
DYNAMIC GAIT PATTERN GENERATION WITH REINFORCEMENT LEARNING*

Mustafa Suphi Erden, Kemal Leblebicioğlu

Department of Electrical & Electronics Engineering,
Computer Vision and Intelligent Systems Research Laboratory,

Middle East Technical University, 06531 Ankara, Turkey
Email: suphi@metu.edu.tr, kleb@metu.edu.tr

Abstract: This paper presents the gait pattern generation work performed for the six-
legged robot EA308 developed in our laboratory. The aim is to achieve a dynamically
developing gait pattern generation structure using reinforcement learning. For the six
legged robot a simplified simulative model is constructed. The algorithm constructs a
radial basis function neural network (RBFNN) to command proper leg configurations to
the simulative robot. The weights of the RBFNN are learned using reinforcement learning.
The developed structure succeeded in learning gait patterns compatible with different
speeds of the robot. Copyright © 2005 IFAC

Keywords: Six-legged robot, walking, gait pattern, reinforcement learning, radial basis
function neural network.

1. INTRODUCTION

In this work an automatic gait pattern generator for a
six-legged robot is constructed using reinforcement
learning. Gait is defined as follows in (Mahajan et
al., 1997): “The gait of an articulated living creature,
or a walking machine, is the corporate motion of the
legs, which can be defined as the time and location of
the placing and lifting of each foot, coordinated with
the motion of the body, in order to move the body
from one place to another.” In the study here, gait
pattern is considered to be the pattern of sequential
configurations of legs. Configuration of a leg in a gait
pattern refers to its being either in power stroke (the
leg is on the ground and it supports and propels the
body) or in return stroke (the leg is lifted and it
swings to the starting position of the next power
stroke) (Ferrell, 1995). In regular walking of six-
legged insects the gait patterns change according to
the speed of walking (Fig.1(a), Pfeiffer et al., 1995).

* This research is supported by the research fund of
Middle East Technical University as a scientific research
project: BAP – 2002 – 03 – 01 – 06.

In slow walking, insects use gaits in which most of
the legs have contact with the ground (for example
the tetrapod wave gait in which four legs have contact
to the ground at any time). When the speed is
increased the gait changes towards the tripod gait
where three legs have contact to the ground at any
time. In Fig.1(b) a photo of our robot EA308 is
depicted while walking in tripod gait.

In the literature there exist two opposing models
about how gait control is achieved in nervous system
of animals, and what is best to be applied in multi
legged robots. The “reflex model” composes of local

(a) (b)
Fig. 1. (a) Tetrapod and tripod gaits; (b) the robot

EA308 while walking in tripod gait.

controllers in the legs utilizing the sensory-motor-
feedback between the local agents. The well-known
example of reflex model controlled walking is the
one developed in (Cruse et al., 1998), where the legs
interact with each other via some mechanisms. The
“Central Pattern Generator (CPG) model”, on the
other hand, is based on a feed forward central
controller which generates rhythmic motions of the
legs without the need of sensory feedback. The
various applications of CPGs utilizing oscillatory
neural networks (f.e. Inagaki et al., 2003), are based
on the Pearson model of insect locomotion (Ferrell,
1995). A discussion of these two models can be
found in (Donner, 1987; Klaassen et al., 2002), in
both of which the authors argue that the two
approaches should be conciliated in order to achieve
the best performance. The model in this paper
combines the two approaches, in the sense it has a
CPG structure (the RBFNN), which works with
sensory feedback of leg positions, and a dynamic
mechanism that updates this pattern generator based
on some external feedback (reinforcement learning).

In the work here gait pattern generation and
coordination of actual leg positions are managed at
the same time with a single RBFNN and a simulative
model of walking. The RBFNN structure is
composed of rules and weights. This RBFNN will
take the actual positions of the legs as input and
command the next configuration based on these
positions. Namely, the commands to regulate the
swing and stance of legs will be generated according
to the actual leg positions, rather than a predefined
pattern. The simulative model will iterate the position
of legs according to the commands of configuration
coming from the RBFNN. The construction of the
RBFNN and tuning of its weights with reinforcement
learning will correspond to automatic generation of
the gait pattern, and the incorporation of this network
to the simulative robot will correspond to the
coordination of legs. The gaits resulting from this
structure might be less regular compared to the
periodic insect gaits. Due to the reinforcement
learning its structure changes dynamically. This is the
advantage of such a gait controller since it might be
necessary to change the gait pattern according to
changing environment conditions and walking speed.

