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Abstract: Exact decentralized output-feedback Lyapunov-based designs of direct MRAC
for linear interconnected systems with MIMO subsystems are introduced. The design
process uses a coordinated decentralized structure of adaptive control with reference
model coordination. We develop decentralized MRAC on the basa mfiory infor-

mation about only the local subsystems gain frequency matrices without addidional
priory knowledge about the full system gain frequency matrix. To achieve a better
adaptation performance we propose proportional, integral time-delayed adaptation laws.
Copyright©2005 IFAC

Keywords: Decentralized adaptive control, Coordination, Robust control.

1. INTRODUCTION However, for the conventional DMRAC scheme, these
results do not appear to be easily applied to the case

An increasing number of control problems for com- of composite systems with multi-input multi-output
posite interconnected systems requires the use of anqMIMO) subsystems. One reason for this is that the
adaptive decentralized control structure with physi- type ofa priori information pertaining to the overall
cally distributed controllers. These problems are found pMIMO plant structure is not as apparent in the case of
in various application areas, such as large-scale com{|MO subsystems as it is in the SISO case.
puter networks, power systems, automotive systems, o i ,
web handling systems etc. In the case of plants with One.of main difficulties of 'Fh|s case, even W|thouF the
single-input single-output (SISO) interconnected sub- requwer'nen't ofa decentrallzed control sftruc'ture, is the
systems, these problems are extensively studied an@€neralization of the high frequency gain sign condi-
many important results have been obtained. The de-t'o_”' since we deal with mat_nx gains mstead_ of scalar
sign has been based mainly on the following ap- gains. Curr_entMIMO adaptl\{e control algorithms for
proaches: the traditional certainty equivalence ap- sy§tems W|thout.a.decentrallzed control s_tructure re-
proach or Morse’s “dynamic certainty equivalence ap- 9uiré some a priori knowlledge or constraints on the
proach” (see, e.g., (loannou, 1986),(Gavel &iljhk, hlgh-frequency gain matrix<, of the overall plant
1989), (Ortega, 1996), (Mirkin, 1999), (Narendra and (controlled pbject)W(§). Most avaﬂable_results as-
Oleng’, 2002), (Mirkin, 2003)), and the nonlinear de- sume thgt either the high frequency matrix of the over-
sign tool based on recursive backstepping (see, e.g.2/ Plantis known fully or partially, see e.g. (Sastry and
(Jiang, 2000), (Krishmanurthy and Khorrami, 2003)). Bods.o.n, 1989), or satisfies some positive definiteness
condition, see e.g. (loannou and Sun, 1996). To reduce
the amount ofa priory requirements to execute the
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torizations ofK,, were suggested. See, e.g. the recentRemark 1.Assumptiong A1) —(A4) are independent
monograph (Tao, 2003) for a summary of the state of of the decentralized MRAC problem. They are well
the art. understood in centralized adaptive control literature
and various techniques for their relaxation are known,

We postulate that the controller is decentralized which ee., e.g. (loannou and Sun, 1996: Tao, 2003),

creates information constraints. These pose control®
design difficulties in addition to those caused by the
centralized case. The adaptive control problem be-Our control objective is to achieve that asymptoti-
comes more complex in the decentralized case, and ically exactlyfollows the outputy,; € R™: of a stable
yet anunsolved problemTo the authors’ knowledge,  strictly positive real (SPR) reference model

results for composite systems with MIMO subsystems i = Wi (5)7s. @

have not been reported in the literature.
The reference signai;(t) is assumed piecewise con-

We propose to design the decentralized Contm"ertinuous and uniformly bounded.

withouta priory knowledge about the full matrix,.
Instead we assume sora@riory knowledge about the
subsystem matrices,,;. The reason is that the transfer
function of the overall controller haskdock-diagonal
form, and is not a full matrix as in the centralized
case. Our concept of reference model coordination
(Mirkin, 2003; Mirkin and Gutman, 2003) and recent
advances in output feedback design for MIMO cen-
tralized systems, e.g. (Costa al, 2003; Tao, 2003)
provide tools to overcome the difficulties caused by
the lack ofa priori centralized information.

