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1. INTRODUCTION

An increasing number of control problems for com-
posite interconnected systems requires the use of an
adaptive decentralized control structure with physi-
cally distributed controllers. These problems are found
in various application areas, such as large-scale com-
puter networks, power systems, automotive systems,
web handling systems etc. In the case of plants with
single-input single-output (SISO) interconnected sub-
systems, these problems are extensively studied and
many important results have been obtained. The de-
sign has been based mainly on the following ap-
proaches: the traditional certainty equivalence ap-
proach or Morse’s “dynamic certainty equivalence ap-
proach” (see, e.g., (Ioannou, 1986),(Gavel andŠiljak,
1989), (Ortega, 1996), (Mirkin, 1999), (Narendra and
Oleng’, 2002), (Mirkin, 2003)), and the nonlinear de-
sign tool based on recursive backstepping (see, e.g.,
(Jiang, 2000), (Krishmanurthy and Khorrami, 2003)).

1 This work was supported by the Israel Science Foundation under
Grant 38/03.

However, for the conventional DMRAC scheme, these
results do not appear to be easily applied to the case
of composite systems with multi-input multi-output
(MIMO) subsystems. One reason for this is that the
type of a priori information pertaining to the overall
MIMO plant structure is not as apparent in the case of
MIMO subsystems as it is in the SISO case.

One of main difficulties of this case, even without the
requirement of a decentralized control structure, is the
generalization of the high frequency gain sign condi-
tion, since we deal with matrix gains instead of scalar
gains. Current MIMO adaptive control algorithms for
systems without a decentralized control structure re-
quire some a priori knowledge or constraints on the
high-frequency gain matrixKp of the overall plant
(controlled object)W (s). Most available results as-
sume that either the high frequency matrix of the over-
all plant is known fully or partially, see e.g. (Sastry and
Bodson, 1989), or satisfies some positive definiteness
condition, see e.g. (Ioannou and Sun, 1996). To reduce
the amount ofa priory requirements to execute the
design, some recent solutions based on Morse’s fac-



torizations ofKp were suggested. See, e.g. the recent
monograph (Tao, 2003) for a summary of the state of
the art.

We postulate that the controller is decentralized which
creates information constraints. These pose control
design difficulties in addition to those caused by the
centralized case. The adaptive control problem be-
comes more complex in the decentralized case, and is
yet anunsolved problem. To the authors’ knowledge,
results for composite systems with MIMO subsystems
have not been reported in the literature.

We propose to design the decentralized controller
without a priory knowledge about the full matrixKp.
Instead we assume somea priory knowledge about the
subsystem matricesKpi. The reason is that the transfer
function of the overall controller has ablock-diagonal
form, and is not a full matrix as in the centralized
case. Our concept of reference model coordination
(Mirkin, 2003; Mirkin and Gutman, 2003) and recent
advances in output feedback design for MIMO cen-
tralized systems, e.g. (Costaet al., 2003; Tao, 2003)
provide tools to overcome the difficulties caused by
the lack ofa priori centralized information.

We develop an adaptive decentralized control paramet-
rization for the class of composite linear systems with
MIMO subsystems which admits output decentralized
model reference adaptive designs with zero asymp-
totical errors. Thus this paper generalizes the results
in (Mirkin and Gutman, 2003) to a class of linear
large-scale systems with MIMO subsystems.

2. PROBLEM FORMULATION

We consider a class of large-scale systems, which
are composed ofM multi-input multi-output (MIMO)
subsystems described by equations of the form

ẋi(t) =Aixi(t) + Biui(t) +
M∑

j=1

Aijxj(t)

yi(t) =Cixi(t), i = 1, 2, . . . , M (1)

where for thei-th subsystemxi ∈ Rni is the state vec-
tor, ui(t) ∈ Rmi is the control input andyi(t) ∈ Rmi

is the output. The constant matricesAi ∈ Rni×ni ,
Bi ∈ Rni×mi , Ci ∈ Rmi×ni , Aij = BiA

∗
ij ∈

Rmi×nj have unknown elements and
∑M

j=1 ni = n.

