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Abstract: The predictive model is built according to the characteristics of the impulse 
response of integrating process. In order to eliminate the permanent offset between the 
setpoint and the process output in the presence of the load disturbance, a novel error 
compensation method is proposed. Then predictive functional control of integrating 
process is designed. The method given generates a simple control structure, which can 
significantly reduce online calculation. Moreover, the tuning of the controller is fairly 
straightforward. Simulation results indicate that the designed control system is relatively 
robust to the parameters variation of the process. Copyright © 2005 IFAC 
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1. INTRODUCTION  
 
There are some process control systems where the 
dynamics contain integration or very long time 
constants. Noteworthy in the integrating processes is 
the poles at the original point which characterize 
open loop instability, which indicates that a bounded 
input will lead to unbounded output and, hence, 
saturation. The combined effects of poles at the 
original point and the time delay make the design 
task very difficult (Zhang, et al., 1999). 
 
For the predictive control, the appropriate model 
selection is helpful for the controller design. It is well 
known that non-parameter model plays an important 
role to model process behaviour, such as step 
response model and impulse response model are 
adopted in Dynamic Matrix Control (DMC) (Cutler 
and Ramaker, 1980) and Model Algorithm Control  
(MAC) (Rouhani and Mehra, 1982), respectively, 
which have contributed largely to the development of 
model predictive control. Zhang (2001) presented a 
predictive control algorithm of integrating process 
based on step response model. However impulse 
response can be obtained easily for integrating 
process, which is shown in Fig. 1, where is  are the 
coefficients of open loop impulse response at 
sampling time i . Note that is  keep the value of Ns at 
certain time i N> , thus it is easy to construct 
integrating process model with impulse response. 
 
Predictive functional control (PFC) (Richalet, 1993; 
Ernst et al., 1996) is a new model predictive control, 
it is one such algorithm which achieves 
computational simplicity by using simpler but more 
intuitive design guidelines (Rossiter and Richalet, 

2002). PFC has the following advantages: less 
calculation on line, simpler algorithm and higher 
control precision. These merits make it achieve wide 
success in industrial applications. In this paper, PFC 
approach is applied for integrating process control, 
the controller design is based on the impulse 
response model and a novel error compensation 
method is introduced to eliminate the permanent 
offset between the setpoint and the process output, 
which is also contributed to improve the disturbance 
rejection. Simulations are given to validate the 
effectiveness and robustness of the proposed 
algorithm. 
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Fig. 1. Open loop impulse response of integrating 

process. 
 

2. PREDICTIVE FUNCTIONAL CONTROL OF  
INTEGRATING PROCESS BASED ON 

IMPLUSE RESPONSE 
 
 
PFC belongs to the classical family of Model Based 
Predictive Control since it contains the following 
four basic generic principles: 
 

…



 

     

.Internal model: used for prediction 

.Reference trajectory: to specify the property of the 
closed loop system 
.Structured manipulated variable and controller 
algorithm 
.Model error compensation to take into account 
prediction error 
 
 
2.1 Internal model. 
 
For PFC algorithm, any type of model can be used. 
Assume a linear, single pole at the original point, 
SISO integrating process with finite gain, described 
by an infinite impulse response model 
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where d  satisfies d sT dT= , and dT is a time delay of 
integrating process, sT  is the sampling time. Note 
that is keep the value of Ns at certain time i N> . 
Therefore 
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Above equation can be transformed into the Z  
domain to give the following equation 
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By the transformation of (3), the impulse response 
model of integrating process is presented with the 
following form 
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where 0 0s = . 
 
 
2.2 Reference trajectory. 
 
Reference trajectory specifies the dynamic path over 
the predictive horizon [0, ]iH  in the future time that 
process output has to rally the setpoint. PFC 
computes future process input such that the predicted 
process output follows the reference trajectory. 
Therefore, the reference trajectory specifies the 
property of the closed loop system. For many 
applications it is sufficient to describe it by the first-
order exponential reference trajectory 

( ) ( ) ( ( ) ( ))i
ref py k i w k i w k y kλ+ = + − −          (5) 

where exp( / )s refT Tλ = − , refT  is the desired 
response time of the closed loop system, py  is the 
process output, w  is the setpoint. 
 
 
2.3 Predicted output and structured manipulated 

variable. 
 
PFC considers that prediction ( )my k i+  made by the 
internal model can be divided into two components 
(Ernst et al., 1996 ): 

( ) ( ) ( )m fr foy k i y k i y k i+ = + + +             (6) 

.Free response ( )fry k i+  is the model response 
assuming  ( ) 0 ( 0)u k i i+ = ≥ , therefore it depends 
on the past manipulated variables and actual model 
output ( )my k . 
.Forced response ( )foy k i+  is the model output 
depending on the set of future manipulated variables 

( ) ( 0)u k i i+ ≥ . 
 
PFC is different from other model predictive control 
algorithms. Instead of calculating control signal 
without restrictions, which may result in a wild 
control signal, PFC adopts structured future 
manipulated variables, which considers that the 
future manipulated variables are parameterized by 

Bn  prior known base functions Bju . 
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Each base function Bju  induces a base output ( )Bjy i  
known by predictive model in advance. The forced 
response can be expressed as a linear combination of 
the function ( )Bjy i  
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where ( ) , [1, ]j Bk j nµ ∈  are the unknown 
coefficients. The selection of the base functions is 
driven by the nature of the setpoint, it is usually 
selected as polynomial, sine and exponential. 
 
Using (4), at sampling time ik H+  inside the 
optimization horizon, the output can be predicted by 
the following equation 
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2.4 Model error compensation. 
 
