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Abstract: The problem of decentralized robust tracking and model following is
considered for a class of uncertain large scale systems. In this paper, it is assumed
that the upper bounds of the uncertainties and external disturbances are unknown.
A modified adaptation law with o—modification is introduced to estimate such
unknown bounds, and on the basis of the updated values of these unknown
bounds, a class of decentralized local state feedback controllers is constructed for
robust tracking of dynamical signals. It is shown that the proposed decentralized
adaptive robust tracking controllers can guarantee that the tracking errors between
each subsystem and the corresponding local reference model decrease uniformly
asymptotically to zero. Copyright © 2005 IFAC
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1. INTRODUCTION

The robust tracking and model following problem
for composite dynamical systems with significant
uncertainties has been widely investigated over
the last decades. Some approaches to tracking
dynamical signals in such uncertain dynamical
systems have been developed (see, e.g., (Hopp
and Schmitendorf, 1990), (Wu, 2000b), (Shyu and
Chen, 1995), (Oucheriah, 1999), and the refer-
ences therein). In recent years, there also are some
works in which the problem of decentralized ro-
bust tracking and model following is considered
for uncertain large scale systems. In (Shigemaru
and Wu, 2001), for example, the problem of de-
centralized robust tracking and model following
for large scale interconnected systems with un-
certainties is considered, and a class of continu-
ous (nonlinear) decentralized state feedback con-
trollers is proposed. It is also shown in (Shigemaru
and Wu, 2001) that the proposed decentralized
robust tracking controllers can guarantee that

the tracking errors between each subsystem and
the corresponding local reference model decrease
asymptotically to zero.

It is well known that in the control literature,
for dynamical systems with uncertainties and ex-
ternal disturbances, the upper bounds of uncer-
tainties and external disturbances are generally
supposed to be known, and such bounds are
employed to construct some types of stabilizing
feedback controllers. However, in a number of
practical control problems, such bounds may be
unknown, or be partially known. Specially, in the
problem of robust tracking and model following,
it is also difficult to evaluate the upper bounds
of uncertainties and external disturbances. There-
fore, adaptive schemes should be introduced to
update these unknown bounds. For such uncertain
systems, several types of adaptive robust state
feedback controller have been proposed (see, e.g.,
(Brogliato and Neto, 1995), (Choi and Kim, 1993),
(Wu, 1999), (Wu, 2000a) ). In particular, in a



recent paper (Wu, 2004), the problem of adap-
tive robust tracking and model following is con-
sidered for uncertain time—delay dynamical sys-
tems. However, few efforts are made to consider
the problem of decentralized robust tracking and
model following for uncertain large scale systems
with the unknown bounds of uncertainties and
external disturbances.

In this paper, similar to (Shigemaru and Wu,
2001), the problem of decentralized robust track-
ing and model following is also considered for a
class of large scale interconnected systems with
time—varying uncertain parameters and external
disturbance. It is assumed that the upper bounds
of the uncertainties and external disturbances are
unknown. For such a class of uncertain large scale
systems, some decentralized local state feedback
controllers will be developed for robust tracking
of dynamical signals. For this purpose, similar
(Wu, 2004), a class of modified adaptation laws
with o—modification is first introduced to esti-
mate the unknown bounds of the uncertainties
and external disturbances. Then, by making use
of the updated values of these unknown bounds
a class of decentralized adaptive robust tracking
controllers is constructed. It will be shown that by
employing the proposed decentralized adaptive ro-
bust tracking controllers, one can guarantee that
the tracking errors between each subsystem and
the corresponding local reference model decrease
uniformly asymptotically to zero. That is, it is
possible for each subsystem to tracks exactly the
given local reference system.

2. PROBLEM FORMULATION

Consider an uncertain large scale system S com-
posed of NN interconnected subsystems S;,¢ =
1,2,---, N, described by

dl‘z(t) B ) . '
—a = LA A ()
N
+ A (G D) (1) + wilgist) (1a)
yi(t) = Cix;i(t) (1b)

where z;(t) € R™ is the state vector, u;(t) € R™:
is the control (or input) vector, y;(t) € RY is
the output vector, and A;, B;, C; are known
constant matrices of appropriate dimensions. In
particular, A;;(-) stands for the extent of inter-
connection between S; and S;, and are assumed
to be continuous in all their arguments. AA4;(-),
AB;(+) represent the uncertainties of the systems,
and are also assumed to be continuous in all
their arguments. Moreover, the uncertain param-
eters (vi, v, G, ;) € ¥; C RY are Lebesgue

measurable and take values in a known compact
bounding set 2;. In this paper, z(t) € R™ denotes

[xir(t) I‘T(t)]T, where n =ny +---+n,.