2. SIMPLIFIED SIMULATIVE MODEL

The aim in this study is restricted to gait pattern
generation in coordination with actual leg positions.
A simplified six-legged robot simulator is developed
to serve for this aim. The main consideration here is
the stability and forwarding of the robot according to
changing leg configurations. In each iteration, a new
leg configuration is constructed. If this new
configuration or the passage to this configuration is
unstable the robot falls down. Otherwise, it either
goes forward or stays in the same position. In case of
falling down the robot starts its new movement from
the previous configuration. The amount of
forwarding is determined by comparison of the
current and previous leg configurations. In (Svinin et

al, 2001) one can find a different “minimal simulation
model” which makes use of simplified forces
resulting from leg movements. Although the idea of
simple simulative model is derived from there, the
model developed here is considerably different. The
model here does not deal with forces or dynamic
effects, but only with simplified kinematic result of
changing configurations. The important thing for gait
generation here is the criterion of stability. Therefore
the model is developed with the consideration of
static stability. This model suffices to test the gait
generation based on the RBFNN structure and to
realize reinforcement learning.

In Fig. 2(a), the leg numbers used for the six-legged
robot, and the centre of gravity (cg) are shown. In any
leg configuration the legs may be either in power
stroke (stance phase) or in return stroke (swing
phase). This situation can be expressed by the
parameter pi: if pi is 1, the ith leg is in power stroke;
if pi is 0, then the ith leg is in return stroke.

Fig. 2. The leg numbers and an example of
configuration polygon.



 stroke.return in is l ,0

 stroke.power in is l ,1p
i

i
i

 (1)

In any configuration the set of legs in power stroke
can be expressed by Lp={li | pi=1}. The coordinates
of the tip points of the legs in the set of Lp determine
a polygon which can be expressed by ply{Lp}. For
example, in Fig. 2(b), Lp={l1, l3, l4, l5}, and ply{Lp} is
the polygon depicted with the dotted lines. If the
centre of gravity of the robot remains in this polygon
then the configuration is said to be stable, otherwise
the configuration is unstable and the robot falls down.
If the iteration number is designated by n, there will
be another Lp(n) set in each nth iteration. If the
transition between the polygons is stable (polygon
transition stability will be explained in the following
paragraph) it is possible to talk about the stability of
the nth polygon, which will be designated by sply(n):








)}.n(L{plycg,0
)}.n(L{plycg,1

)n(sply
p

p (2)

The body will go forward according to the sequential
configurations. For a stable walking, not only the
sequential configurations, but also the transitions
between them have to be stable. Transition stability
of the nth iteration will be designated by str(n) and
defined as follows: if the polygons of the previous
and current configurations have common intersection
points through the centre line of the body, then the
transition between these two configurations is stable,
otherwise it is unstable (Eq. 3, Fig. 3). If the

transition in the nth iteration is stable then str(n)
takes the value 1, otherwise it is 0.








 .)}1n(L{ply)}n(L{ply0)1n(sply,0
.)}1n(L{ply)}n(L{ply1)1n(sply,1

)n(str
pcenterp

pcenterp


 (3)

Fig. 3. Examples of stable and unstable transitions
between two configurations.

If str(n) is equal to 1, this means that the transition
between the (n-1)st and (n)th configurations is stable.
In this case the robot passes to the new configuration
and the body of the robot forwards either with the
desired amount, or with the limited amount that is
determined by the two configurations. If the desired
forwarding of the robot is less than what is allowed
by the sequential configurations, then the robot goes
forward in the desired amount. Otherwise, the robot
obeys the limitation of the configurations, and goes
forward as much as it is allowed. The maximum
distance to go forward is determined by the minimum
of two parameters limiting the forward motion. These
parameters are shown in Fig. 4: limp is the
normalized distance between the centre of gravity of
the robot and the most forward point of the
configuration polygon through the centre line of the
robot body; liml is the minimum of the normalized
amount of allowed backward extension of the legs
(Eq.4). These parameters are normalized with the
maximum possible backward extension of the legs,
max_leglim (it is taken to be 10 units). leglimi is the
actual allowed backward extension distance for the
ith leg. This limit is taken to be the max_leglim when
the leg is in return stroke (in swing stance).