We make the following assumptions about thei-th
isolated subsystem transfer functionWi(s) = Ci(sI−
Ai)−1Bi: (A1) the observability indexνi of Wi(s)
is known;(A2) the transmission zeros ofWi(s) have
negative real parts (minimum phase plants);(A3) the
plant has full rank and vector relative degree 1. For the
high frequency gain matrixKpi = lims→∞ sWi(s)
we assume that(A4) the signs of the high frequency
gain matrixKpi leading principal minors are known.

Remark 1.Assumptions(A1)−(A4) are independent
of the decentralized MRAC problem. They are well
understood in centralized adaptive control literature
and various techniques for their relaxation are known,
see, e.g. (Ioannou and Sun, 1996; Tao, 2003),

Our control objective is to achieve thatyi asymptoti-
cally exactlyfollows the outputyri ∈ Rmi of a stable
strictly positive real (SPR) reference model

yri =Wri(s)ri. (2)

The reference signalri(t) is assumed piecewise con-
tinuous and uniformly bounded.

3. PROPOSED CONTROLLER STRUCTURE

Motivated by the similarities with the SISO case
(Mirkin and Gutman, 2003), we will use the decen-
tralized adaptive control scheme withreference model
coordinationto achieve the control objective -asymp-
totic exactly tracking. The control law for theith local
MIMO subsystemui is chosen to be of the form

ui(t) =uli(t) + uci(t) (3)

where the part of the control lawuli(t) is based
only on the local signals of theith subsystem, and
the componentuci(t) is the coordinated component
which is based on the reference signals of the all
other subsystems. Exchange of the reference signals
between subsystems can be easily implemented in
real-life control systems.

Remark 2.For the case of systems with MIMO inter-
connected subsystems, the main difficulties and the
main difference from the case with SISO intercon-
nected subsystems is the choice of a suitable parame-
trization of the local and coordinated component of the
control law (3), in order to anticipate the effect of the
cross-coupling. The component based on local signals,
uli(t), will be modified in comparison with (Mirkin
and Gutman, 2003) by adding a term based on local
data. As the basic building block for the coordinated
componentuci(t), we suggest a dynamical system
(pre-filter) with adjustable parameters that describes
how the reference signalrj(t) of the j-th reference
model acts on thei-th control input. We consider here
the case ofa priory knowledge aboutKpi based on the
SDU decomposition ofKpi, e.g. (Costaet al., 2003).

The part of the control lawuli which is based only on
the local information is parameterized as follows

uli(t) =θT
fi(t)ωfi(t) + θT

i (t)ωi(t) (4)

where θli(t) = [θT
fi(t) θT

i (t)]T ∈ R2mi(νi+1)×mi ,
θfi(t) = [θei(t) θT

1i(t) θT
2i(t) θui(t)]T ∈ R2miνi×mi ,

θei, θui ∈ Rmi×mi , θ1i, θ2i ∈ Rmi(νi−1)×mi and
θi(t) = [θri(t) θr2i(t)]T ∈ R2mi×mi , θri, θr2i ∈
Rmi×mi are some time-varying parameter matrices,



ωfi(t) andωi(t) are the local feedback and the local
feedforward signals respectively and are given by the
following equation (i, j = 1 . . . ,M )

ωfi(t) =




Imi
0 0 0

0 Φi(s) 0 0
0 0 Φi(s) 0
0 0 0 Imi







ei

yi

ui

ui


 =




ei(t)
x1i(t)
x2i(t)

ui




ωi(t) =
[

Imi

Wri(s)

]
[ri](t), ω̄fi(t) = [eT

i xT
1i xT

2i]
T

(5)

with

Φi(s) =
[Imis

νi−2, . . . , Imis, Imi ]
T

Λi(s)
(6)

Φi(s) ∈ Rmi(νi−1)×mi , Imi
∈ Rmi×mi is an identity

matrix andΛi(s) = sνi−1 + · · · + λmis + λ0i is a
monic Hurwitz polynomial.

