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Abstract: This paper proposes novel robust stability and robust stabilizability conditions 
for time delay systems with time-varying delay and nonlinear time-varying perturbations. 
Using the traditional quadratic approach with Lyapunov-Krasovskii functional in which 
the Lyapunov-Krasovskii matrices are independent from the time as well as from the 
nonlinear perturbations, some delay-dependent robust stability and robust stabilizability 
criteria are derived. The main contribution of this research is to give quadratic-based 
conditions for stability analysis and controller synthesis of time delay systems without 
using any bound for cross-terms presented in the time derivative equation. This allows the 
proposed stability and stabilizability criteria to provide less conservative results than that 
of reported methods which often employ bounding of the cross-terms. Several examples 
are considered from the literature to illustrate the effectiveness of the proposed method.  
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Time delays which naturally exist in dynamical 
physical systems may cause instability and 
deteriorated performance. This situation has triggered 
a plenty of attention devoted to the study of various 
engineering, process control, biological and 
economical systems which are mathematically 
modeled with delay-differential systems as the speed 
of information processing is finite. The stability 
analysis of delay-differential systems have been 
widely investigated. For a consolidated work in this 
area, one can refer to (Hale and Lunel, 1993; 
Niculescu, 2001; Gu, et al., 2003). Moreover, some 
recent advances on time-delay systems are well 
documented in (Niculescu and Gu, 2004). There exist 
also some survey studies (Kolmanovskii, 1999) and 
(Richard, 2003) in which motivations to study time 
delay systems and some recent progresses on stability 
and robust stability of time delay systems are 
presented. In general, the stability analysis of systems 
with time-delay can be classified into two categories 

in accordance with the dependence of the stability 
result’s upon the size of the delay time. In other 
words, the so-called delay-dependent stability criteria 
carry delay information while the so-called delay-
independent stability criteria do not include any 
information on the size of the delay.  
 
The stability of time delay systems with nonlinear 
perturbations has been widely studied in the 
literature, see for example (Su and Huang, 1991; Xu, 
1994; Su, 1994) and the references therein. Based on 
induced norms and matrix measures, (Oucheriah, 
1995) presented a delay-dependent sufficient 
condition that guarantees the robust stability of linear 
uncertain time-delay systems. A delay-dependent 
robust stability criterion is given by (Gu, et al., 1998) 
for a class of linear uncertain systems with time-
varying delay. The robust stability of interval time-
delay systems with delay-dependence is investigated 
by (Liu and Su, 1998). Employing the quadratic 
stability theory based on checking the Hamiltonian 
matrix and solving an algebraic Riccati equation, 



     

(Yan, 2001) derived an upper bound on the size of 
the delay with a delay-dependent stability criterion. 
(Kim, 2001) studied the robust stability of time-
delayed linear systems with time-varying and norm-
bounded uncertainties. Using Lyapunov method and 
quadratic stability theory, an upper delay bound is 
presented by (Cao and Wang, 2004) based on the 
Hamiltonian matrix and an algebraic Riccati 
equation.  
In this paper, the problem of robust stability and 
robust stabilizability analysis is considered for a class 
of systems with time-varying delay and nonlinear 
perturbations. Lyapunov method and quadratic 
stability theory are employed to obtain some new 
delay-dependent robust stability and robust 
stabilizability criteria which are presented in the form 
of solvable linear matrix inequalities through 
interior-point algorithms (Boyd et al.,1994). The 
nonquadratic, so-called cross-terms are usually 
bounded in the quadratic stability analysis. For 
example, for some vectors 1×ℜ∈ nx , 1×ℜ∈ ny , a 

cross term like yxT2±  is bounded with yyxx TT +  

and it is often replaced with yyxx TT +  in the 
stability analysis. Bounding of the cross terms as 
described with the former example, is in fact an 
application of a worst case scenario which may not 
always take place in practice. However, to a certain 
extent it will do induce some conservatism to the 
robustness bound on the time delay. From the point 
of this view, the proposed method is quite different 
from the existing approaches. No bounding of the 
cross terms is employed in the derivation of the 
robust stability and stabilizability results. Thus, they 
have the potential advantage of being less 
conservative than those of existing methods that 
make use of bounding for the cross-terms. Moreover, 
the proposed method is not based on the solution of 
any Lyapunov function and/or algebraic Riccati 
equation. As a result, there exist no need of 
parameter tuning for which an optimal procedure is 
often unavailable. Finally, four numerical examples 
are introduced to illustrate the effectiveness of our 
method. 
 