}1p|)max_leglimleglimmin{(lim iil  (4)

After the limiting factors are determined the body
goes forward with the amount determined by the
minimum of the normalized desired amount (xd), and
the limiting factors (Eq.5). The desired amount of
going forward determines the desired speed (the
desired amount of furthering in each iteration). Te
positions of the feet that remained on the ground, and
that are newly put on the ground are determined as in
Eq.6.








 .0)n(str0
.1)n(str},lim,lim,xdmin{x(n) lp (5)






 .0)1n(p if ,)n(xlimlegmax_

.1)1n(p if ,)n(xlimleg)1n(limleg
i

ii
i 

 (6)

Fig. 4. The limiting factors for forward motion.

3. THE RBFNN STRUCTURE FOR GAIT
PATTERN GENERATION

The RBFNN in Fig. 5 is used to construct the new leg
configuration in each step. RBFNNs are proved to be
very suitable for systems that can be modelled by
rule-based structures. They are proper for both
creating new rules and training them within the
system. Therefore they find applications in robotics
researches (Ilg et al., 1995). In the structure of Fig. 5,
the inner layer neurons represent the rules. The vector
ci determine the ith rule. The input to the neural
network is designated by x, and shown as the input
layer of the network. The inputs to the system are
the amount of current backward extension ranges of
the six legs (leglimi, Fig. 4). The closeness of the
input vector, x, to the vector ci will determine the
activation, ai, of the ith rule. If the activation is lower
than a threshold value (~0.78) that rule is ignored,
and its activation is taken to be 0. The output layer
designates the commands sent to the six legs. The wij

entry of the vector wj, determines the weight of the
ith rule on the command sent to the jth leg. The sum
of the weighted activities of the N rules by the vector
wj determines weather the jth leg will be in power or
return stroke in the next configuration. If the
weighted sum for the jth leg is smaller than 0, then pi

will be 0, and the jth leg will be in return stroke. If
the weighted sum is larger than 0 then the jth leg will
be in power stroke in the next configuration. The
parameters of the neural network are given in Eq.7, 8,
9, 10.

Fig. 5. The radial basis function neural network
structure for gait pattern generation.

 Ti6c,...,i2c,i1cic , i = 1, …, N (7)

 T6wi,...,2wi,1wiiw , i = 1, …, N (8)

 T61 limleg,...,limlegx (9)





 


 

else. ,0

,if ,6/cx1
a

0.78)6/
l licix1(

l
lii

i
 (10)

4. TRAINING WITH REINFORCEMENT
LEARNING

The aim of the reinforcement learning is to generate
the best network that will be able to control the
walking of the simplified simulative model in a
desired velocity. During training, the RBFNN
described in the previous section will be constructed.
Creation of the new rules and tuning of the weights
are the two tasks of learning. Learning starts with two

initial random rules and their initial random weights.
The robot is initiated with the leg configuration of all
six legs in power stroke and all having leglim of half
of the maximum, namely the robot is standing with
all legs being straightly on the ground. With the
initial random rules and weights the robot starts
stepping. If the stepping is proper and results in a
forward motion then the robot gets a positive reward.
The action with a positive reward is reinforced. If the
stepping is not proper, namely if the robot falls down
or it does not move any distance to the forward, then
the action is punished with a negative reinforcement.
In this way the robot learns how to step (how to
construct its gait pattern) according to the result of its
actions. During this learning, new rules are added to
the network and the weights of the rules are arranged
according to the reinforcement signals. The learning
is stopped when the robot learns how to walk with
the given desired speed. In other words, the learning
stops when the network, which will create a gait
pattern suitable for the stable walking of the robot in
the given speed, is achieved. The success of learning
is determined according to the last fifty steps of the
robot. If the last fifty steps of the robot are all able to
further the robot in the desired amount (with the
desired speed) then learning stops, and the resultant
network is considered to be the output of the
reinforcement learning.

A new rule is added to the network whenever the
input does not correspond to any of the existing rules.
This means that when the activation values of all
rules are smaller than a predefined value (~0.8), then
a new rule, which represents that input, is added to
the system. (This idea of new rule addition is used
also in (Ilg et al., 1995) as a strategy for the “self-
organizing of the state space” of the input vectors.)
The cnew vector of the new added rule is almost
equalized to the input vector x, therefore the
activation of the new rule with that input will be very
close to 1. The term almost below is used to mention
that cnew is not totally equalized to the x vector; rather
a gaussian random number with mean 0 and variance
0.05 is added. This random number is added to make
use of the idea of eploration for learning algorithms.
The wnew vector is determined in the way that the
output of the network with that input will be just the
same as before the new rule was added.