The coefficient matrixθui(t) in θfi(t) has the specific
upper triangular structure with zero diagonal element
like in (Costaet al., 2003) for the centralized case, i.e.

θui(t) =




0 θ12
ui (t) θ13

ui (t) . . . θ1mi
ui (t)

0 0 θ23
ui (t) . . . θ2mi

ui (t)
...

...
...

...
0 0 . . . 0 θmi−1 mi

ui (t)
0 0 0 0 0




(7)

This upper triangular matrix structure guarantees that
the control component (4) is implementable without
singularity, that is,

u1
li(t) =θ̄1T

fi ω̄fi(t) + θ1T
i ωi(t) +

mi∑

k=2

θ1k
ui u

k
i (t)

u2
li(t) =θ̄2T

fi ω̄fi(t) + θ2T
i ωi(t) +

mi∑

k=3

θ2k
ui u

k
i (t)

...

umi

li (t) =θ̄miT
fi ω̄fi(t) + θmiT

i ωi(t) + 0 (8)

whereθ̄fi(t) = [θeiθ
T
1iθ

T
2i]

T andω̄fi(t) = [eT
i xT

1i xT
2i]

T

If we denote

Θ1
li(t) =[θ̄1T

fi θ1T
i θ12

ui θ13
ui . . . θ1mi

ui ]T

Θ2
li(t) =[θ̄2T

fi θ2T
i θ23

ui θ24
ui . . . θ2mi

ui ]T

...

Θmi

li =[θ̄miT
fi θmiT

i ]T (9)

and

Ω1
li(t) = [ω̄T

fi ωT
i u2

i u3
i . . . umi−1

i umi
i ]T

Ω2
li(t) = [ω̄T

fi ωT
i u3

i . . . umi−1
i umi

i ]T

...

Ωmi

li (t) = [ω̄T
fi ωT

i ]T (10)

we can rewrite the local control component (4) as

uli(t) =




Θ1T
li (t)Ω1

li(t)
...

ΘmiT
li (t)Ωmi

li (t)


 (11)

Remark 3.When comparing the control component
based on local signals,uli(t), of subsystemi regarded
as an isolated system, with the case of MIMO central-
ized adaptive control (Costaet al., 2003), one notices
the following differences: Inuli(t) the additional term
θ∗r2iWri(s)[ri](t) is present, and the tracking error
ei(t) = yi(t) − yri(t) is used in the local feedback
signal vectorωfi(t) instead ofyi(t).

The coordinated control component,uci(t), which
is based on the reference signals of the all other
subsystems is chosen as follows

uci(t) =
M∑

j=1,j 6=i

θT
ij(t)ωij(t)

ωij(t) =Pij(s)[xrj ](t) =
[

Imj

Φij(s)

]
[xrj ](t) (12)

whereθij(t) = [θT
1ij θT

2ij ]
T ∈ Rmjνi×mi , θ1ij(t) ∈

Rmj×mi , θ2ij(t) ∈ Rmj(νi−1)×mi are some time-
varying parameter matrices, andωij(t) is the output of
the dynamic system with the transfer functionPij(s)

Φij(s) =
[Imj s

νi−2, . . . , Imj s, Imj ]
T

Λi(s)
. (13)

4. ERROR EQUATION AND STABILITY
ANALYSIS

To develop an adaptation law for the controller (3)-
(12), we need to express the closed-loop system in
terms of the tracking errorei(t) = yi(t)− yri(t).

