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Abstract: This paper employs a concept of partial derivative called Pseudo-Partial-
Derivative (PPD) to dynamically linearize nonlinear system, and the aggregation method 
is applied to deal with the future predictive PPD, then adaptive predictive functional 
control algorithm of nonlinear system is presented. The design demands low requirement 
for the model, which is based directly on PPD derived online from the input output data, 
and the given algorithm can also provide the bounded input output sequence and track 
setpoint without steady-state error. Simulations for the time-delay process and the pH 
neutralization experiment of the chemical reaction process show that the proposed 
method is efficient for the system parameters perturbation and external disturbance. 
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1.  INTRODUCTION 

 
The area of nonlinear systems control has been 
swarmed by researches in the past few years. This is 
motivated by the fact that the nonlinear systems are 
difficult to control. Usually a discrete SISO nonlinear 
system can be described by the following equation 
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where yn and un are the orders of the outputs Py  and 
the inputs u , respectively, f  denotes a nonlinear 
mapping function. 
 
There are many literatures researching the different 
nonlinear control algorithms on the basis of special 
models such as Hammerstein model (Fruzzetti, et al., 
1997), Wiener model (Norquay, et al., 1999), 
bilinear model (Daniel-Berhe and Unbehauzn, 1998) 
for the nonlinear systems, which has greatly push 
ahead the development of the nonlinear systems 
research. However it is difficult to find an 
appropriate nonlinear model f  to describe actual 
processes. At the same time, a nonlinear optimization 
problem is rarely convex which also makes the 
online computation very difficult. Therefore 
researchers turn to neural networks (Zhang, 1999) 
which can satisfactorily map the bounded nonlinear 
function, however there also exist difficulty in 
realizing the rapid, reliable solution of the control 
algorithm in real time. Note that tons of data exist in 
the process control, a model-free learning adaptive 
algorithm is proposed by Hou and Huang (1997) 
based on the input and output information of the 
system only, where a new concept of partial 

derivative called pseudo partial derivative (PPD) is 
used to linearize the nonlinear systems online. The 
same idea is applied to give an adaptive-predictive PI 
controller (Tan et al., 1999). 
 
Predictive functional control (PFC) (Richalet, 1993; 
Ernst et al., 1996; Zhang, 2000) is a new model 
predictive control. It is such an algorithm that 
achieves computational simplicity by using simpler 
but more intuitive design guidelines (Rossiter and 
Richalet, 2002) and has achieved wide success in 
industrial applications. The advantages of less 
calculation on line, simpler algorithm and higher 
control precision can also be observed in PFC. In this 
paper, a pseudo partial derivative (PPD) concept is 
initially introduced to dynamically linearize 
nonlinear system, the PPD re-linearized the nonlinear 
model as the plant moves from one operating point to 
another, and to use the latest linear model as the 
internal model at each step, as a result a QP problem 
is the one requiring solution at each step, although 
the model varies from time to time. A method of the 
aggregation is adopted for dealing with the future 
value of PPD. Then PFC technique is used to design 
the nonlinear adaptive controller. The resulting 
controller has simpler structure and the tuning is 
easier, the proposed algorithm can provide the 
bounded inputs outputs sequences and track the 
setpoint without steady-state error. At last, 
simulations for the time delay process and 
experiment for the measurement of the acidity or 
alkalinity of the chemical reaction process show that 
the proposed algorithm has high precision and better 
robustness for the parameters perturbation. 
 
 



 

     

2. NONLINEAR ADAPTATIVE FUNCTIONAL 
CONTROL ALGORITHM 

 
 
2.1 The dynamic linearized internal model. 
 
For the nonlinear system (1), the following two 
assumptions are given. 
 
Assumption 1 (A1): The partial derivative of ( )f •  
with respect to control input ( )u k is continuous. 
Assumption 2 (A2): The system is generalized 
Lipschitz, that is, satisfying | ( 1) | ( ) |Py k C u k∆ + ≤ ∆ , 
for k∀ and ( ) 0u k∆ ≠ ,where 

( 1) ( 1) ( )P P Py k y k y k∆ + = + − , 
( ) ( ) ( 1)u k u k u k∆ = − − , C  is a constant. 

 
By the above assumptions, the following result can 
be obtained. 
Theorem 1 (Hou and Huang, 1997) For the 
nonlinear system (1), we assume that (A1) and (A2) 
hold. Then there must exsit ( )G k , called pseudo-
partial-derivative (PPD), when ( ) 0u k∆ ≠ , it can 
derive  

( 1) ( ) ( )Py k G k u k∆ + = ∆                           (2) 
where  

| ( ) |G k C≤                                    (3) 
With Theorem 1, equation (2) can be served as an 
internal model to predict future process output. 

ˆ( 1) ( ) ( ) ( )y k y k G k u k+ = + ∆                 (4) 
where  
                                ˆ| ( ) |G k C≤                                (5) 

( )y k  is the model output, ˆ ( )G k  is an estimate of 
( )G k . 

 
 
2.2 Predictive output and structured control 

variables. 
 
