)− JUWW (t))

}

(26)
subject toΓU(t) ≥ γ where JUU , JUx and JUW are
given by Equations 11–13 and

Γ =

(

Γu

Γy

)

, γ =

(

γu

γy

)

(27)

where

Γu =









U?(τu1)
U?(τu2)

. . .

U?(τncu)









; γu =









ū?(t,τu1)
ū?(t,τu2)

. . .

ū?(t,τuncu)









(28)

and

Γy =









y?
U (τy1)

y?
U (τy2)
. . .

y?
U (τncy)









(29)

γy =









ȳ?(t,τy1)− y?
x(τy1)x(t)

ȳ?(t,τy2)− y?
x(τy2)x(t)

. . .

ȳ?(t,τyncy)− y?
x(τncy)x(t)









(30)

PROOF. The cost functionJ of Equation 8 can be
rewritten as:

J = JQP + J0(x(t),W (t)) (31)

where

JQP =
1
2

UT (t)JUUU(t)

+UT (t)(JUxx(t)− JUWW (t)) (32)

andJUU , JUx, JUW andJ0(x(t),W (t)) are all indepen-
dent ofU . Hence theU(t) which minimisesJQP is the
same as that which minimisesJ.

Equation 28 follows from Equation 4 and Equation 29
follows from the fact that the system of Equation 2 is
linear, and so that the solution can be rewritten as:

y?(t,τ) = y?
U (τ)U(t)+ y?

x(τ)x(t) (33)

2

Remark 2. As in remark 1, it is clear that the condition
number ofJUU is crucial to the numerical properties of
the QP.

Remark 3. JUU , JUx, JUW , u?(t,τ) and y?
U (τ) are in-

dependent ofU(t), x(t) andW (t) and can therefore
be precomputed.Γu can be precomputed; whereasΓy

depends on the statex(t) and so has to be computed
online.

Remark 4. When no constraints are present, the QP
has the same solution as given in Lemma 1. Thus the
simple linear solution of Equation 9 provides a good
starting point for the QP.

Remark 5. The simplest constraints are those on the
input at τ = 0. For example, constrainingumin ≤

u?(t,0) ≤ umax maps into

Γ =

(

1
−1

)

U?(0), γ =

(

umax

umin

)

(34)

4. EXAMPLES

The following two examples illustrate the superior
numerical properties of LQPPP when compared with
PPP. In particular, the parameterη defined as:

η = log10cond(JUU ) (35)

where cond(JUU ) is the condition number of the sym-
metric matrixJUU of (11), is a measure of the numer-
ical properties the LQPPP algorithm.

4.1 Unconstrained control of 4 integrators

This section uses the system:

y =
1
s4 u (36)

to illustrate the comparative properties of PPP and
LQPPP. The LQ weighting matrices are:Q = 1 and
R = 0.12.

Table 1. State-feedback gains &η (35)

Method k1 k2 k3 k4 η
1 10.00 14.69 10.80 4.65 -
2 5.65 8.16 7.24 4.08 15.08
3 9.99 14.68 10.79 4.64 7.58
4 14.98 21.42 14.71 5.62 7.40

Table 1 gives the state-feedback gains for four cases

(1) steady-state LQ solution (which gives closed-
loop poles ats = −0.68052± j1.64292 ands =
−1.64292± j0.68052),

(2) PPP with the basis function generator (19) hav-
ing Au given by (23) and with eigenvalues corre-
sponding to item 1,τ1 = 9 andτ2 = 10,
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Fig. 1. Open-loop responses: LQPPP, LQPPP without
terminal constraint, PPP

(3) LQPPP with the sameAu as item 2,τ1 = 0 and
τ2 = 10 and

(4) as the LQPPP of item 3 butwithout the terminal
weightP.

The gains for LQ and LQPPP are nearly the same; but
the gains for PPP are quite different – this is due to the
poor numerical conditioning consequent on the high
condition number. The gains for the final case differ
from LQ as theτ2 is small enough for the terminal
weightP to be significant.

In addition, the table showsη (35). Notice that LQPPP
has a condition number about eight orders of magni-
tude better than that corresponding to PPP. In fact, the
condition number for the final case is also small; thus
the improvement in condition number is due to setting
τ1 = 0 in (8).

Figure 1 shows the open loop responsey?(t,τ) (2) for
the latter three cases. The PPP control correctly sets
the outputy = 1 at t = 10 but diverges thereafter, the
LQPPP control withoutP is unstable but the LQPPP
open-loop control is stable.

4.2 Constrained-output control of non-minimum phase
system

This example illustrates the use of output constraints
to reduce the “backwards” response of a non-minimum
phase system. It uses the stable, non-minimum phase
system given by

G(s) =
1−0.5s
(s+1)3 (37)

A state-space representation is:

A =





−3 −3 −1
1 0 0
0 1 0



 ;B =





1
0
0



 ;C =
(

0 −0.5 1
)

(38)
The controller is designed with constant setpoint
W ?(τ) = 1 and usingQ = 1 andR = 0.12. This gives
the terminal weighting
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Fig. 2. Constrained & unconstrained output control

P =





0.10880 0.35008 0.30902
0.35008 1.21997 1.17034
0.30902 1.17034 2.20985



 (39)

and basis generation matrixAu (19)

Au =





−3.43520−4.40031−2.23607
1 0 0
0 1 0



 (40)

To limit the negative-going portion of the step re-
sponse, the output constraints were set to be:

y?(t,τ) > −0.02 :τ = 0.1,0.2, . . . ,1 (41)

Three simulations were performed: LQPPP with and
without the constraint (41) and PPP with the constraint
(41). Figures 2(a) and 2(b) show the system outputy(t)
and inputu(t) response to a unit step setpoint whilst
using LQPPP; for comparison, the unconstrained sig-
nals are shown dashed. It can be seen that the con-
strained response has decreased undershoot at the ex-
pense of a slower response. The control signal has a
correspondingly complex shape. It is not possible to
have zero undershoot with this process whilst actually
reaching the setpoint.
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Fig. 3. LQPPP & PPP constrained output control

Figures 3(a) and 3(b) show the system outputy(t)
and inputu(t) response to a unit step setpoint when
PPP is used, for comparison, the LQPPP result is
shown with dashed lines. Many error messages were
generated during the PPP simulation indicating that
the no converging solution was found for the QP; this
is reflected in the “spiky” form of the control signal;
even when convergence occurred, it took about twice
as many iterations as in the LQPPP case. Table 2

Table 2. Condition number

Method PPP LQPPP
η 8.0 2.1

showsη (35) for each method. The condition number
for LQPPP is about 6 orders of magnitude less than
that for the PPP method – this is the reason for the
improved behaviour of the QP algorithm for LQPPP
compared with PPP.

5. CONCLUSION

The continuous-time pole-placement predictive con-
trol algorithm has been extended to include input and

output constraints. A modified version (LQPPP) of the
original algorithm (PPP) has been shown by example
to have much improved numerical properties leading
to faster and more reliable QP solution. Future work
will involve choosing poles and using inverse optimal
control (Kalman, 1964) to find the weights.
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