With the specification ofΛi(s), Φi(s) and Wi(s)
in the local control component (4) there exist some
constant matricesθ∗ri = K−1

pi , θ∗ei, θ∗1i andθ∗2i (Sastry
and Bodson, 1989; Ioannou and Sun, 1996) such that

I − θ∗Tei Φi(s)− θ∗T1i Φi(s)Wi(s)− θ∗2iWi(s)

= θ∗riW
−1
ri (s)Wi(s) (14)

Then from (1) and (14), for anyui we have the
following equation for the tracking errorei, with

ei =Wri(s)Kpi

[
ui − θ∗eiyi − θ∗T1i x1i

− θ∗T2i x2i − θ∗riri +
M∑

j=1,j 6=i

A∗ijxj(t)

−
M∑

j=1,j 6=i

θ∗T2i Φi(s)[A∗ijxj ](t)
]

(15)

DenotingA∗zij = [θ∗1T
1i A∗ij , θ

∗2T
1i A∗ij , . . . , θ

∗(νi−1)T
1i A∗ij ],

A∗zij ∈ Rmi×mj(νi−1), using (6) and (13) and doing
some manipulations with the transfer functions we can
write

θ∗T2i Φi(s)A∗ij = A∗zijΦij(s) (16)

In view of (16), (5) and (12)-(13) after substituting
xj = exj + xrj in the right part of (15) , the equation
(15) can be rewritten as



ei =Wri(s)Kpi

[
ui − θ̄∗Ti ω̄fi(t)− θ∗Ti ωi(t)

+
M∑

j=1,j 6=i

(
A∗ijexj(t)−A∗zijΦij(s)[exj ](t)

)]

(17)

where θ̄∗i = [θ∗ei θ∗T1i θ∗T2i ]T , θ∗i = [θ∗ri θ∗ei]
T and

θ∗ij = [−A∗Tij , A∗Tzij ]
T

By using the high-frequency gain matrix decompo-
sition Kpi = SiDiUi (Morse, 1993), whereSi is
symmetric positive definite,Di is diagonal, andUi is
unity upper triangular, and in view ofUiui = ui −
(Imi

− Uiui) we derive an error equation from the
equation (17)

ei =Wri(s)SiDi

[
ui − θ̂∗Ti ω̄fi(t)− θ̂∗Ti ωi(t)

−
M∑

j=1,j 6=i

θ̂∗Tij ωij(t) +
M∑

j=1,j 6=i

Φ̂ij(s)[exj ](t)
]

Φ̂ij(s) = UiA
∗
ij + UiA

∗
zijΦij(s) (18)

where θ̂∗i = Uiθ
∗
i , θ̂∗ij = Uiθ

∗
ij and matrixθ̂∗ui =

Imi − Ui has the same specific upper triangular form
as (7) with zero diagonal element but with unknown
constant coefficients.

Then using the control law as given by (3), (4) and
(11) the tracking error equation (18) can be written as

ei =Wmi(s)SiDi

([
Θ̃1T

li Ω1
li . . . Θ̃miT

li Ωmi

li

]

+
M∑

j=1,j 6=i

[
Θ̃T

ijωij + Φ̂ij(s)[exj ](t)
])

(19)

whereΘ̃k
li(t) = Θk

li(t)−Θ∗kli andΘ̃ij(t) = Θij(t)−
Θ∗ij are the parameter errors,(k = 1, 2, . . . , mi; i, j =
1, . . . , M).

Let we define the augment stateXi = [xT
i , xT

1i, x
T
2i]

T

by combining thei-th subsystems statexi of the plant
(1) with the filter statesx1i and x2i from (5). With
Xmi = [xT

mi, x
T
m1i, x

T
m2i]

T we denote the state of
the corresponding nonminimal realization̂Ci(sI −
Âi)−1B̂i of WmiSi that is SPR (Costaet al., 2003).
Let (Aφij , Bφij , Cφij , Dφij) be a minimal stable state
space realization for the stable transfer matrixΦ̂ij(s)
from (18). Then, the augment state errorêi = Xi(t)−
Xmi(t) and the output errorei in (19) satisfy