PFC is a closed loop control algorithm. In practical, 
model predictive output always differs from the 
actual process output due to model mismatch and 
disturbance influence. There are several methods to 



 

     

eliminate the permanent offset by compensating the 
reference trajectory with predictive error between 
model output and process output at each time instant 
of the coincidence horizon. For PFC algorithm of the 
stable process, a flat prediction of the error ( )e k i+  
is usually adopted, that is 

( ) ( ) ( ) ( )p me k i e k y k y k+ = = − . However for 
integrating process the method of flat prediction of 
the error compensation may cause a non-zero steady-
state error in the presence of the load disturbance. 
Here a novel error compensation method is proposed, 
which can eliminate the steady-state error caused by 
load disturbance, it follows: 

( ) ( ) [ ( ) ( 1)]e k i e k i e k e k+ = + − −           (12) 
 
 
2.5 Optimization calculation. 
 
PFC algorithm adopts an online optimizing method. 
A quadratic performance index may be adopted, 

iHU  
is calculated by minimizing the sum of the quadratic 
difference between the predicted process output and 
reference trajectory at all coincidence points. The 
criterion takes the following form 
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Substituting (9) and (12) into (13), the unknown 
parameters are ( )( 1,2, , )j Bk j nµ = " , thus online 
computation can be reduced significantly. Then the 
future manipulated variables ( )u k i+  can be derived 
according to (7). However only the first term ( )u k  is 
effectively applied for the control. 
 
 
2.6 The control law equation. 
 
While the value of changing rate for the setpoint is 
less than or equal to θ , only one base function, that 
is 1Bju = , can be adopted for constructing 
manipulated variables. 
 

By (7) we obtain  

1( ) ( ) ( ) 1, , 1ik u k j u k j Hµ = + = = −"        (14) 
Substituting (14) into (13), the only unknown 
parameter is 1 ( )kµ , then 1 2H H H= =  may be 
chosen to calculate ( )u k . Let 
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The optimal manipulated variable is obtained by 
solving (15) 
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(16) 
where 1( )refy k H+  is shown in (5), I  is an unit row 
vector. 
 

While the value of changing rate for the setpoint is 
greater than θ , that is a ramp tracking, two base 
functions may be selected to construct manipulated 
variables, which are step response function and ramp 
function shown as follows 

1 2( ) ( ) ( ) 0,1 , 1iu k j k k j j Hµ µ+ = + = −"  (17) 
where 1 ( )kµ  and 2 ( )kµ are unknown coefficients. In 
order to obtain the coefficients 1 ( )kµ  and 2 ( )kµ , it 
requires that at least two coincidence points 1H  
and 2H  should be selected. Therefore (13) can be 
rewritten as 
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where ( )m iy k H+  and ( )( 1,2)ref iy k H i+ = are the 
model predicted output and the reference trajectory, 
respectively. 
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Substituting (17) into (10), we obtain that 
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Substitute (19), (20) and (5) into (18), let 
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Manipulated variable is obtained by solving (21) 
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i
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Explicit control input constraints is not directly 
handled in this paper, when input and/or state –
related constraints need to be considered, the 
technique proposed by Abu el Ata-Doss can be 
adopted. 
 
 

3.DISCUSSION AND SIMULATIONS 
 
Generally, base function specifies precision, the 
reference trajectory specifies the closed loop 
dynamic response and the coincidence point specifies 
robustness and a certain smoothness of the controller 
output (Ernst et al., 1996). For the control law (16) 
and (22), the coincidence point i sH T  should be at 
least larger than the time delay of the system or the 
period during which the output exhibits an inverse 
response (non-minimum phase). Here, the relation 
between the coincidence point i sH T  and system 
performance is discussed through simulations. 
Consider the integrating process (Majhi and Atherton, 
1999) 
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where the process parameters are 1K = , 4T = , 5θ = . 
The process model is built with 30N = , the desired 
closed loop time is chosen as 1refT = , and the 
sampling time is set as constant 1sT = . A unit step 
input and a step disturbance with magnitude 0.2 at 
the process output are added at 0t = and 45t = , 
respectively. Consider the case that one base function 
is adopted. The different 1H H=  is considered in the 
simulation. Responses of nominal systems are shown 
in Fig. 2, which indicates that faster responses of the 
setpoint tracking and disturbance rejection are 
obtained with decreasing H , while the manipulated 
variables become worse. 
 
Generally, the coincidence point sHT  should be 
chosen reasonably so that an optimal compromise 
between the robustness and performance is reached. 
The larger the coincidence point sHT , the worse the 
nominal performance and the better the robustness. 
Assume that there exist uncertainties in model 
parameters with 3T =  and 7θ = . Step responses of 
the system are shown in Fig. 3, which indicates that 
the proposed algorithm can provide better robustness 
while the parameter perturbations are taken. 
 
 

4. CONCLUSIONS 
 
A predictive functional control algorithm of 
integrating process based on impulse response model 
is given in this paper. By introducing the novel error 
compensation method, the proposed algorithm can 
achieve the zero steady-state error for the control 
system, which can also improve the disturbance 
rejection. Furthermore, the structure and the tuning 
of the given controller are very simple. Simulations 
show that the presented algorithm can achieve better 
closed loop performance and provide better 
robustness. 
 

 
 
Fig. 2. Output (top) and input (bottom) of the closed-

loop step responses( 9H = , dotted line; 12H = , 
solid line; 16H = ,dashed line). 

 

 
 
Fig. 3. Step responses of the system with 11H =  

(nominal system, solid line; uncertain system 
dashed line) . 
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