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Abstract:  This  paper  presents  the gait  pattern generation work  performed for  the  six-
legged robot EA308 developed in our laboratory. The aim is to achieve a dynamically
developing  gait  pattern  generation  structure  using reinforcement  learning.  For  the  six
legged robot  a  simplified simulative model  is  constructed.  The  algorithm constructs  a
radial basis function neural network (RBFNN) to command proper leg configurations to
the simulative robot. The weights of the RBFNN are learned using reinforcement learning.
The  developed  structure  succeeded  in  learning gait  patterns  compatible  with different
speeds of the robot. Copyright © 2005 IFAC
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1. INTRODUCTION

In this work an automatic gait pattern generator for a
six-legged robot  is  constructed  using reinforcement
learning. Gait  is  defined as follows in (Mahajan et
al., 1997): “The gait of an articulated living creature,
or a walking machine, is the corporate motion of the
legs, which can be defined as the time and location of
the placing and lifting of each foot, coordinated with
the motion of the body, in order to move the body
from one place to another.” In the study here,  gait
pattern is considered to be the pattern of sequential
configurations of legs. Configuration of a leg in a gait
pattern refers to its being either in power stroke (the
leg is on the ground and it supports and propels the
body)  or  in  return  stroke  (the  leg  is  lifted  and  it
swings  to  the  starting  position  of  the  next  power
stroke)  (Ferrell,  1995).  In  regular  walking  of  six-
legged insects the gait patterns change according to
the speed of walking (Fig.1(a),  Pfeiffer et al.,  1995).
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In slow walking, insects use gaits in which most of
the legs have contact with the ground (for example
the tetrapod wave gait in which four legs have contact
to  the  ground  at  any  time).  When  the  speed  is
increased  the  gait  changes  towards  the  tripod  gait
where three legs have contact  to the ground at  any
time.  In  Fig.1(b)  a  photo  of  our  robot  EA308  is
depicted while walking in tripod gait.  

In  the  literature  there  exist  two  opposing  models
about how gait control is achieved in nervous system
of  animals,  and  what  is  best  to be applied in multi
legged robots.  The “reflex model” composes of local

(a)                                                  (b)                     
Fig. 1.  (a)  Tetrapod and tripod gaits; (b)  the robot

EA308 while walking in tripod gait.

   



controllers  in  the  legs  utilizing  the  sensory-motor-
feedback between the local agents. The well-known
example  of  reflex  model  controlled  walking is  the
one developed in (Cruse et al., 1998), where the legs
interact with each other via some mechanisms.  The
“Central  Pattern  Generator  (CPG)   model”,  on the
other  hand,  is  based  on  a  feed  forward  central
controller  which generates rhythmic motions of the
legs  without  the  need  of  sensory  feedback.  The
various  applications  of  CPGs  utilizing  oscillatory
neural networks (f.e. Inagaki et al., 2003), are based
on the Pearson model of insect locomotion (Ferrell,
1995).  A  discussion  of  these  two  models  can  be
found in (Donner,  1987;  Klaassen et  al.,  2002),  in
both  of  which  the  authors  argue  that  the  two
approaches should be conciliated in order to achieve
the  best  performance.  The  model  in  this  paper
combines the two approaches, in the sense it  has a
CPG  structure  (the  RBFNN),  which  works  with
sensory  feedback  of  leg  positions,  and  a  dynamic
mechanism that updates this pattern generator based
on some external feedback (reinforcement learning).

In  the  work  here  gait  pattern  generation  and
coordination of actual leg positions are managed at
the same time with a single RBFNN and a simulative
model  of  walking.  The  RBFNN structure  is
composed  of  rules  and  weights.  This  RBFNN will
take  the  actual  positions  of  the  legs  as  input  and
command  the  next  configuration  based  on  these
positions.  Namely,  the  commands  to  regulate  the
swing and stance of legs will be generated according
to the actual leg positions, rather than a predefined
pattern. The simulative model will iterate the position
of legs according to the commands of configuration
coming from the  RBFNN.  The  construction of  the
RBFNN and tuning of its weights with reinforcement
learning will correspond to automatic generation of
the gait pattern, and the incorporation of this network
to  the  simulative  robot  will  correspond  to  the
coordination  of  legs.  The  gaits  resulting  from this
structure  might  be  less  regular  compared  to  the
periodic  insect  gaits.  Due  to  the  reinforcement
learning its structure changes dynamically. This is the
advantage of such a gait controller since it might be
necessary  to  change  the  gait  pattern  according  to
changing environment conditions and walking speed.