 

2. PROBLEM STATEMENT 
 
Let us consider a class of time delay systems with 
time-varying delay and nonlinear perturbations 
described with the following differential equation 
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[ ] 0,0,),()( >−∈∀Φ= ττtttx   (2) 

where ntx ℜ∈)(  is the system state, mtu ℜ∈)(  is the 

control input, A , nn
dA ×ℜ∈ , mnB ×ℜ∈  are the 

system matrices which are constant and known, 
0)( >tτ  is a continuous time-varying function 

representing the time-delay and satisfying 
ττ ≤≤ )(0 t  and 1)( ≤≤ δτ t� , τ  and δ  are constant 

nonnegative scalars, the time-varying nonlinear 
continuous functions ))(,( txtf  and )))((,( ttxtg τ−  
are unknown and represent the nonlinear parameter 

perturbations with respect to the current state )(tx  

and the delayed state ))(( ttx τ− , respectively. These 
nonlinear parameter perturbations may be structured 
or unstructured and satisfy 0)0,( =tf  and 0)0,( =tg  
for any 0≥t . We assume that some bounds are 
available satisfying the following inequalities, 

)())(,( txtxtf α≤ ,  0>α  (3) 

))(()))((,( ttxttxtg τβτ −≤− , 0>β  (4) 

where positive scalars α  and β  are known. 
Moreover, the existence and uniqueness of the 
solution of system (1), (2) is assumed. The aim is to 
derive delay-dependent robust stability and robust 
stabilizability criteria such that the time delay system 
(1), (2) with nonlinear perturbations satisfying (3), 
(4) is quaranteed to be robustly asymptotically stable. 
We use Leibniz-Newton model transformation and 
Lyapunov-Krasovskii functional method combined 
with linear matrix inequalities approach. We do not 
bound any cross-term in the stability analysis. 
 
 

3. MAIN RESULTS 
 
In this section, we present delay-dependent robust 
stability analysis and delay-dependent robust 
controller synthesis for the time-delay system with 
nonlinear perturbations (1)-(2).  
 
 
3. 1 Delay-dependent robust stability criteria 
 
We first assume that system (1), (2) is unforced, i.e. 

0)( ≡tu . Since )(tx  is continuously differentiable 
for 0≥t , we use a well-known model transformation 
(Richard, 2003), so-called Leibniz-Newton formula 
to get  
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for 0≥t . Then system (1), (2) can be reexpressed as 
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[ ] 0,0,2),()( >−∈∀Ψ= ττtttx   (6) 
 
Remark 1: The stability of the original system (1), (2) 
is ensured by the global uniform asymptotic stability 
of the transformed system (5), (6), (Hale and Lunel, 
1993). 
 
Remark 2: The Leibniz-Newton model 
transformation transforms a system (1), (2) with 
discrete delay to a system with distributed delay (5), 
(6). It is well known (Gu and Niculescu, 2000) that 
the eigenvalues of the transformed system consists of 
those of the original system and additional 
eigenvalues. If the critical delay value that causes one 
of the additional eigenvalues cross the imaginary 
axis, is less than the stability delay limit of the 
original system, then any stability criteria obtained 
using such transformation will be conservative. 



     

Here we assume that system (1) without time delay 
and nonlinear perturbations is asymptotically stable, 
i.e. dAA +  is Hurwitz stable. The stability results are 
summarized in Theorem 1. 
 