3. PROPOSED CONTROLLER STRUCTURE

Motivated by the similarities with the SISO case
(Mirkin and Gutman, 2003), we will use the decen-
tralized adaptive control scheme wittference model
coordinationto achieve the control objectiveasymp-
totic exactly trackingThe control law for théth local
MIMO subsystemu; is chosen to be of the form

We develop an adaptive decentralized control paramet- ui(t) =uii(t) + uei(t) (3)
rization for the class of composite linear systems with where the part of the control lawy;(¢) is based
MIMO subsystems which admits output decentralized only on the local signals of thé&h subsystem, and
model reference adaptive designs with zero asymp-the component.;(t) is the coordinated component
totical errors. Thus this paper generalizes the resultswhich is based on the reference signals of the all
in (Mirkin and Gutman, 2003) to a class of linear other subsystems. Exchange of the reference signals
large-scale systems with MIMO subsystems. between subsystems can be easily implemented in
real-life control systems.

Remark 2.For the case of systems with MIMO inter-
connected subsystems, the main difficulties and the
main difference from the case with SISO intercon-
nected subsystems is the choice of a suitable parame-
trization of the local and coordinated component of the
control law (3), in order to anticipate the effect of the
cross-coupling. The component based on local signals,
wy;(t), will be modified in comparison with (Mirkin

2. PROBLEM FORMULATION

We consider a class of large-scale systems, which
are composed af/ multi-input multi-output (MIMO)
subsystems described by equations of the form

M
@i (t) =As(t) + Biui(t) + Z Aijz;(t) and Gutman, 2003) by adding a term based on local
=1 ' data. As the basic building block for the coordinated
yi(t) =Cii(t), i=1,2,...,. M 1 componentu,;(t), we suggest a dynamical system

(pre-filter) with adjustable parameters that describes
where for the-th subsystem; € R™ is the state vec-  how the reference signail;(¢) of the j-th reference
tor, u;(t) € R™: is the control input ang;, (t) € R™ model acts on théth control input. We consider here
is the output. The constant matricds € R™*™i, the case oh priory knowledge aboui,; based on the
B; € RM»*™i, C; € R™>X™M, Ay = BZ-A;fj € SDU decomposition of,,;, e.g. (Costat al, 2003).
R™:*™5 have unknown elements alﬁjle n; = n.

We make the following assumptions about thth The part of the control law;; which is based only on
isolated subsystem transfer function (s) = C;(sI — the local information is parameterized as follows
Ai)_lBi: (A1) the observability index; of Wi(s) wri(t) =05 (t)wyi(t) + 67 (i (t) 4)

is known; (A2) the transmission zeros &F;(s) have

negative real parts (minimum phase planfs)3) the ~ Where 0, (t) = [07,(t) 67 (t)]" € R2mi(vith)xmi,
plant has full rank and vector relative degree 1. For the 07;(t) = [0i(t) 0%;(t) 03.(t) 0,:(t)]T € R2mavixmi,
high frequency gain matri¥,; = lims_ . sW;(s) 0,0, € R™ixmi 9. 0, c Rmi(viml)xmi gnd
we assume thatd4) the signs of the high frequency 0;(t) = [0,:(t) 0.2:(t)]T € R2™iX™mi 0. 0.0, €
gain matrixkK,; leading principal minors are known. ~ R™:*™: are some time-varying parameter matrices,



wyi(t) andw;(t) are the local feedback and the local Remark 3.When comparing the control component
feedforward signals respectively and are given by the based on local signals,;(t), of subsysteni regarded

following equation{,j =1..., M)

ImL 0 0 0 €; ei(t)
' 0 ®;(s) 0 0 Yi x1,(t)
wfl(t) o 0 0 ‘I)L(S) 0 (173 - Jfgi(t)
Iml
lt) = |ty 1) @t = 1T o,
(5)
with
‘ B Y S S
q)’l(s) - Ai(S) (6)

®,(s) € Rmivi=lxmi [ RMiX™mi jg an identity
matrix andA;(s) = sVt + - 4+ A\pis + Ao is @
monic Hurwitz polynomial.

The coefficient matri¥.,; (t) in 6;(t) has the specific
upper triangular structure with zero diagonal element
like in (Costaet al, 2003) for the centralized case, i.e.