2. SIMPLIFIED SIMULATIVE MODEL

The  aim in  this  study  is  restricted  to  gait  pattern
generation in coordination with actual leg positions.
A simplified six-legged robot simulator is developed
to serve for this aim. The main consideration here is
the stability and forwarding of the robot according to
changing leg configurations. In each iteration, a new
leg  configuration  is  constructed.  If  this  new
configuration or the passage to this configuration is
unstable  the  robot  falls  down.  Otherwise,  it  either
goes forward or stays in the same position. In case of
falling down the robot starts its new movement from
the  previous  configuration.  The  amount  of
forwarding  is  determined  by  comparison  of  the
current and previous leg configurations. In (Svinin et

al, 2001) one can find a different “minimal simulation
model”  which  makes  use  of  simplified  forces
resulting from leg movements. Although the idea of
simple  simulative  model  is  derived  from there,  the
model developed here is considerably different. The
model  here  does  not  deal  with  forces  or  dynamic
effects, but only with simplified kinematic result of
changing configurations. The important thing for gait
generation here is the criterion of stability. Therefore
the  model  is  developed  with  the  consideration  of
static  stability.  This  model  suffices  to  test  the  gait
generation  based  on  the  RBFNN  structure  and  to
realize reinforcement learning. 

In Fig. 2(a), the leg numbers used for the six-legged
robot, and the centre of gravity (cg) are shown. In any
leg  configuration  the  legs  may be  either  in  power
stroke  (stance  phase)  or  in  return  stroke  (swing
phase).  This  situation  can  be  expressed  by  the
parameter pi: if pi is 1, the ith leg is in power stroke;
if pi is 0, then the ith leg is in return stroke.

Fig.  2. The  leg  numbers  and  an  example  of
configuration polygon.
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In any configuration the set of legs in power stroke
can be expressed by  Lp={li | pi=1}. The coordinates
of the tip points of the legs in the set of Lp determine
a  polygon which can be expressed  by  ply{Lp}.  For
example, in Fig. 2(b), Lp={l1, l3, l4, l5}, and ply{Lp} is
the  polygon  depicted  with  the  dotted  lines.  If  the
centre of gravity of the robot remains in this polygon
then the configuration is said to be stable, otherwise
the configuration is unstable and the robot falls down.
If the iteration number is designated by n, there will
be  another  Lp(n) set  in  each  nth iteration.  If  the
transition  between the  polygons  is  stable  (polygon
transition stability will be explained in the following
paragraph) it is possible to talk about the stability of
the nth polygon, which will be designated by sply(n):
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The body will go forward according to the sequential
configurations.  For  a  stable  walking,  not  only  the
sequential  configurations,  but  also  the  transitions
between them have to be stable. Transition stability
of the  nth iteration will be designated by  str(n) and
defined as  follows: if  the polygons of the previous
and current configurations have common intersection
points through the centre line of the body, then the
transition between these two configurations is stable,
otherwise it  is  unstable  (Eq.  3,  Fig.  3).  If  the

   



transition  in  the  nth iteration  is  stable  then  str(n)
takes the value 1, otherwise it is 0.
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Fig.  3.  Examples  of  stable  and unstable  transitions
between two configurations.

If  str(n) is equal to  1, this means that the transition
between the (n-1)st and (n)th configurations is stable.
In this case the robot passes to the new configuration
and the body of the robot  forwards either with the
desired  amount,  or  with the  limited amount that is
determined by the two configurations. If the desired
forwarding of the robot is less than what is allowed
by the sequential configurations, then the robot goes
forward in the desired amount. Otherwise, the robot
obeys the limitation of the configurations, and goes
forward  as  much  as  it  is  allowed.  The  maximum
distance to go forward is determined by the minimum
of two parameters limiting the forward motion. These
parameters  are  shown  in  Fig.  4:  limp is  the
normalized distance between the centre of gravity of
the  robot  and  the  most  forward  point  of  the
configuration polygon through the centre line of the
robot body;  liml is the minimum of the normalized
amount of  allowed backward extension of the  legs
(Eq.4).  These  parameters  are  normalized  with  the
maximum possible backward extension of the legs,
max_leglim (it is taken to be 10 units).  leglimi is the
actual  allowed backward extension distance for  the
ith leg. This limit is taken to be the max_leglim when
the leg is in return stroke (in swing stance).