Tuning of the weights of the rules is performed using
the reinforcement signal, which is constructed based
on the success of the current action. The success of
the current action is determined according to the
following factors:

1.Stability of the transition.
2.The amount of furthering and its comparison
with the desired amount (xd).
3.Number of legs in power stroke.
4.In case of instability, existing of legs in power
stroke on each side of the robot.

The reinforcement signal in the nth iteration is
described by r(n), and is given by Eq. 13. In this
equation the left side parenthesis gives the main part

of the reinforcement, which considers the stability
and amount of furthering. If the transition is unstable
the reinforcement is highly negative. But it is still
important what kind of instability it is. If there are
some legs in power stroke on each side of the body
the situation is not so bad, in the sense it can be
overcome by adding maybe one more leg to support.
Because of that the reinforcement is higher (-2.5)
when there is at least one leg on both sides; otherwise
it gets the most negative value (-3.5). In case of stable
transition, the amount of furthering is considered. If
the amount of furthering, x, is 0, reinforcement is
again negative (-2.5). This is because, if the speed is
allowed to be zero in a stable transition, the robot
tends to remain in its position. In order to change that
stationary position and make the robot take another
action, the reinforcement is made negative. In case of
a furthering with stable transition, the reinforcement
gets a value determined by the comparison of the
actual and desired furthering. The function in the last
row of the left side is a tight gaussian around the
desired furthering, with a minimum value of (–2.5)
and a maximum value of (3). The right hand side of
the reinforcement equation is an addition to the main
reinforcement. This part considers that the
reinforcement should be increased with the number of
legs in power stroke. This thought is in accordance
with the observation that six-legged insects use gaits
with the most possible number of legs on the ground
(probably because of energy efficiency). Therefore
they prefer gaits other than the tripod gait for slow
motions. With the term on the right hand side, gaits
with more legs on the ground are reinforced, and in
this way it is possible to obtain different gaits than
the tripod gait for slower walking of the robot.

The reinforcement signal is used to update the
weights of the RBFNN. The weight, wij, is updated as
in Eq.11 and Eq.12.

)01.0(normrnd
)n(a)5.0)n(p(sign)n(r

)n(w)1n(temp_w
ii

ijij







 (11)
) 1 ,)1 ,)1n(temp_w (max (min)1n(w ijij  (12)

In Eq.11, r(n) is the reinforcement signal due to the
new configuration applied at instant n. ai(n) is the
activation of the ith rule, and it represents how much
the ith rule is effective in the resultant action. The
term, sign(pi(n)-0.5), signifies the position of the ith
leg (either in power or return stroke) in the new
configuration. This term determines in which
direction the weight should be updated (increased or
decreased) in order to strengthen the configuration. 
is the coefficient to determine the step length of
updating. It is taken to be 0.01norm(W), namely
0.01 of the largest singular value of the weight
matrix. The bottom most term, normrnd(0,0.01), is a
gaussian random number with mean 0 and standard
deviation 0.01. This term introduces a small random
deviation for the weights. The middle line of Eq.11
corresponds to the exploitation of the existing
knowledge gained from the environment, while the

 
35.0 strokepower in

 legs of number

 1 strn(n),0x ,5.25.5)05.02/()x-x(- exp
0x 2.5,-

0 strn(n), sidesboth on legs some 2.5,
 sidesthe of one on leg no 3.5,

)n(r
22

d

























































 (13)
bottom line introduces a slight moment of
exploration in the field of weights. The final task is
to limit the weights between 1 and 0. Eq.12 performs
this limitation.

5. SIMULATION RESULTS

Here presented are three simulation results of gait
pattern generation with reinforcement learning. These
three results are obtained for three different velocities
of walking. As mentioned before, besides the stability
of walking, the desired amount of furthering is also
one of the criteria that affect the reinforcement
signal. Since the time of steps is constant for all
simulations, the desired amount of furthering can be
taken as an indicator of speed. The variable v_d in
the simulation results stands for this desired amount
of furthering in each step (v_d=xd). It can be
changed in the range [0, 1], 0 corresponding to no
furthering, and 1 corresponding to the maximum
possible amount of furthering determined by
max_leglim. Another criterion for the reinforcement
signal is to have as much legs as possible in the
power stroke during the steps of walking. Therefore
the aim of learning is not only to generate a stable
gait, but one that will result in walking with the
desired speed with as much legs as possible in power
stroke.