Theorem 1: Consider the time-delay system (1), (2), 
and the nonlinear time-varying perturbations 
satisfying (3), (4). Then given scalars 0>τ , 1≤δ , 
this system is robustly stable for any time delay 
satisfying ττ ≤≤ )(0 t , δτ ≤)(t�  if there exist 
symmetric and positive definite matrices P , Q , R , 
S  and Z  such that the following LMI set is satisfied 
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where Ι+++++=Ω αSAAPPAA d
T

d )()(11  
)( ZRQ +++τ , Ι−−−=Ψ αδδ RQ)1(22 , 

Ι−−=Ψ βδ R)21(33 , Ι  is the identity matrix. 
 
Proof: Let us choose a candidate Lyapunov-
Krasovskii functional in the following form 
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where P , Q , R  and S  are symmetric and positive 
definite matrices with appropriate dimensions. Note 
that here we employ the traditional quadratic 
approach with Lyapunov-Krasovskii functional in 
which the Lyapunov-Krasovskii matrices are 
independent from the time as well as from the 
nonlinear perturbations Then we take the time 
derivative of (9) along the state trajectory of (5), (6) 
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We can compute ))(( txVi
�  )4,1( �=i  as follows 
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Substituting (15)-(18) into (14) and adding and 
subtracting some quadratic terms gives 
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where Z  is a symmetric and positive definite matrix. 
Using (3), (4) we rearrange ))(,( txtV�  in (19) to get 
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Ω  and Ψ  are as defined in (7), (8). Therefore, if 
there exist symmetric and positive definite matrices 
P , Q , R , S  and Z  and positive scalar τ , δ  
satisfying (7), (8) then we have 
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min )()())(,( ttxtV χλ Ω−−≤�   (21) 

It follows from (21) that system (5), (6) is robustly 
globally asymptotically stable for any time delay 
satisfying ττ ≤≤ )(0 t  and 1)( ≤≤ δτ t� . Hence the 
proof is completed.  
 
Remark 3: Note that no bounding on the cross terms 
in the time-derivative equation (14) is used, thus 
reducing the conservatism of the approach. 
 
If system (1), (2) does not involve any nonlinear 
perturbations, we have the following result. 
 
Corollary 1: Consider the nominal system (1) and (2) 
with 0))(,( =txtf , and 0)))((,( =− ttxtg τ , then 
given positive scalars τ , δ , this system is globally 
asymptotically stable for any time-delay satisfying 

ττ ≤≤ )(0 t , 1)( ≤≤ δτ t�  if there exist symmetric 
and positive definite matrices P , Q , R , S  and Z  
solving the following LMI set  
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Proof: Similar to the proof of Theorem 1. Thus it can 
be omitted. 
 
 
3. 2 Delay-dependent robust stabilizability criteria 
 
In order to investigate the delay-dependent robust 
stabilizability of the time-delay system (1), (2), we 
consider a state-feedback controller chosen as  

)()( tKxtu =    (24) 
Substituting this control law into (1) yields 
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where BKAAc += , K  is a design matrix to be 
selected appropriately. The robust stabilizability 
criteria are summarized in Theorem 2. 
 
Theorem 2: Consider the time-delay system (1), (2) 
with the controller (24) and the nonlinear time-
varying perturbations satisfying (3), (4). Then given 
scalars τ , δ , the system (25) is robustly stabilizable 
for any time delay satisfying ττ ≤≤ )(0 t , 

1)( ≤≤ δτ t�  if there exist symmetric and positive 

definite matrices X , Q , R , S  and Z  such that the 
following LMI set is satisfied 
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Proof: We choose a symmetric and positive-definite 
matrix X  such that 1−= PX  where P  is defined I,n 
Theorem 1. Then we pre- and post- multiply (7), (8) 
with { }ΙΙ,,,diag XX , { }ΙΙ,,,,diag XXX , respectively 
to get 
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We replace A  in (28), (29) with cA  by choosing 
1−= YXK  with Y  being an arbitrary matrix to be 

selected. Finally applying Schur’s complement yields 
the LMIs given in (26), (27). This completes the 
proof.  
 