N
On the other hand, for each i € {1,2,---, N}, the
reference sign g;(¢), which should be followed by
the output y;(¢) of each subsystem S;, is assumed
to be the output of a reference model S; described
by the differential equation of the form:

0
dt

= Aiz:(t),  0:(t) = Cigi(t)  (2)

where #;(t) € R™ is the state vector of the refer-
ence model, §;(t) € R% is the output vector of the
reference model, and /L, C; are known constant
matrices of appropriate dimensions. Here, §;(t)
has the same dimension as y;(t), i.e. I, = 1.
Furthermore, it is required that the model state
must be bounded, i.e. for each reference model
S;, i€ {1,2,..., N}, there exists a finite positive
constant M; such that for all ¢ > to, ||Z:(¢)]| <
M;, ie{1,2,---,N}.

As pointed out in (Hopp and Schmitendorf, 1990),
not all models of the form given in (2) can be
tracked by a corresponding subsystem given in
(1) with a feedback controller. Similar to (Hopp
and Schmitendorf, 1990), in this paper, the re-
quirement for the developed decentralized local
controller to track the model described by (2)
is the existence of the matrices G; € R™*™
H; € R™*" guch that for each i € {1,2,..., N},
the following matrix algebraic equation holds.

G;A;

Ci

A; B;
C; 0

G;

M 3)

For each i € {1,2,..., N}, if a solution cannot be
found to satisfy this algebraic matrix equation,
a different model or output matrix C; must be
chosen. In particular, the approach to finding
the solution to (3) is also discussed in detail in
(Hopp and Schmitendorf, 1990) and (Shyu and
Chen, 1995).

Provided that all states are available, the decen-
tralized local state feedback controller for each
subsystem can be represented by a function:

ui(t) = pi(ﬂfi(t),t), 1€ {1,2,...,N} (4)
Now, the question is how to synthesize a decen-
tralized local state feedback controller u;(t) such
that the output y;(t) of each subsystem follows the
output g;(t) of the corresponding local reference
model.

In this paper, for (1) the following standard as-
sumptions are introduced.

Assumption 2.1. For any i € {1,2,---, N}, the
pair (A;, B;) is completely controllable.



Assumption 2.2. For all (v;, v;, ;, qi) €
U,;, i€ {l,2,...,N}, there exist some continuous
and bounded matrix functions N;(-), E;(-), D;;(+),
w;(+) of appropriate dimensions such that for each
i€{L,2,...,N},

AA;(vi,t) = B;N;(v;, t)

AB;(vi,t) = B;E;(v;,t)
A;i (¢, t) =B;D; (¢, 1), j=1,2,...,N
wi(qi, ) = Bibi(qi, 1)

Remark 2.1. Tt is obvious that Assumption 2.2
defines the matching condition about the uncer-
tainties and external disturbance, and is a rather
standard assumption for robust control problem
(see, e.g., (Hopp and Schmitendorf, 1990), (Wu,
2000b), (Oucheriah, 1999), (Choi and Kim, 1993),
and the references therein). It is well known that
these matching conditions restrict the structure of
each subsystem by stipulating that all uncertain-
ties and interconnections should fall into the range
space of the control vector B;. However, this fact
is true for a large class of systems, particularly
mechanical systems.

For convenience, the following notations are in-
troduced which represent the bounds of the un-
certainties and external disturbances.

pilt) 1= max [ Ni(wi, 1)
pis (6) = max [ D, D),
wi(t) = mae 405, )

1
i(t) :=min | —
wi(t) Hlllln 5

j=1,2,...,N

>\min (Ez(Vlat) + Ez—r(ylﬂt))

Here, the functions p;(t), pi;i(t), k:(t), pi(t) are
assumed to be unknown. Moreover, the uncertain
pi(t), pij(t), Ki(t), ui(t) are also assumed, without
loss of generality, to be uniformly continuous and
bounded for any t € RT.

By employing the notations given above, for (1)
the following standard assumption is introduced.

Assumption 2.3. For every ¢t > to, pi(t) >
~1, ie{1,2,...,N}.