˙̂ei =Âiêi(t) + B̂iDi

[
Θ̃1T

li Ω1
li . . . Θ̃miT

li Ωmi

li

]

+
M∑

j=1,j 6=i

B̂iDi

(
Θ̃T

ijωij + DφijL
T êj(t)

+ CφijZeij(t)
)

Żeij(t) =AφijZeij(t) + BφijL
T êj(t)

zeij(t) =CφijZeij(t) + DφijL
T êj(t)

ei(t) =yi(t)− ymi(t) = Ĉiêi(t) (20)

whereL = [I 0 0]T and 0nj×lj(νi−1) is a zero
matrix.

BecauseĈT
i (sI − Âi)−1B̂i = Wmi(s)Si is SPR,

the triple (Âi, B̂i, Ĉi) satisfies the following equa-
tions given by the matrix version of the KY Lemma
(Narendra and Annaswamy, 1989, page 67)

ÂT
i Pi + PiÂi + Qi =0 PiB̂i = ĈT

i (21)

SinceAφij in (20) is stable, it also hold that(i, j =
1, . . . , M)

AT
φijPzij + PzijAφij + Qzij = 0 (22)

We now choose the adaptation algorithms as(i, j =
1, . . . , M)

Θk
li(t) =−

∫ t

0

ηk
i (s)ds− ηk

i (t)− ηk
i (t− hi)

ηk
i (t) =γk

i sign(di)Ωk
lie

k
i , (k = 1, . . . , li)

Θij(t) =−
∫ t

0

ηij(s)ds− ηij(t)− ηij(t− hij)

ηT
ij(t) =Sign(Di)Γgiei(t)ωT

ij(t) (23)

where Sign(Di) = diag{sign(d1
i ), . . . , sign(dli

i )},
Γi = ΓT

i > 0 andhi andhij are some arbitrary design
parameters to be chosen.

Remark 4.Although only the integral component of
the adaptation algorithm is needed for stability and
exact asymptotic tracking, the use of the proportional
and the proportional delayed terms in the adaptation
algorithm (23) makes it possible to achieve better
adaptation performance than the traditional I and PI
schemes. This adaptation algorithm includes the tradi-
tional I and PI schemes as a special case. The design
parametershi andhij are chosen in the same way as
the traditional gainsγk

i andΓi in (23).

For the stability analysis we use the following Lyapunov-
Krasovskii type functional

V =
M∑

i=1

[
Vei + Vηi +

M∑

j=1,j 6=i

(
Vηij + Vzij

)]

Vei =êT
i Piêi, Vzij = ZT

eijPzijZeij

Vηi =
li∑

k=1

(
γk

i

)−1 |di|
(
η̃kT

i (t)η̃k
i (t)

+
∫ t

t−hi

ηkT
i (s)ηk

i (s)ds
)

Vηij =
M∑

j=1,j 6=i

tr
(
η̃ij(t)Γ−1

i D̄iη̃
T
ij(t)

+
∫ t

t−hij

ηij(s)Γ−1
i D̄iη

T
ij(s)ds

)
(24)

where η̃i = θ̃li(t) + η∗i + ηi(t) + ηi(t − hi)
and η̃ij = θ̃ij(t) + ηij(t) + ηij(t − hij), D̄i =
diag{∣∣d1

i

∣∣ . . .
∣∣dk

i

∣∣ . . . |dmi
i |} anddk

i are the entries of
Di. The “artificial” vector

η∗ki =r0(2di)−1[1, 0, . . . , 0]T . (25)

has the same dimension asΘk
fi, andr0 is an as yet

unspecified positive constant.