Remark 4: It follows from the stabilizability results 
given in Theorem 2 that the controller synthesis 
based on the stability analysis proposed in Theorem 1 
is shown to be convex for the presented approach. 
 
The case when there exist no nonlinear perturbations 
in system (25) is considered in Corollary 2. 
 
Corollary 2: Consider the nominal system (25) with 

0))(,( =txtf , and 0)))((,( =− ttxtg τ , then given 
positive scalars τ , δ , this system is globally 
asymptotically stabilizable for any time-delay 
satisfying ττ ≤≤ )(0 t , 1)( ≤≤ δτ t�  if there exist 
symmetric and positive definite matrices P , Q , R , 
S  and Z  such that the following LMI set is satisfied 



     

0

***
0**
00)1(*

0

)(

)()(

<

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

Ι−
Ι−

−−

ΙΙ

+++

+++

+++

S
ZRQ

SBYBY

XAAAAX
TT

d
T

d

δ
τ

(30) 

0

****
0***
00)21(**
000)1(*

≥

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

Ι
Ι

−
−−

+

R

RQ

AAXAABYAAXAZ dddddd

δ
δδ

  (31) 

 
Proof: As the proof follows from the proof of 
Theorem 2, it is omitted. 
 
 

4. NUMERICAL EXAMPLES 
 
In this section, we consider four numerical examples 
which are chosen from the existing work in the 
literature. 
 
Example 1: Let us consider the following time delay 
system with constant time-delay and nonlinear time-
varying perturbations 

))(,())(,(

)()()(

τ
τ

−++
−+=

txtgtxtf

txAtAxtx d
�

  (32) 

with 

�
�

�
�
�

�

−
−

=
10

02
A , �

�

�
�
�

�

−−
−

=
11

01
B    
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[ ]Ttxttxttxtg )()sin()()cos())(,( 2211 τγτγτ −−=−

where 05.0=≤ αδ i  and 1.0=≤ βγ i  )2,1( =i . It 

is immediately noticed that due to the absolute value 
function involved in ))(,( txtf  and ))(,( τ−txtg , the 
nonlinear time-varying parameter perturbations are 
not linear with respect to state )(tx  and delayed state 

)( τ−tx , i.e. neither ))(,( txtf  nor ))(,( τ−txtg  can 
be represented in the form of )()( txtA∆  and 

)()( τ−∆ txtB , respectively. As the method proposed 
in (Su, 1994; Gu et al., 1998); Liu and Su, 1998; 
Kim, 2001) consider the uncertainties to be defined 
linearly with respect to state )(tx  and delayed state 

)( τ−tx , they are not applicable for this particular 
example. Applying the condition in Theorem 1 given 
by (Yan, 2001), it is easy to construct a Hamiltonian 
matrix H with 4987.0=γ . Then it is stated that H 
has no eigenvalues on the imaginary axis and the 
system is robustly stable when 3102.0<τ . Finally 
the stability robustness bound which is obtained by 
(Cao and Wang, 2004) is 4332.0 . Solving the LMI’s 
(7)-(8) in Theorem 1, we conclude that system (32) is 
robustly globally asymptotically stable for any time 
delay satisfying 4368.00 ≤≤ τ . This result is less 
conservative than that of (Cao and Wang, 2004).  
 

Example 2: Let us consider the special case of the 
time delay system (1), (2), that is a nominal time-
delay system with constant time-delay, i.e. 

0))(,( =txtf  and 0))(,( =−τtxtg , 
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It is shown in (Cao and Wang, 2004) that since some 
of the preconditions of which are related to the 
system dynamics, i.e. 