}1p|)max_leglimleglimmin{(lim iil     (4)

After  the  limiting  factors  are  determined  the  body
goes  forward  with  the  amount  determined  by  the
minimum of the normalized desired amount (xd), and
the  limiting factors  (Eq.5).  The  desired  amount  of
going  forward  determines  the  desired  speed  (the
desired amount of  furthering in  each iteration).  Te
positions of the feet that remained on the ground, and
that are newly put on the ground are determined as in
Eq.6.
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Fig. 4. The limiting factors for forward motion.

3. THE RBFNN STRUCTURE FOR GAIT
PATTERN GENERATION

The RBFNN in Fig. 5 is used to construct the new leg
configuration in each step. RBFNNs are proved to be
very suitable  for  systems that  can  be  modelled  by
rule-based  structures.  They  are  proper  for  both
creating  new  rules  and  training  them  within  the
system. Therefore they find applications in robotics
researches (Ilg et al., 1995). In the structure of Fig. 5,
the inner layer neurons represent the rules. The vector
ci determine  the  ith rule.  The  input  to  the  neural
network is designated by  x, and shown as the input
layer of the network. The inputs  to  the  system  are
the  amount  of  current backward extension ranges of
the six  legs  (leglimi,  Fig.  4).  The  closeness of the
input  vector,  x,  to  the  vector  ci will determine the
activation, ai, of the ith rule. If the activation is lower
than a threshold value  (~0.78) that  rule  is  ignored,
and its activation is taken to be  0. The output layer
designates the commands sent to the six legs. The wij

entry of the vector  wj, determines the weight of the
ith rule on the command sent to the jth leg. The sum
of the weighted activities of the N rules by the vector
wj determines weather the jth leg will be in power or
return  stroke  in  the  next  configuration.  If  the
weighted sum for the jth leg is smaller than 0, then pi

will be  0, and the  jth leg will be in return stroke. If
the weighted sum is larger than 0 then the jth leg will
be  in  power  stroke  in  the  next  configuration.  The
parameters of the neural network are given in Eq.7, 8,
9, 10.

Fig.  5.  The  radial  basis  function  neural  network
structure for gait pattern generation.
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4. TRAINING WITH REINFORCEMENT
LEARNING

The aim of the reinforcement learning is to generate
the  best  network  that  will  be  able  to  control  the
walking  of  the  simplified  simulative  model  in  a
desired  velocity.  During  training,  the  RBFNN
described in the previous section will be constructed.
Creation of the new rules and tuning of the weights
are the two tasks of learning. Learning starts with two

   



initial random rules and their initial random weights.
The robot is initiated with the leg configuration of all
six legs in power stroke and all having leglim of half
of the maximum, namely the robot is standing with
all  legs  being  straightly  on  the  ground.  With  the
initial  random  rules  and  weights  the  robot  starts
stepping. If  the stepping is  proper and results  in  a
forward motion then the robot gets a positive reward.
The action with a positive reward is reinforced. If the
stepping is not proper, namely if the robot falls down
or it does not move any distance to the forward, then
the action is punished with a negative reinforcement.
In  this  way the  robot  learns  how to  step  (how to
construct its gait pattern) according to the result of its
actions. During this learning, new rules are added to
the network and the weights of the rules are arranged
according to the reinforcement signals. The learning
is stopped when the robot learns how to walk with
the given desired speed. In other words, the learning
stops  when  the  network,  which  will  create  a  gait
pattern suitable for the stable walking of the robot in
the given speed, is achieved. The success of learning
is determined according to the last fifty steps of the
robot. If the last fifty steps of the robot are all able to
further  the  robot  in  the  desired  amount  (with  the
desired speed) then learning stops, and the resultant
network  is  considered  to  be  the  output  of  the
reinforcement learning. 