Using (21) and (22) the time derivatives of the com-
ponents of (24) along (20) can be written

V̇ei =− êT
i (t)Qiêi(t)

+
M∑

j=1,j 6=i

2êT
i (t)PiB̄iDiDφijL

T êj(t)

+
M∑

j=1,j 6=i

2êT
i (t)PiB̄iDiCφijZeij(t) (26)

V̇zij =−
M∑

j=1,j 6=i

ZT
eij(t)QzijZeij(t)

+
M∑

j=1,j 6=i

2ZT
eij(t)PzijB̂φijL

T
j êj(t) (27)

V̇ηi =−
li∑

k=1

(
γk

i

)−1 |di|
[
2Θ̃kT

li ηk
i (t) + 2η∗kT

i ηk
i (t)

+
∥∥ηk

i (t) + ηk
i (t− hi)

∥∥
]

(28)

V̇ηij =− tr
(
ηij(t)ΓiD̄iΘ̃T

ij(t) + Θ̃ij(t)ΓiD̄iη
T
ij(t)

)

− ‖ηij(t) + ηij(t− hij)‖ΓiD̄i
(29)

Further using (25), (26)–(29) and dropping negative
terms we obtain

V̇ |(20) ≤
M∑

i=1

[
− êT

i (t)Qiêi(t)− r0ê
T
i PT

i B̂iB̂
T
i Piêi

−
M∑

j=1,j 6=i

ZT
eij(t)QzijZeij(t)

+
M∑

j=1,j 6=i

2êT
i (t)PiB̄iDiDφijL

T êj(t)

+
M∑

j=1,j 6=i

2êT
i (t)PiB̄iDiCφijZeij(t)

+
M∑

j=1,j 6=i

2ZT
eij(t)PzijB̂φijL

T
j êj(t) (30)

We can estimate the mixed terms of (30) as follows

2êT
j (t)PiB̂iDiDφijL

T êj(t)

≤êT
j (t)PiB̂iΥ1ijB̂

T
i Piêj(t) + êT

j (t)Giêj(t)

2êT
i (t)PiB̂iDiCφijZeij(t)

≤êT
i (t)PiB̂iΥ2ijB̂

T
i Piêi(t) + ZT

eij(t)GiZeij(t)

2ZT
eij(t)PzijBφijL

T êj(t)

≤ZT
eij(t)GiZeij(t) + êT

j (t)Υ3ij êj(t) (31)

whereGi = GT
i > 0 is a some constant matrix and

Υ1ij =DiDφijL
T G−1

i LDT
φijD

T
i

Υ2ij =DiCφijG
−1
i CT

φijD
T
i

Υ3ij =LBT
φijPzijG

−1
i PzijBφijL

T (32)

Applying (31) to (30) and selecting values ofro, Qzij

andQi from the inequalities(i, j = 1, . . . , M)
ro

M−1 >λmax (Υ1ij + Υ2ij)

λmin(Qzij) >λmax (2Gi)
λmin(Qi) >2λmax (Gj + Υ3ji) (33)

whereλmin(?) and λmax(?) are the minimum and
maximum eigenvalues of(?), respectively we obtain

V̇ |(20) ≤−
M∑

i=1

(
êT
i (t)Qiêi(t)

+
M∑

j=1,j 6=i

ZT
eij(t)QzijZeij(t)

)
≤ 0 (34)

This implies (Hale and Lunel, 1993) thatV and,
therefore,̂ei(t), ei(t), Zeij(t), θ̃li, θli, θ̃ij , θij ∈ L∞.
The remainder of the stability analysis follows directly
using the steps in (Ioannou and Sun, 1996).

Remark 5.We note thatro and the matricesQzij and
Qi are used only for analysis and do not influence
the control law. Decentralized controller gains adjust
automatically to counter the non-desirable effects of
interconnections and parameter uncertainties.