0 6.7(t) O,0(t) ... 6,7 (1)
0 0 602()... 62(t)
0ui(t) = : Do : @)
0 0 0 Omi=tmi(t)
0 0 0 0 0

This upper triangular matrix structure guarantees that
the control component (4) is implementable without

singularity, that is,

ug;(t) +0; T wi(t) Z%’f (1)

+Zﬂi’:i“

9f2 wfl( )

up (t) =07 wri(t) + 607 wi(t)

up (t) =07 T wpi(t) + 6" Twi(t) + 0 ®)
where;(t) = [0,,,01;,05,]" andwyi(t) = [e] o1; 23,]"
If we denote
Gllz(t) _[9_1T 01T 012 913 ) ai;ni]T
Or(t) =[07] 677 622 027 ..o "
o =[5 o 9)
and
Oht) = [, wf o ul .
() = o . T
(1) = [wf; i’ 1 (10)
we can rewrite the local control component (4) as
1 (t);(t)
ug(t) = : 11)
O (1) (t)

as an isolated system, with the case of MIMO central-
ized adaptive control (Costt al., 2003), one notices
the following differences: I, (¢) the additional term
0%, Wi (8)[rs](t) is present, and the tracking error
e;(t) = yi(t) — yr(t) is used in the local feedback
signal vectorw;(t) instead ofy; (¢).

The coordinated control component,;(t), which
is based on the reference signals of the all other
subsystems is chosen as follows

Z 9 t)wi;(t

J=1,j#1
i (8) =Py ()[n]0) = [(ij(;)] rl) (12)

Whereﬁij (t) [G,II;J 0%;]] € Rmivixmi 91” (t) S
R™iXMi fy;:(t) € RmMii=Dxmi gre some time-
varying parameter matrices, atg (¢) is the output of
the dynamic system with the transfer functiBy (s)
[Imjs"i’Q, cois D8, I

Ai(s)

}T

4. ERROR EQUATION AND STABILITY
ANALYSIS

To develop an adaptation law for the controller (3)-
(12), we need to express the closed-loop system in
terms of the tracking errar; (t) = y;(t) — yri(t).

With the specification ofA;(s), ®;(s) and W;(s)
in the local control component (4) there exist some
constant matriceg*;, = K_.', 07, 07, and@;, (Sastry

pi ! et

and Bodson, 1989; Ioannou and Sun 1996) such that
I =05 ®i(s) — 0] ©i(s)Wils) — 03,Wi(s)
=05, W (s)Wils)  (14)

Then from (1) and (14), for any; we have the
following equation for the tracking erres, with

€; :Wrz(s)sz [ui — 9;?/1 — 01:31‘%11

M
— 057w — 05y + Y Afw,(t)
J=1,j#i

M

> osTeu) Azl as)
j=1,ji

— [p*1T pAx *2T A% *(Vifl)T *

DenotingAZ,; = [07; 7 Aj;, 017 Aj;, ..., 0, Azl

Az, € Rmixmi(i=1) ysing (6) and (13) and doing
some manipulations with the transfer functions we can
write

037 Di(s)Af; = AL Pis(s) (16)
In view of (16), (5) and (12)-(13) after substituting
xj = ey; + 2 in the right part of (15) , the equation
(15) can be rewritten as



M
+ Y (Alea () - AL @ <>[exﬂ<t>)}
=1
(17)
whered: = [0, :7 0;717, 0 = [0z, 07;]T and
07, = (AT A5

By using the high-frequency gain matrix decompo-
sition K,; = S;D;U; (Morse, 1993), wheres; is
symmetric positive definite); is diagonal, andJ; is
unity upper triangular, and in view df;u; = u; —
(I, — Uju;) we derive an error equation from the
equation (17)

e; =W, S)SD [ul — éikT(Dfi(ﬁ) — é%TUJi(t)

Z (I)w )ea;](t)

Jj=1,5#i

= Ui A% + Ui AL ®45(5) (18)

Whereéj = U0;, 03 = Uy and matrixdy;, =
1., — U, has the same specific upper triangular form
as (7) with zero diagonal element but with unknown

constant coefficients.

Then using the control law as given by (3), (4) and
(112) the tracking error equation (18) can be written as

Woni(s)S:Di ([OF7 0 ... 6]

€e; =
M
+ >
J=1,j7i
where®f;(t) = O (t) — ©;F and®,;(t) =
©;; are the parameter errolg; = 1,2, .
1,...,M).