A new rule  is  added  to  the network whenever the
input does not correspond to any of the existing rules.
This  means  that  when the  activation  values  of  all
rules are smaller than a predefined value (~0.8), then
a new rule, which represents that input, is added to
the system. (This idea of new rule addition is used
also in (Ilg et al.,  1995) as a strategy for the “self-
organizing of the state space” of the input vectors.)
The  cnew vector  of  the  new  added  rule  is  almost
equalized  to  the  input  vector  x,  therefore  the
activation of the new rule with that input will be very
close to 1. The term almost below is used to mention
that cnew is not totally equalized to the x vector; rather
a gaussian random number with mean 0 and variance
0.05 is added. This random number is added to make
use of the idea of eploration for learning algorithms.
The  wnew vector  is  determined  in  the  way that  the
output of the network with that input will be just the
same as before the new rule was added. 

Tuning of the weights of the rules is performed using
the reinforcement signal, which is constructed based
on the success of the current action. The success of
the  current  action  is  determined  according  to  the
following factors:

1.Stability of the transition.
2.The  amount  of  furthering  and  its  comparison
with the desired amount (xd).
3.Number of legs in power stroke.
4.In case of instability, existing of legs in power
stroke on each side of the robot.

The  reinforcement  signal  in  the  nth iteration  is
described  by r(n),  and  is  given by Eq.  13.  In  this
equation the left side parenthesis gives the main part

of  the  reinforcement,  which  considers  the  stability
and amount of furthering. If the transition is unstable
the  reinforcement  is  highly negative.  But  it  is  still
important  what kind of instability it  is.  If there are
some legs in power stroke on each side of the body
the  situation  is  not  so  bad,  in  the  sense  it  can  be
overcome by adding maybe one more leg to support.
Because  of  that  the  reinforcement  is  higher  (-2.5)
when there is at least one leg on both sides; otherwise
it gets the most negative value (-3.5). In case of stable
transition, the amount of furthering is considered. If
the amount of furthering,  x,  is  0,  reinforcement is
again negative (-2.5). This is because, if the speed is
allowed to be zero in a stable  transition,  the robot
tends to remain in its position. In order to change that
stationary position and make the robot take another
action, the reinforcement is made negative. In case of
a furthering with stable transition, the reinforcement
gets  a  value  determined  by  the  comparison  of  the
actual and desired furthering. The function in the last
row of  the  left  side  is  a  tight  gaussian  around the
desired furthering, with a  minimum value of  (–2.5)
and a maximum value of  (3). The right hand side of
the reinforcement equation is an addition to the main
reinforcement.  This  part  considers  that  the
reinforcement should be increased with the number of
legs in power stroke. This thought is in accordance
with the observation that six-legged insects use gaits
with the most possible number of legs on the ground
(probably  because  of  energy efficiency).  Therefore
they prefer gaits other than the tripod gait for slow
motions. With the term on the right hand side, gaits
with more legs on the ground are reinforced, and in
this way it  is possible to obtain different gaits than
the tripod gait for slower walking of the robot.

The  reinforcement  signal  is  used  to  update  the
weights of the RBFNN. The weight, wij, is updated as
in Eq.11 and Eq.12.
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In Eq.11,  r(n)  is the reinforcement signal due to the
new configuration  applied  at  instant  n. ai(n) is  the
activation of the ith rule, and it represents how much
the  ith rule is  effective in the resultant  action. The
term,  sign(pi(n)-0.5), signifies the position of the  ith
leg  (either  in  power  or  return  stroke)  in  the  new
configuration.  This  term  determines  in  which
direction the weight should be updated (increased or
decreased) in order to strengthen the configuration. 
is  the  coefficient  to  determine  the  step  length  of
updating.  It  is  taken  to be 0.01norm(W), namely
0.01 of  the  largest  singular  value  of  the  weight
matrix. The bottom most term,  normrnd(0,0.01), is a
gaussian random number with mean  0 and standard
deviation 0.01. This term  introduces a small random
deviation for the weights.  The middle line of Eq.11
corresponds  to  the  exploitation of  the  existing
knowledge gained from  the  environment,  while  the
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bottom  line  introduces  a  slight  moment  of
exploration in the field of weights. The final task is
to limit the weights between 1 and 0. Eq.12 performs
this limitation.