Remark 2.2. It is well known that in (Shigemaru
and Wu, 2001), the upper bounds of the uncer-
tainties and external disturbances are assumed
to be known, and such bounds are employed to
construct their decentralized local robust track-
ing controllers. That is, p;(t), pi;(t), K:i(t), pi(t),
are assumed to be the known continuous and
bounded functions, and the proposed decentral-
ized robust tracking control schemes include such
bounds p;(t), pij(t), ki(t), wi(t). In this paper,
it has been assumed for the bounds p;(t), pi;(t),
k;(t), p;i(t) to be unknown. For such a problem of
decentralized robust tracking and model follow-

ing, a class of decentralized local adaptive robust
tracking controllers will be proposed. It will be
also show that the proposed decentralized track-
ing controller can guarantee that tracking errors
between each subsystem and the local reference
model decrease to zero asymptotically.

On the other hand, it follows from Assumption 2.1
that for any given positive constant 7; and positive
definite matrix @; € R™*™ the algebraic Riccati
equation of the form

Al P+ PiA; —n;PB;B[ P, = —Q;  (5)

has a solution P; € R™*™  which is also a positive
definite matrix.

3. MAIN RESULTS

In this section, a class of decentralized local adap-
tive robust state feedback controllers is proposed,
which can guarantee that (i) the output y;(t) of
each subsystem follows the output g;(t) of the
corresponding local reference model and (ii) the
tracking error decreases asymptotically to zero.
For this, let the tracking error between each sub-
system and the local reference model be defined
as

ei(t) = yi(t) —u:(t), ie€{1,2,...,N} (6)

then the decentralized local state feedback track-
ing control laws can be constructed as

Uz(t) = Hzi'z(t) +ﬁi(t)7 7N} (7)

where H; € R™i*" is assumed to be satisfy the
matrix algebraic equation described by (3), and
pi(t) is auxiliary control function which will be
given later.

i€{1,2,...

Here, for each subsystem, a new state vector
zi(t), i € {1,2,..., N}, is first defined as follows:

Z,(t) = .Z‘Z(t) - Gzi‘l(t) (8)

where G; € R™*™ is still assumed to be satisfy
the algebraic equation described by (3).

It can be obtained from (3) and (8) that the
relationship between the tracking error e;(t) and
the auxiliary state vector z;(t) is as follows.

€i(t) = C’izi(t), 1€ {1,2,...,N} (9)

For each subsystem, applying (7) to ( ) yields an

auxiliary subsystem S;, i € {1,2,..., N}, of the
form:

dZi (t)
dt

= [AZ + AAi(Ui,t) ] Zz(t)
N
+[Bi + AB;(vi, 1) | pi(t) + ZAz’j(Ci,t)Zj(t)

+9i(vi, i, G, @iy T4y 1) (10)



where
9i(vi, vi, Ci, Gi, Tiy 1)
= [AAZ(UZ, t)G, + ABi(l/i, t)Hi ] Cﬁz(t)

N
+> Ay (G DG 3 (1) +wilg,t) (1)

=1

Then, by making use of the matching condition
(see Assumption 2.2), (11) can be reduced to

9i(*) = BiFi(") (12)
where
F;(vi,vi, G, qi, &4y t)
= [ Ni(vi, )G, + E;(v;, t)H; | 2;(¢)

N
+ 3 Dij (G G55 (t) + bi(gi,t)  (13)

=1

Furthermore, for (13) the following notation is
introduced.

Bi(t) = max{||Fi(Ui,Vi,Ci,Qi,§3i,t)|| :
(Vi Vi, Giy ¢i) € Vs, ||55i(t)|| <M, te R+}

Here, the uncertain §;(t) is still assumed to be
uniformly continuous and bounded.

In this paper, since the bounds p;(t), pi; (t), pi(t),
Bi(t) have been assumed to be continuous and
bounded for any ¢ € RT, it can be supposed that
there exist some positive constants p;, pJ;, 17, 57,
which are defined by

p; :=max {p;(t): t€ R}
pi; =max {p;(t): t € R}
pi=min{p;(t): te RT} > -1
Bf :=max {Bi(t): t€ R"}

Here, it is worth pointing out that the constants

pis Pij» M5, Bf, are still unknown. Therefore, such
unknown bounds can not be directly employed
to construct the decentralized robust tracking

controllers.

Without loss of generality, the following definition
is also introduced:

N

1
P = W<1+(p3)2+j§1: (Pfj)2> (14a)
. B
o= (14b)

where for any ¢ € {1,2,...,N}, ¢* and ¢* are
obviously unknown positive constants.