In the first simulation result v_d is taken to be 0.9,
which corresponds to a furthering of
0.9max_leglim=9 units. In other words, the
furthering is taken to be 0.9 times of the maximum
possible furthering. This means that, in a continuous
walking of 9 units iteration in each step, any leg on
power stroke has to be in return stroke in the next
step. This is because after an iteration of 9 units, the
leglim of the leg (Fig. 4) will be 1 unit, which is less
than the furthering that will occur in the next step.
The first simulation ended in 147 steps, with a rule
number of 12. The resultant C and W matrices,
namely the ci and wi vectors are given only for the
first simulation result, above Fig. 6. The first two
rows of the C matrix correspond to the two initial
random rules. The resultant gait pattern, namely the
last 28 stroke positions of the legs, and some
sequential slights of the robot EA308 while walking
with this gait pattern are depicted in Fig. 6. In this
figure black filled circles correspond to the legs in
power stroke (pi=1) and unfilled circles correspond
to the legs in return stroke (pi=0). As it will be
noticed, the simulation ended with the tripod gait.
Tripod gait is the only gait with which the robot can
walk with a speed corresponding to v_d=0.9 (each
leg has to change its stroke in every step). The
“previous power stroke” and “starting x vector”
mentioned above the gait figure in the first simulation
result are sample starting values in order to apply the
gait. (Any starting position would not be acceptable

by the gait controller if it is not close to one of the
states memorized by the network).

In the second simulation result v_d is taken to be 0.4,
which means that any leg can stay in power stroke for
at most two iteration steps. Fig. 7 shows the gait
pattern resulted with v_d=0.4. As will be noticed,
every leg stays in power stroke for two steps.
Therefore four legs are in power stroke in each step,
and this satisfies the expectation that as many legs as
possible are in power stroke. In the third simulation
v_d is taken to be 0.1. This means that any leg may
stay in power stroke for at most ten steps. The
resultant gait pattern (Fig. 8) does not satisfy this
expectation totally. However it is apparent that the
legs stay in power stroke much more than the ones in
the gait patterns obtained for higher v_d’s. The
algorithm is successful in fulfilling the expectation to
a significant degree.

1. Simulation Result for v_d=0.9 :

The robot goes forward with a distance of
0.9max_leglim = 9 units in each step.
rule_number = 12
iteration number = 147

Previous power stroke: [0 1 0 1 0 1]
Starting x vector: [1 0.1 1 0.1 1 0.1]

Fig. 6. Gait pattern generated with v_d = 0.9 and the
robot EA308 walking with this gait.

2. Simulation Result for v_d=0.4 :

The robot goes forward with a distance of
0.4max_leglim = 4 units in each iteration step.
rule_number = 28
iteration number = 450

 C=

 0.8983 0.7546 0.7911 0.8150 0.6700 0.2009
 0.2731 0.6262 0.5369 0.0595 0.0890 0.2713
 0.5466 0.4547 0.5446 0.5331 0.4271 0.4526
 -0.0068 0.0318 -0.0001 0.0178 -0.0735 0.0560
 0.0421 1.0188 -0.0167 0.0008 1.0213 0.0724
 0.9609 0.9484 1.0130 0.0121 0.9944 0.0414
 0.0843 0.0346 0.1361 0.9593 0.1285 1.0596
 0.9838 0.0063 -0.0128 0.8184 0.0280 0.9270
 0.9872 1.0197 -0.0529 1.0597 0.0254 0.8981
 0.9619 -0.0338 0.9652 1.0083 0.7978 1.0839
 1.0762 0.9478 0.9648 0.8274 0.0649 0.8398
 1.0108 0.8485 0.0666 0.9083 0.9608 0.8662

 W =

 0.0167 -0.1056 0.4651 0.1706 -0.2618 0.1253
 0.0013 -0.5263 0.5986 0.5289 0.1610 -0.4883
 0.0123 0.1221 0.0246 0.1007 -0.0397 -0.1246
 0.1760 -0.1943 -0.1415 -0.1876 0.1817 -0.0528
 0.1386 -0.1418 -0.1398 0.2837 -0.0180 -0.1034
 0.9871 -0.9901 0.9890 -0.9896 0.9801 -0.9953
 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000
 -0.0599 -0.1274 0.0336 -0.0445 -0.0120 -0.0565
 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000
 0.1737 -0.0560 -0.0111 -0.1211 0.0856 -0.0992
 -0.1164 0.0120 0.0470 0.0761 -0.0518 -0.0568
 0.1345 -0.0150 -0.1259 -0.0608 -0.0777 0.1289

Fig. 7. Gait pattern generated with v_d = 0.4 and the
robot EA308 walking with this gait.