Using (4), at sampling time ik H+  inside the 
optimization horizon, the output can be predicted by 
the following equation  
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Predictive functional control is different from other 
model predictive controls. Instead of calculating 
control signal without restrictions, which may result 
in a wild control signal, PFC adopts structured future 
manipulated variables, it considers that the future 
manipulated variables are parameterized by Bn  base 
functions Bju  previously known.  

1
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where ( )( [1, ])j Bk j nµ ∈  are the unknown coefficients.  
 
The choice of the base functions is driven by the 
character of the setpoint and the process, it is usually 
selected as polynomial, sine and exponential. For 

many applications it is sufficient to describe process 
input with the form of 1 2( ) ( ) ( )u k i k k iµ µ+ = + , thus 
we have 

2( 1) ( 2) ( ) ( )i iu k H u k H u k kµ∆ + − = ∆ + − = ∆ =… (8) 
Substitute (8) into (6), it is derived that 
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2.3 Optimization and control law equation. 
 
PFC computes future process input so that the 
predicted process output can follow the reference 
trajectory. For many applications description of the 
first-order exponential reference trajectory is 
sufficient 

( ) ( ) ( ( ) ( ))i
ref Py k i w k i w k y kη+ = + − −       (10) 

where exp( / )s refT Tη = − , refT  is the desired response 
time of the closed loop system, Py  is the process 
output, w  is the setpoint. 
 
PFC algorithm adopts an online optimizing method. 
A quadratic performance index may be adopted, 
process inputs are calculated by minimizing the sum 
of the quadratic difference between the predicted 
process output and reference trajectory at all 
coincidence points. The criterion takes the following 
form 
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where r  is a weighting efficient, and ( )e k i+  is the 
future error which can be given by 

( ) ( ) ( ) ( )Pe k i e k y k y k+ = = − . 
 
Substitute (9) into (11), the calculation of the process 
input ( )u k∆  is easy if ˆ ( )G k i+  is known. Note that 

for k∀ , ˆ| ( ) |G k C< , it is required that PPD should 
be bounded. Hereafter the idea of aggregation is 
adopted. 
 

Assume ˆ ( )G k λ= , then 1ˆ ( ) iG k i λ ++ = , where λ  is 
an unknown coefficient which must satisfy the 
constraint of (5). Since ˆ ( )G k  is bounded, we can 

choose 0 1λ< < so that ˆ ( )G k i+  can automatically 
meet the requirement of the constraint of (5). 
However, the constraint for ˆ ( )G k  may cause wild 
overshoot of ( )u k , thus a weight of the control input 

( )u k  is introduced in the index (11). 
 
Under the above assumptions, 1 ( )kµ  and 2 ( )kµ are 
unknown coefficients in index (11), which requires 
that at least two coincidence points 1H  and 2H  
should be selected. Then the index (11) is rewritten 
as 
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Substitute (9) and  (10) into (11), let 

1

0
( )
PJ
kµ

∂
=

∂
,

2

0
( )
PJ
kµ

∂
=

∂
                         (13) 

Manipulated variable can be obtained by solving (13) 
1 1 2 2

2 2 2 2
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where ( ) ( ) ( )i ref iA y k H y k e k= + − − ,
1

ˆ ( )
iH
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i

j
S G k

=
=∑ , 

1, 2i = . 
 

Subject to equation (4), online searching ˆ ( )G k  is 
required. With equation (2), many algorithms to 
estimate ˆ ( )G k  can be obtained, here the following 

convergent adaptive algorithm of ˆ ( )G k  is adopted 
(Hou and Huang, 1997). 

2

ˆ ˆ( ) ( 1)
( 1) ˆ( ( ) ( 1) ( 1))

( 1) P

G k G k
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    (15) 

where 0 1γ< < , and the initial value λ  of ˆ (0)G  can 
be taken in range of [0,1] . 
  
Explicit control input constraints is not directly 
handled in this paper, when input and/or state –
related constraints need to be considered, the 
technique proposed by Abu el Ata-Doss (1991) can 
be adopted. 
 

 
 

3.  PERFORMANCE ANALYSIS 
 
It is known that the stability is key to the designed 
control system. In order to prove the convergence of 
the closed loop system, the following assumption is 
given. 
Assumption 3 (A3): The PPD satisfies ( ) 0G k ≥ for 

k∀ , and ( ) 0G k =  exists only at finite instant k . 
 
Theorem 2 Subject to Assumption (A1, A2, A3), the 
algorithm (14) for the nonlinear system (1) is applied 
to track the setpoint w , then 1H  and 2H  exist so 
that 

lim( ( 1) ) 0Pk
y k w

→∞
+ − =                         (16) 

and { ( )},{ ( )}Py k u k  are the bounded sequences. 
 
Proof: For tracking constant setpoint signal, the error 
between output Py  and constant setpoint w  

( 1) | ( 1) |PE k y k w+ = + −  
| ( ) ( ) ( ) | 1 ( )Py k w G k u k E kρ= − + ∆ ≤ −         (17) 

where 
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From Assumption 3, ( ) ( 1, 2) 0iG k S i = > . It is easy to 

tell that 2 2

1 1
( 1) ( ( 1))

M M

j j
M j j

= =
− > −∑ ∑ and 

0 (1 ) 1iHη< − < , then ( 1,2)iH i =  exist making 
2 ( )(1 ) ( 1,2)iH

i iS G k S iη> − = , that is to say 
0 1 1ρ< − < . 
 