Now, the auxiliary control function p;(t) is given
as follows. That is, for any i € {1,2,..., N},

pi(t) = pa(zi(t),t) + pia(2i(t), 1) (15a)
where p;1(-) and p;2(+) are given by
pi(ai(0),0) = = (OB Pezi(t)  (150)
__ #®B Pz
| B Piz;i(t)|| i () +0:(t)

pi2(zi(t), 1) = (15¢)
and where o;(t) € RT is any positive uniform
continuous and bounded function which satisfies

¢
lim [ o;(r)dr < &, < o (15d)

t—oco
to
where &; is any positive constant. Here for any
i € {1,2,...,N}, P, € R™*™ ig the solution
of the Riccati equation described by (5), 7; is a
positive constant which is chosen such that

Qi—(1+Ny™ 'L >0 (15e)
where 1 := min{n;, i =1,2,...,N}.
In particular, for any ¢ € {1,2,..., N}, 1/31() and
¢i(+) in (15) are, respectively, the estimates of

the unknown %] and ¢, which are, respectively,
updated by the following adaptive laws:

%}ﬂ = _'Yio'i(t)'ﬁ[;i(t)‘i‘ni% B;PiZi(t) ||2 (16a)
%t(t) = —mio;(t)$i(t)+m; || B{ Pizi(t)|| (16D)

VYhere Yis M; are any positive constants, and
¥;(to), ¢i(to) are finite.

Moreover, let ¢(t) € RN and ¢(t) € RN de-
-

Ve (1)

~

note, respectively, ¢(t) := [gf;l(t)
and §(t) = [d(t) -+ By (t)]T

For each auxiliary subsystem, applying the auxil-
iary control function given in (15) to (10) yields
the following closed—loop auxiliary subsystem:

dZi (t)

= 1 RTp| ..
dt |:Al 2 n2¢2(t)BzBi P1:| Zl(t)

+|A4:0) - Fud OB, OBT Py 50
+ [B,» + AB; (v, t)] pin(zi(1), )

N
+ Z Aij (G 1)z (t) + gi(vis vi, G,y 4, T4, ) (17)
j=1
On the other hand, letting ;(t) = ;(t) — ¥ and
@i(t) = ¢i(t) — ¢F, the adaptive laws given in (16)
can rewritten as the following error system:

dii(t)

= e (O%i)+ne | BT Pz

=0 ()Y (18a)



dei(t) _ b
— = ~mioi(t)¢i(t) +m;
—m;oi(t)¢*
Here, ¢(t) € RN and ¢(t) € RN denote, respec-
B ) . 4T N
tively, (1) = [d1(t) -+ ¥, ()] and G(t) =
[y - d.0]

In the following, (z,, $)(t) denotes a solution of
the closed—loop auxiliary system and the error sys-
tem. Then, the following theorem can be obtained.

Theorem 3.1. Consider the adaptive closed—
loop auxiliary system described by (17) and (18),
which satisfies Assumptions 2.1 to 2.3. Then, the
solutions (2,1, @) (t; to, z(te), ¥(to), d(to)) of the
closed-loop auxiliary system described by (17) and
the error system described by (18) are uniform
bounded and

(18b)

Jim z(t; to,2(t0)) = 0 (19)

Proof : For the adaptive closed—loop auxiliary
system described by (17) and (18), a Lyapunov
function candidate is fist defined as follows.

N

1 - W\l
+ T O+ p) ()
+oT (8 (I +p*)M o(t)  (20)
where for each i € {1,2,..., N}, P; is the solution
to (5), and (I +p*) € RN*N, T—1 ¢ RN*N

M~ € RV*N are positive definite matrices which
are defined by

(I+p*):=diag{(1+p}), ..., (1+p%)}
rt ::diag{yfl, ce U }
Mt ::diag{mfl, cery m;l}

Let (z(t), ¥(t), ¢(t)) be the solutions to (17) and
(18) for t > to. Then by taking the derivative of
V(-) along the trajectories of (17) and (18), and
by making use of some trivial manipulations, it is
obtained that
o N
dV(Za dja (b) T
— < ; —2; (H)Qizi(t)

+; 8| +2p;

—m’i[h’(t)(l + 1) ||B:Pi2i(t)||2

_ 2080 (Lt ) | BT Piza(o)|]
|BI Pizi(t)|| 6i(t) + o:(t)

)|z

s Pizi

Jj=1

T @) (14 pryr 20
1267 (0)(1+ ) 20D (21)

Notice the fact that for any positive constant
c>0,

1
2ab < —a? + cb?,

VYa, b > 0
c
Then, it can be further obtained from (21) that
for any t > to,
W 0.0) Z{ (0= (1)
+ (L4 p5) | —natdi(t) ||BiTPiZi||2+77i¢f BiTPiZi||2
72 Tp.,. |2
- 2T¢i OB Pl o B Piz|
1B Pizil| 6i(t) + oi(1)
V1 dl/h( )
d
F2(1+ )i i) ¢df)} (22)
where QZ = Q; — 77_1(1 + N)I; > 0.