3. Simulation Result for v_d=0.1 :

The robot goes forward with a distance of
0.1max_leglim = 1 units in each iteration step.
rule_number = 14
iteration number = 162

Fig. 8. Gait pattern generated with v_d = 0.1 and the
robot EA308 walking with this gait.

6. CONCLUSION

The algorithm developed here is successful in almost
all epochs to generate suitable gait patterns for the
given walking speeds. It is very rare that the
algorithm cannot find a gait in 3000 steps. Three
simulation results for different walking speeds are
given in the paper. The first one is for furthering of
0.9 times of the maximum amount in each step. The
only gait for this speed is the tripod gait (it is well
known that six legged animals use tripod gait for high
speed walking). The reinforcement-learning
algorithm has generated the tripod gait successfully.
The second simulation result is for furthering of 0.4
times of the maximum amount in each step. The
result is again fulfilling the expectation that each foot
would stay on ground for two steps of iteration. The
third result is for furthering of 0.1 times of the
maximum amount in each step. In this case it would
be possible for each leg to stay in power stroke for
ten steps. The resultant gait pattern does not fulfill
this expectation totally, but it is still successful to
force the legs to be in power stroke and find gaits in
which more legs are in power stroke compared to the
results with furthering of 0.9 and 0.4.

The motivation behind the study presented here was
that a robot might need to change its gait according to
some internal (velocity, leg deficiency) and external
(uneven terrain, too smooth surface, therefore
necessity of more legs to be on ground) effects. If
these effects can be modeled with a reinforcement
signal then it would be possible to modify the actions
of the robot in order to improve its walking by
changing its gait. The results of the work presented
here are loaded on the robot EA308, and they are all
successful to control the robot with different gaits.
There are basically three branches of future work of
this study. The first branch is to improve the
algorithm in a way that a robot can learn to change its
gait pattern in order to adapt to continuously
changing speeds. The second branch is to improve
the algorithm in a way that the robot can learn to
generate suitable gait patterns in case of deficiency of
one of the legs. The third branch is to supplement the
gait generation module with a turning module.

REFERENCES

Cruse, H., T. Kindermann, M. Schumm, J. Dean and
J. Schmitz (1998). Walknet-a biologically inspird
network to control six legged walking. Neural
Networks, 11:1435-1447.

Ferrell, C. (1995). A comparison of three insect-
inspired locomotion controllers. Robotics and
Autonomous Systems, 16:135-159.

Ilg, W. and K. Bernes (1995). A learning architecture
based on reinforcement learning for adaptive
control of the walking machine LAURON.
Robotics and Autonomous Systems, 15:321-334.

Mahajan, A. and F. Figueroa (1997). Four-legged
intelligent mobile autonomous robot. Robotics
and Computer Integrated Manufacturing, 13(1):
51-61.

Pfeiffer, F., J. Eltze and H.-J. Weidemann (1995).
Six-legged technical walking considering
biological principles. Robotics and Autonomous
Systems, 14:223-232.

Svinin, M.M., K. Yamada and K. Ueda (2001).
Emergent synthesis of motion patterns for
locomotion robots. Artificial Intelligence in
Engineering, 15:353-363.

Klaassen, B., R. Linnemann, D. Spenneberg and F.
Kirchner (2002). Biomimetic walking robot
SCORPION: Control and modeling. Robotics
and Autonomous Systems, 41:69-76.

Inagaki, S., H. Yuasa and A. Tamio (2003). CPG
model for autonomous decentralized multi-legged
robot system–generation and transition of
oscillation patterns and dynamics of oscillators.
Robotics and Autonomous Systems, 44:171-179.

Donner, M.D. (1987). Real Time Control of Walking,
Boston: Birkhäuser, pp. 7-16.