5. SIMULATION RESULTS

Here  presented  are  three  simulation  results  of  gait
pattern generation with reinforcement learning. These
three results are obtained for three different velocities
of walking. As mentioned before, besides the stability
of walking,  the desired amount of furthering is also
one  of  the  criteria  that  affect  the  reinforcement
signal.  Since  the  time  of  steps  is  constant  for  all
simulations, the desired amount of furthering can be
taken as an indicator of speed. The variable  v_d in
the simulation results stands for this desired amount
of  furthering  in  each  step  (v_d=xd).  It  can  be
changed in the range  [0, 1],  0 corresponding to no
furthering,  and  1 corresponding  to  the  maximum
possible  amount  of  furthering  determined  by
max_leglim. Another criterion for the reinforcement
signal  is  to  have  as  much  legs  as  possible  in  the
power stroke during the steps of walking. Therefore
the aim of learning is not only to generate a stable
gait,  but  one  that  will  result  in  walking  with  the
desired speed with as much legs as possible in power
stroke.

In the first simulation result  v_d is taken to be  0.9,
which  corresponds  to  a  furthering  of
0.9max_leglim=9  units.  In  other  words,  the
furthering is taken to be  0.9 times of the maximum
possible furthering. This means that, in a continuous
walking of  9 units iteration in each step, any leg on
power stroke has to be in return stroke in the next
step. This is because after an iteration of 9 units, the
leglim of the leg (Fig. 4) will be 1 unit, which is less
than the furthering that will occur in the next step.
The first simulation ended in  147 steps, with a rule
number  of  12.  The  resultant  C  and  W  matrices,
namely the  ci and  wi vectors are given only for the
first  simulation  result,  above  Fig.  6.  The  first  two
rows of  the C matrix correspond to  the two initial
random rules. The resultant gait pattern, namely the
last  28 stroke  positions  of  the  legs,  and  some
sequential slights of the robot EA308 while walking
with this gait pattern are depicted in Fig. 6.  In this
figure black filled circles correspond to the legs in
power stroke  (pi=1) and unfilled circles correspond
to  the  legs  in  return  stroke  (pi=0). As  it  will  be
noticed,  the simulation  ended with the  tripod  gait.
Tripod gait is the only gait with which the robot can
walk with a speed corresponding to  v_d=0.9 (each
leg  has  to  change  its  stroke  in  every  step).  The
“previous  power  stroke”  and  “starting  x vector”
mentioned above the gait figure in the first simulation
result are sample starting values in order to apply the
gait. (Any starting position would not be acceptable

by the gait controller if it is not close to one of the
states memorized by the network).

In the second simulation result v_d is taken to be 0.4,
which means that any leg can stay in power stroke for
at  most  two  iteration  steps.  Fig.  7  shows the  gait
pattern  resulted  with  v_d=0.4.  As  will  be  noticed,
every  leg  stays  in  power  stroke  for  two  steps.
Therefore four legs are in power stroke in each step,
and this satisfies the expectation that as many legs as
possible are in power stroke. In the third simulation
v_d is taken to be  0.1. This means that any leg may
stay  in  power  stroke  for  at  most  ten  steps.  The
resultant  gait  pattern  (Fig.  8)  does  not  satisfy this
expectation totally. However it  is  apparent that  the
legs stay in power stroke much more than the ones in
the  gait  patterns  obtained  for  higher  v_d’s.  The
algorithm is successful in fulfilling the expectation to
a significant degree.

1. Simulation Result for   v_d=0.9  :   

The robot goes forward with a distance of 
0.9max_leglim = 9 units in each step.
rule_number = 12
iteration number = 147

Previous power stroke: [0 1 0 1 0 1]
Starting x vector: [1 0.1 1 0.1 1 0.1]

Fig. 6. Gait pattern generated with v_d = 0.9 and the
robot EA308 walking with this gait.