By (17) naturally the result of (16) holds.  
Moreover from (14)  we know 

( ) ( )
( )

u k E k
G k

ρ∆ =                        (18) 

Then 
       | ( ) | ( )u k bE k∆ ≤                            (19) 

where max /b ρ λ= ,and maxρ  is the upper bound of 
ρ . 

 
Apply the triangular inequality property to (8), the 
following relationship exists 

| ( ) | | ( ) (1) | | (1) |
| ( ) | | ( 1) | | (2) | | (1) |
u k u k u u

u k u k u u
≤ − + ≤

∆ + ∆ − + + ∆ +
…

…
   (20) 

Thus { ( )},{ ( )}Py k u k  are bounded sequences.    , 
 

Note that the parameter estimation of ˆ ( )G k  is 
convergent, the tuning parameters in the controller 
(14) are only coincidence point 1 2,H H , input 
horizon M and reference trajectory time refT , and the 
design method has no requirement on the structure of 
the plant, therefore the control system has strong 
robustness. 
 
 

4.  SIMULATIONS 
 
The following process with large time delay and pH 
measuring of the acidity or alkalinity process are 
adopted to show the effectiveness of the proposed 
method. 
 
(1) Consider the process with large time delay  

15
3

1( )
( 1)

sP s e
s

−=
+

 

The controller parameters in this paper are hereby 
assigned 1 18H = , 2 22H = , ˆ (0) 0.99G = , 

5M = , 1sT = , 1rT = , 0.98γ = , 40r = . The method 
of Astrom-Hagglund PI tuning is applied to make 
comparison with the method proposed in this paper. 
With Astrom-Hagglund PI tuning method (Astrom 
and Hagglund, 1991), the controller is derived 
by ( ) 0.2115 0.0286 /cG s s= + , and a load disturbance 
with magnitude 0.2 is introduced at 250t = . The 
step responses of the closed loop control system are 
shown in Fig.1, it indicates that the proposed method 
exhibits superior performance over the method of 
Astrom-Hagglund’s. 
 



 

     

 
 
Fig. 1. Step responses of the closed loop (Proposed 

method, solid line; A-H method, dotted line). 
 
(2) Consider the chemical reaction dealing with the 
measurement of the acidity or alkalinity, where pH is 
an important parameter. Generally a pH 
neutralization experiment can be expressed by the 
following equation (Zhang, 1999). 

1

2 3
1

( ) ( ( ))
( ) (1.207 ) ( ) 1.15 ( )

x z f u z
u z r u z u z

=

= − + +
 

2 3 4
2 3

1 2
4

( )( )
( )

(0.0185 ) (0.0173 ) 0.00248
1 (1.558 ) 0.597

y zG z
x z

r z r z z
r z z

− − −

− −

= =

+ + + +
− + +

 

where 1r , 2r , 3r , 4r are  time-varying parameters of the 
process with their initial value being set zero. Select 
the initial value of PPD with ˆ (0) 0.91G = , 
coincidence point 1 1H = , 2 18H = , and input 
horizon 6M = , sampling time 1sT = , the desired 
time of the closed loop 1rT = , and 0.95γ = , 50r = . 
The step responses for tracking different setpoints 
are given in Fig. 2, which shows that the proposed 
method can achieve excellent control performance. 
Next, the disturbance with magnitude 0.2 is added on 
the output at the time 250t = , the controller 
parameters stay the same as that of the Fig. 2, the 
step response given in Fig. 3 shows that the control 
system can eliminate the external disturbance.  
 

 
Fig. 2. Output (top) and input (bottom) of the closed-

loop step responses for tracking the different 
setpoint 

 
Consider the case that process parameters 
perturbation occur at different times 

1 2200( 0.1, 0.01)t r r= = = and 400t =  ( 3 0.001r = , 

4 0.008r = −  ), respectively. In this case, the process 
parameters perturbation has already become very 
violent. The step response is given in Fig.4, where 
the controller stays the same as previous simulations. 
It is shown that the design algorithm has strong 
robustness for the parameters perturbation. 
 

 
 
Fig. 3. Step response with disturbance of the closed-

loop system. 
 

 
Fig. 4. Step response of the closed-loop with time 

varying parameters. 
 
 

5. CONCLUSIONS 
 
A novel concept so called PPD is used to 
dynamically linearize nonlinear process, an idea of 
aggregation is adopted to deal with future PPD, then 
the adopted predictive functional control of nonlinear 
process is implemented. A theorem, which illustrates 
that a specifically designed control system can track 
the setpoint with zero error and the inputs and 
outputs sequences are bounded, is derived in this 
paper. What’s more, the design method requires 
neither the structure of the plant nor any external  
testing signal. All the results in this paper can be 
extended easily to the MIMO nonlinear processes. 
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