5. ROBUSTNESS OF THE DECENTRALIZED
CONTROLLER

As in adaptive centralized control theory (Ioannou and
Sun, 1996), the coordinated adaptive controller pro-
posed here can be shown to be robust with respect to
disturbances and unmodeled dynamics by introducing
modifications to the adaptive law. A brief example of
this property is mentioned below where the integral
adaptation law is discussed for ease of exposition.
If disturbancefi(t), (‖fi‖ ≤ foi) is present in the
subsystems, and e.g. aσ-modification as in (Ioannou
and Sun, 1996) is used, the error equation (19) and the
adaptation algorithms (23) can be rewritten as

ei =Wmi(s)SiDi

([
Θ̃1T

li Ω1
li . . . Θ̃miT

li Ωmi

li

]
+ f̂i(t)

+
M∑

j=1,j 6=i

[
Θ̃T

ijωij + Φ̂ij(s)[exj ](t)
])

(35)

Θ̇k
li(t) =− ηk

i (t)− σk
i Θk

li

Θ̇T
ij(t) =− ηij(t)− σijΘT

ij (36)

wheref̂i(t) = Φ̄i(s)fi(t) is guaranted to be bounded
with the boundf̂oi due to the boundedness offi(t)
and the stability of̄Φi(s) = I − Φi(s).

Instead ofVηi andVηij in (24) we use the following
functions

Vηi =
li∑

k=1

(
γk

li

)−1 |di|η̃kT
i (t)η̃k

i (t)

Vηij =
M∑

j=1,j 6=i

tr
(
η̃ij(t)Γ−1

i D̄iη̃
T
ij(t)

)
(37)



with η̃k
i (t) = θ̃k

li(t) + η∗ki andη̃ij(t) = θ̃ij(t)

Using (35) and (36) and in view of (37) after some
simplifications, we obtain the time derivative of (24)

V̇ ≤
M∑

i=1

[
− êT

i (t)Qiêi(t)−
li∑

k=1

σk
i |di|η̃kT

i (t)η̃k
i (t)

+ β∗i −
M∑

j=1,j 6=i

(
ZT

eij(t)QzijZeij(t)

− σij tr
(
η̃ij(t)D̄iη̃

T
ij(t)

))]
(38)

where

β∗i =f̂2
oi ‖Gi‖+

li∑

k=1

σk
i |di|

∥∥θ∗kli − η∗ki

∥∥2

+
M∑

j=1,j 6=i

σij tr
(
η∗ijD̄iη

∗T
ij

)
(39)

Thus, if we selectQzij and Qi from (33) and the
values ofα andro from the inequalities

α =min[λmin(Qi)
λmax(Pi)

,
λmin(Qzij)
λmax(Pzij)

, σk
i γk

i ,
σijmini|di|

λmax(Γ−1
i

D̄i)
]

(40)

and
ro

M−1 >λmax (Υ1ij + Υ2ij + Υ4i) (41)

whereΥ4i = DiG
−1
i Di we obtain after some manip-

ulations from (38)

V̇ =− αV +
M∑

i=1

β∗i (42)

Furthermore, using standard arguments from the ro-
bust adaptive control theory, see, e.g. (Ioannou and
Sun, 1996), we conclude that all closed-loop signals
are bounded, andei(t) converges to the residual set
bounded by the some constant. We can show that by
decreasing the valuesσi andσij sufficiently, the upper
bound on the steady-state errorei may be made as
small as desired. The system designer can e.g. tune
the size of the residual set by adjusting these para-
meters which were introduced in the adaptation laws
described in (36).

6. SUMMARY

In this paper an adaptive coordinated decentralized
controller is proposed for large-scale linear systems
with MIMO subsystems which admits output decen-
tralized model reference adaptive designs with zero
asymptotical errors. We develop decentralized MRAC
on the base ofa priory information about only the
local subsystems gain frequency matrices without ad-
ditionala priory knowledge about the full system gain
frequency matrix. A novel Lyapunov-Krasovskii type
functional derived to design the adaptive laws and in
order to prove stability. The decentralized controller

is also shown to be robust to disturbances. This paper
represents the first results for decentralized MRAC of
large-scale system with MIMO subsystems.
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