09.1)(1 >=+ BAµ , 00255.0)(2 >=+ BAµ  

03.1)( >=+∞ BAµ  
are not satisfied, a bound on τ  can not be found to 
guarantee the stability of the system by using the 
stability criteria proposed in (Oucheriah, 1995), (Liu 
and Su, 1998). Thus these methods are not applicable 
for this particular example. However, (Xu, 1994) 
computed a robust delay bound of 0.0667 while the 
allowable time delay is increased up to 0.1298 by 
(Su, 1994). Moreover, the robust stability bound 
obtained in (Yan, 2001) is 0.4991. Using the stability 
condition given by Kim in Corollary 1 of (Kim, 
2001), the robust delay bound is computed as 1.7828. 
Finally, (Cao and Wang, 2004) showed that the 
robustness bound on the time delay is obtained as 
0.7062 by their method. Applying Corollary 1 of this 
paper and solving the LMI’s (22), (23) with LMI 
Control Toolbox shows that the global asymptotical 
stability of system (33) is ensured for any time-delay 
with the upper bound of 1.7953. This result is less 
conservative than that of the stability bound given in 
(Kim, 2001) and (Cao and Wang, 2004). 
 
Example 3: Let us consider another constant time-
delayed system with nonlinear perturbations given in 
the form of 

))(),(,()()()( ττ −∆+−+= txtxtftxAtAxtx d
�   (34) 
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thus it is clear that we have 3.0== βα . (Xu, 1994; 
Gu, et al., 1998) have obtained an allowable delay 
bound of 0.1575 while (Su and Huang, 1991) 
computed the robust stability bound for the time 
delay as 0.1614. It is shown by (Oucheriah, 1995) 
that robustness bound can be raised up to 0.1892. 
Finally, (Liu and Su, 1998) achieved a robust 
stability bound of 0.2103. Employing the robust 
stability criteria (7)-(8) given in Theorem 1, it is 
easily concluded that the allowable robustness bound 
on the delay time is calculated as 0.2442. This shows 



     

an increment of %16.1198 when compared with the 
result of (Liu and Su, 1998). 
 
Example 4: Let us consider the time-delay system  
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and ))(,( txtf , )))((,( ttxtg τ−  are similarly defined 
as in Example 1 with time-varying time-delay. Note 
that this system with 0)( =tτ , 0))(,( =txtf , 

0)))((,( =− ttxtg τ  is not asymptotically stable and 
the pair ),( BA  is not stabilizable. However, the pair 

),( BAA d+  is stabilizable, thus the stabilizability of 
system (35) is unavoidably delay-dependent. The 
methods of (Li and De Souza, 1997a, b) cannot be 
applied to this particular system because of the same 
reasoning about ))(,( txtf  and )))((,( ttxtg τ−  
discussed in Example 1. When the time-delay is 
time-invariant, i.e. 0=δ , applying Theorem 2 and 
solving (26), (27) gives a delay bound of 0.2894. If 
the bound on the derivative of the time-varying time-
delay is 1.0=δ , the robustness bound on the time 
delay is obtained as 1689.0 . 
 
 

5. CONCLUSIONS 
 
Some novel delay-dependent robust stability and 
stabilizability criteria are introduced for time-delay 
systems with time-varying delay and nonlinear 
perturbations by employing the Lyapunov method 
and quadratic stability theory. The nonquadratic or 
so-called cross terms are not replaced with their 
quadratic bounds in the stability and stabilizability 
analysis. Thus the robust stability and stabilizability 
criteria are potentially less conservative when 
compared with some existing methods which usually 
bound the cross-terms. Moreover, unlike some 
Lyapunov or Riccati equation approaches, there is 
also no need for the tuning of any parameters in the 
proposed method. Based on the solution of linear 
matrix inequalities approach with interior-point 
algorithms, the upper robustness bound on the size of 
the time delay are easily computed for four numerical 
examples. The achieved results demonstrate that the 
proposed method is capable of giving less 
conservative robustness bounds on the time delay 
than that of some reported methods in the literature. 
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