2. Simulation Result for   v_d=0.4  :   

The robot goes forward with a distance of 
0.4max_leglim = 4 units in each iteration step.
rule_number = 28
iteration number = 450

   

  C=

    0.8983    0.7546    0.7911    0.8150    0.6700    0.2009
    0.2731    0.6262    0.5369    0.0595    0.0890    0.2713
    0.5466    0.4547    0.5446    0.5331    0.4271    0.4526
   -0.0068    0.0318   -0.0001    0.0178   -0.0735    0.0560
    0.0421    1.0188   -0.0167    0.0008    1.0213    0.0724
    0.9609    0.9484    1.0130    0.0121    0.9944    0.0414
    0.0843    0.0346    0.1361    0.9593    0.1285    1.0596
    0.9838    0.0063   -0.0128    0.8184    0.0280    0.9270
    0.9872    1.0197   -0.0529    1.0597    0.0254    0.8981
    0.9619   -0.0338    0.9652    1.0083    0.7978    1.0839
    1.0762    0.9478    0.9648    0.8274    0.0649    0.8398
    1.0108    0.8485    0.0666    0.9083    0.9608    0.8662

  W =

    0.0167   -0.1056    0.4651    0.1706   -0.2618    0.1253
    0.0013   -0.5263    0.5986    0.5289    0.1610   -0.4883
    0.0123    0.1221    0.0246    0.1007   -0.0397   -0.1246
    0.1760   -0.1943   -0.1415   -0.1876    0.1817   -0.0528
    0.1386   -0.1418   -0.1398    0.2837   -0.0180   -0.1034
    0.9871   -0.9901    0.9890   -0.9896    0.9801   -0.9953
   -1.0000    1.0000   -1.0000    1.0000   -1.0000    1.0000
   -0.0599   -0.1274    0.0336   -0.0445   -0.0120   -0.0565
   -1.0000    1.0000   -1.0000    1.0000   -1.0000    1.0000
    0.1737   -0.0560   -0.0111   -0.1211    0.0856   -0.0992
   -0.1164    0.0120    0.0470    0.0761   -0.0518   -0.0568
    0.1345   -0.0150   -0.1259   -0.0608   -0.0777    0.1289



Fig. 7. Gait pattern generated with v_d = 0.4 and the
robot EA308 walking with this gait.

3. Simulation Result for   v_d=0.1  :   

The robot goes forward with a distance of 
0.1max_leglim = 1 units in each iteration step.
rule_number = 14
iteration number = 162

Fig. 8. Gait pattern generated with v_d = 0.1 and the
robot EA308 walking with this gait.

6. CONCLUSION

The algorithm developed here is successful in almost
all epochs to generate  suitable gait patterns for the
given  walking  speeds.  It  is  very  rare  that  the
algorithm cannot  find  a  gait  in  3000 steps.  Three
simulation  results  for  different  walking  speeds  are
given in the paper. The first one is for furthering of
0.9 times of the maximum amount in each step. The
only gait for this speed is the tripod gait (it is well
known that six legged animals use tripod gait for high
speed  walking).  The  reinforcement-learning
algorithm has generated the tripod gait successfully.
The second simulation result is for furthering of  0.4
times  of  the  maximum amount  in  each  step.  The
result is again fulfilling the expectation that each foot
would stay on ground for two steps of iteration. The
third  result  is  for  furthering  of  0.1 times  of  the
maximum amount in each step. In this case it would
be possible for each leg to stay in power stroke for
ten steps.  The resultant gait pattern does not fulfill
this  expectation  totally,  but  it  is  still  successful  to
force the legs to be in power stroke and find gaits in
which more legs are in power stroke compared to the
results with furthering of 0.9 and 0.4. 

The motivation behind the study presented here was
that a robot might need to change its gait according to
some internal (velocity, leg deficiency) and external
(uneven  terrain,  too  smooth  surface,  therefore
necessity of  more legs to  be on ground) effects.  If
these  effects  can  be  modeled  with a  reinforcement
signal then it would be possible to modify the actions
of  the  robot  in  order  to  improve  its  walking  by
changing its gait.  The results of the work presented
here are loaded on the robot EA308, and they are all
successful  to  control  the  robot  with different  gaits.
There are basically three branches of future work of
this  study.  The  first  branch  is  to  improve  the
algorithm in a way that a robot can learn to change its
gait  pattern  in  order  to  adapt  to  continuously
changing speeds.  The  second branch is  to  improve
the  algorithm in a  way that  the  robot  can  learn  to
generate suitable gait patterns in case of deficiency of
one of the legs. The third branch is to supplement the
gait generation module with a turning module. 
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