(6w +®(s)leas)1)])  (29)

0,;(t) —

-y MG5 1, ] =

Let we define the augment sta¥e = [z7, 21, 22

by combining the-th subsystems state of the plant
(1) with the filter statesc;; and zy; from (5). With
Xmi = [zl 21, 27,17 we denote the state of
the corresponding nonminimal reahzatlcm(sl —
A;)"1B; of W,,;S; that is SPR (Costat al, 2003).
Let (Agij, Bgij, Cgij. Dgij) be a minimal stable state
space realization for the stable transfer madrix(s)
from (18). Then, the augment state erépe= X, (t) —
X.,i(t) and the output errat; in (19) satisfy

b =Aei(t) + BiD; [9 Q- éﬁTQzT]

]T

M
+ 30 BiDi(8Fwis + DoisLTe5(1)
J=l#i

+ CsijZeij (t))
ezy (t) A¢17 617( >+ B(bijLTéj (t)
Zeij (t) =Coij Zeij (t) + Dgiy LT é;(t)
e%(t) yZ(t - ymz(t) = éiéi<t) (20)
[I 0 0" and0,,;,—1) is a zero

where L =
matrix.

BecauseCT (sI — A;)"'B; = Wy(s)S; is SPR,
the triple (4;, B;, C;) satisfies the following equa-
tions given by the matrix version of the KY Lemma
(Narendra and Annaswamy, 1989, page 67)
Since A,;; in (20) is stable, it also hold thdt, j =
1,...,M)

AWPZ,J + P.ijApi; + Q25 =0 (22)
We now choose the adaptation algorithms(ag =
1,...,M)

o) = [ o (s)ds — () — bt — )
0 (t) =yEsign(d)Qfiel, (k = 1,... 1)
03(t) = /t%( $)ds — 15 (t) — mig (¢ — hig)
155 (t) =Sign(D; )T giei (t)w; () (23)
where SigD;) = d|ag{5|gn(d}),...,sign(dﬁi)},

I; =TT > 0andh; andh,; are some arbitrary design
parameters to be chosen.

Remark 4.Although only the integral component of
the adaptation algorithm is needed for stability and
exact asymptotic tracking, the use of the proportional
and the proportional delayed terms in the adaptation
algorithm (23) makes it possible to achieve better
adaptation performance than the traditional 1 and PI
schemes. This adaptation algorithm includes the tradi-
tional | and Pl schemes as a special case. The design
parameters,; andh;; are chosen in the same way as
the traditional gaing* andT; in (23).

For the stability analysis we use the following Lyapunov-
Krasovskii type functional

V= Z {Vm + Vi + Z (Vm-j + Vzij)}

J=1,j#i
Vei :6?1:)11611, sz] = Z(;UPZZ]Z€1_]
l;
—Z £ ”\d»(”(t)ﬁf(w
=1
t
+ )ds)
t— hL
V= 3 tr(nmor LDl (1)
j=1,j#i
t

+/ nij(s)Fi_le?;(s)ds) (24)
t—hij;
where i = 05(t) + nf + mi(t) + mi(t — hy)
and Mij = 913( ) + 77%]( ) + 771]( - hu) Di =
diag{|d}|...|d¥|...|d[*!|} andd} are the entries of
D;. The “art|f|C|aI" vector

ni* =ro(2d;) 7ML, 0,..., 0] (25)

has the same dimension @i, andrg is an as yet
unspecified positive constant.




Using (21) and (22) the time derivatives of the com-
ponents of (24) along (20) can be written

%=—¢U@M>
+ Z 2T (t)PBiD; Dyi; LT ¢;(t)
j= 1,3;&1
+ Z 26T (1) P,BiDiCisis Zeij (t)  (26)
Jj=1,j#i
. M
‘/;ij == Z ezg( )Qu] ezg( )
j=1,j#i
M A
+ > 2ZL(t)P.ijBeis L] é5(t)  (27)
j=1,j#i
lL ~
Voi == > () " 1l [205Tnk (1) + 207" T (1)
k=1
+[nf ) +nf(t—h M (28)

V"?ij =—1tr (’I]ij (t)FZDZé?; (t) + éij (t)FT;Dﬂ]g (t))
= [Inij (t) + nij(t = R (29)

Further using (25), (26)—(29) and dropping negative
terms we obtain

V|(2o) <Z {—6

i, b,

)Qiéi(t) — roél P B;BY P,
735 (0)Qzi5 Zeij (1)
é] (t)PiB;D; Dy L é;(t)
eX(t)PiB;D;Cyij Zeij(t)