Notice that the facts that

~

bilt) = ilt) +bF, Gilt) = dilt) +

it follows from (18) and (22) that

) N
WEO) < .., O+ 3 ey (3)
where

- ~ ~ T
t)=1[27(t) ¥T(t) ¢ ()]
_ 1 * « *
i :Z(l‘*‘lh‘) [84‘ | |2 +2|¢i|2:|
T min{ Amin (Q) i=1,...,N }
On the other hand, in the light of the definition,
given in (20), of Lyapunov function, there always

exist two positive constants dpmin and dnax such
that for any ¢ > t,

Nz < V(E®) < 0201 (24)
where
A IZE)) 2= Gomin |2
A (IZO) = Smax 2]

Then, in the light of (23) and (24), by employ-
ing the known method (see, e.g. (Wu, 2004)),
it can be easily shown that the solutions Z(t)
of the adaptive closed—loop auxiliary system are



uniformly bounded, and that the auxiliary state
z(t) converges asymptotically to zero. Thus, the
proof of this theorem can be completed. VVV

Thus, from Theorem 3.1, the following theorem
can be obtained, which shows that by employing
the decentralized local controllers described in (7)
with (15) and (16), one can guarantee the zero—
error tracking between each subsystem and the
local reference model.

Theorem 3.2. Consider the model following
problem of uncertain large scale system (1) sat-
isfying Assumptions 2.1 to 2.8. Then, by using
the decentralized local state feedback controllers
u;(t) described in (7) with (15) and (16), one
can guarantee that the tracking error e;(t), i €
{1,2,...,N}, between each subsystem and local
reference model, decreases uniformly asymptoti-
cally to zero.

Proof : It has been shown in Theorem 3.1 that
each adaptive closed-loop auxiliary subsystem
described by (17) and (18) is uniformly bounded
and their auxiliary states can converge uniformly
asymptotically to zero. That is, for the auxiliary
state z;(t), it can be obtained that

)l{&“zl(t)” =0, i€{l,2,...,N}

Then, it can easily be obtained from the re-
lationship between e;(t) and z;(t), ie. e;(t) =
C;zi(t), that each local tracking error e;(t), ¢ €
{1,2,..., N}, also decreases uniformly asymptot-
ically to zero. \YAYAY

Remark 3.1. In a recent paper (Wu, 2004), the
adaptation laws with o—modification have been
improved to guarantee an asymptotic stability re-
sult. In this paper, the improved adaptation laws,
described by (16), are extended to the problem
of decentralized robust tracking model following
for uncertain large scale interconnected systems
to develop a class of decentralized local adaptive
robust tracking controllers.

Remark 3.2. In order to illustrate the validity
of the results obtained in the paper, a numerical
example is also given, and the simulation is carried
out. It is known from the results of the simulation
that the proposed decentralized adaptive robust
tracking controllers can indeed guarantee that
the tracking errors between each subsystem and
the corresponding local reference model decrease
uniformly asymptotically to zero. (The details
of the illustrative numerical example and the
figures of the simulation will be displayed in the
presentation.)

4. CONCLUDING REMARKS

The problem of decentralized robust tracking and
model following for a class of large scale intercon-

nected systems with time-varying uncertain pa-
rameters and external disturbance has been con-
sidered. Here, the upper bounds of the uncertain-
ties and external disturbances are assumed to be
unknown. For such a class of uncertain large scale
systems, a class of decentralized adaptive robust
state feedback controllers has been proposed for
robust tracking of dynamical signals. It has been
shown that by employing the proposed decentral-
ized adaptive robust tracking controllers, one can
guarantee that the tracking errors between each
subsystem and the corresponding local reference
model decrease uniformly asymptotically to zero.
Therefore, our results may be expected to have
some applications to practical robust tracking and
model following problems of uncertain large scale
systems.
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