2Z€’L]( )PZUB¢UL e]( ) (30)

We can estimate the mixed terms of (30) as follows
26T (t)PiB;D; Dy LV ¢5(t)
<el ()P B 1, BT Piéj(t) + 7 (£)Gyé;(t)
26T ()P, BiD;C oy Zeij (t)
<éT( )PB TQUB Piéi(t) + 57,]( )GiZeij(t)
2285(t (t )PZUB¢UL e](t)
)

<ZLi(0)GiZeij(t) + €] (t)Tai5¢5(t)

etj
whereG; = G > 0 is a some constant matrix and
Ty—1 T T
Y1ij =D;Dyi; L"G; ' LD}, D!
Yai; =D;Cyi;G;  Ci; DY
Ysi; =LB;; P.ijG; ' PuijBgi; L*

(1)

(32)

Applying (31) to (30) and selecting values®f, Q);;
and@); from the inequalitiei,j = 1,..., M)
maz (Y135 + Yaij)
)\min (szg) >)\max (2G2)
)\min(Qi) >2)\max (G] + TBji) (33)
where \,,;, (%) and A4, (x) are the minimum and
maximum eigenvalues dk), respectively we obtain

Vo) < — Z(

+-Z Z5,(0)Q=iiZ;(1) <0 (34)
J=1,j#i
This implies (Hale and Lunel, 1993) that and,
therefore 2 (t), e:(t), Zei; (t), 01, 01, 035, 05 € Loo
The remainder of the stability analysis follows dlrectly
using the steps in (loannou and Sun, 1996).

Qz 31

Remark 5.We note that, and the matrice§);; and

Q; are used only for analysis and do not influence
the control law. Decentralized controller gains adjust
automatically to counter the non-desirable effects of
interconnections and parameter uncertainties.

5. ROBUSTNESS OF THE DECENTRALIZED
CONTROLLER

As in adaptive centralized control theory (loannou and
Sun, 1996), the coordinated adaptive controller pro-
posed here can be shown to be robust with respect to
disturbances and unmodeled dynamics by introducing
modifications to the adaptive law. A brief example of
this property is mentioned below where the integral
adaptation law is discussed for ease of exposition.
If disturbancef;(t), (||f:ll < foi) is present in the
subsystems, and e.g.oamodification as in (loannou
and Sun, 1996) is used, the error equation (19) and the
adaptation algorithms (23) can be rewritten as

i(s)SiDi([@lTQh. (:)?Z‘TQZ“] 4 fz(t)

€; ZWm

M
+ Y [Bfwy + dy(s)les)®)])  (35)
j=1,j7i
O (t) = —nf(t) — ol O,
@Z(t) = —n;(t) — Uij@Z; (36)

where f;(t) = ®;(s)f:(t) is guaranted to be bounded
with the boundf,; due to the boundedness §f(t)
and the stability ofb;(s) = I — ®;(s).

Instead ofV;,; andV,,;; in (24) we use the following
functions
li

0= () T Il @ik (o)
k=1
M
Vig = > (i@ D) @7)
Jj=1,j#i



with 78 (t) = 0 (t) + n* andd; (t) = 6,5(t)

Using (35) and (36) and in view of (37) after some

simplifications, we obtain the time derivative of (24)
V<Z[—e (H)Qié4(t) Zak|d|n ik ()
M

8 = > (Z5,0QuZ0(0)

j=1.j#i

— oytr (75 (t) Diiy; (f)))} (38)
where
l;
=f21Gil + > ok el
k=1
M
+ Z O’ijtr(Tlijﬂ]:}T) (39)

j=1,j7#i
Thus, if we selectl),;; and Q; from (33) and the
values ofa andr, from the inequalities

min (Q ) m7n(szj) 0_ ,_y o'zjmm ‘d ‘ ]
Amaz(Pi)? Amaz(Pzij)’ © Npae (D] 'D;)

(40)

o mln[

and

maz (Y145 + Yoij + Tas) (41)

whereYy; = DiGi_lDi we obtain after some manip-
ulations from (38)

M
Vz—aV—!—Zﬂf
i1

(42)

Furthermore, using standard arguments from the ro-

is also shown to be robust to disturbances. This paper
represents the first results for decentralized MRAC of
large-scale system with MIMO subsystems.
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