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Abstract: A robust version of the output controller design for discrete-time systems is
introduced. Instead of a single stable point a stable polytope (or simplex) is defined in
the closed loop characteristic polynomials coefficients space. A constructive procedure
for generating simplexis inside the ”nicely stable” region is given starting from the
unit hypercube of reflection coefficients of monic polynomials. This procedure is quite
straightforward because for a special family of polynomials the linear cover of so-called
reflection vectors is stable. The roots placement of reflection vectors is studied. If the
stable simplex is preselected then the robust output controller design task is solved
by quadratic programming approach. If the stable simplex (or polytope) of reflection

vectors is not given then a simple search procedure is needed. Copyright
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1. INTRODUCTION

The modal control or pole placement method is a
common approach for designing closed-loop con-
trollers in order to meet desired control speci-
fications. The objective of assigning closed loop
poles is often replaced by assigning a characteris-
tic polynomial because 1) this polynomial plays
a central role in the stability analysis of linear
control systems and 2) polynomial coefficients are
simply (affinely) related to controller and plant
parameters .

Another practical issue is that of model uncer-
tainty. If the model uncertainty is relatively small,
then it is possible to use sensitivity-based meth-
ods. If the model uncertainty is large some robust
formulation of the problem is needed, such as
multimodel (Ackermann, 1993; Magni, 2002) or
polytopic plant model approach (Jetto, 99; Rot-
stein et al., 1991) .
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The main hindrance of the parametric methods
is the well-known fact that the stability domain
in the space of polynomial coefficients is non-
convex in general. That is why several convex
approximations of the stability region such as
ellipsoids (Galafiore and El Ghaoui, 2004; Henrion
et al., 2003), hyperrectangles (Kharitonov, 1978;
Chapellat and Bhattacharyya, 1989; Katbab and
Jury, 1990) , polytopes (Jetto, 99; Rotstein et
al., 1991) and simplexes are well known and widely
used in in robust control .

In this paper we consider a polytopic plant model,
i.e. the set of possible plant parameters are defined
as a convex polytope. This kind of modeling allows
the determination of properties that are common
to all elements in the set from the analysis of its
vertices only. Thus the complexity of computa-
tions is determined by the number N of vertices
of the polytope.

We are looking for Schur stable simplexes inside
the ”nicely stable” region with vertices defined
by so-called reflection vectors of the closed-loop
characteristic polynomial. If the stable simplex is



preselected then the robust output controller de-
sign task can be solved by quadratic programming
approach. If the stable simplex (or polytope) of
reflection vectors is not given then a simple search
procedure is needed.

The paper is organized as follows. In section 2
we recall the stability condition via reflection
coefficients and introduce reflection vectors of a
monic Schur polynomial. The roots placement
of reflection vectors is studied. In section 3 the
problem of stable simplex building around a given
stable point is considered. At last, in section 4, the
robust controller design problem will be solved by
quadratic programming approach.

2. REFLECTION COEFFICIENTS AND
REFLECTION VECTORS OF SCHUR
POLYNOMIALS

A polynomial a(z) of degree n with real coefficients
a; € R,1=0,...,n

a(z) =apz" + ...+ a1z + ap

is said to be Schur polynomial if all its roots are
placed inside the unit circle. A linear discrete-
time dynamical system is stable if its characteristic
polynomial is Schur, i.e. if all its poles lie inside the
unit circle.

Besides the unit circle criterion some other cri-
terias are known for checking the stability of a
linear system. It is interesting to mention that the
well-known Jury’s stability test leads precisely to
the stability hypercube of reflection coefficients .
In the following we use the stability criterion via
reflection coefficients.

Let us recall the recursive definition of reflec-
tion coefficients k; € R of a polynomial a(z)
(Oppenheim and Schaffer, 1989)

Reflection coefficients are well-known in signal
processing and digital filters. They are called also
partial correlation coefficients and k-parameters
(Oppenheim and Schaffer, 1989). The stability
criterion via reflection coefficient is as follows .

Lemma 1. A polynomial a(z) will be Schur stable
if and only if its reflection coefficients k;,i =
1,...,n lie within the interval —1 < k; < 1.

A polynomial a(z) lies on the stability boundary
if some k; = 1,4 = 1,...,n. For monic Schur
polynomials, a, = 1, there is an one-to-one corre-
spondence between the vectors a = (ag, ..., @n_1)
and k = (ky, ..., kp).

The transformation from reflection coefficients k;
to polynomial coefficients a;—1,7i = 1, ...,n is mul-
tilinear. For monic polynomials we obtain from

(1)-(3)

Lemma 2.(Nurges, 1999) Through an arbitrary
stable point a = [ag, a1, ...,an—1] with reflection
coefficients k{ € (—1,1),i=1,...,n you can draw
n stable line segments

Al(£1) = convi{alk] = £1}

where conv{alk! = £1} denotes the convex hull
obtained by varying the reflection coefficient k'
between —1 and 1.

Now let us introduce the reflection vectors of
a monic polynomial a(z). They will be useful
for convex stable subsets building in polynomial
coefficient space.

Definition. Let us call the vectors
al(l) = (alk; =1),i=1,..,n
positive reflection vectors and
al(=1) = (alk; = —1),i=1,..,n

negative reflection vectors of a monic polynomial
a(z).

It means, reflection vectors are the extreme points
of the Schur stable line segment A*(+1) through
the point a defined by Lemma 2. Due to the

definition and the Lemmas 1 and 2 the following
assertions hold:

1) every Schur polynomial has 2n reflection vec-
tors a*(1) and a’(—1),i=1,...,n;

2) all the reflection vectors lie on the stability
boundary (k; = £1);

3) all the innerpoints of the line segments be-
tween reflection vectors a’(1) and a‘(—1) are
Schur stable.

Obviously, at least one of the roots of a reflection
vector (polynomial) a*(£1) must lay on the unit
circle.

The following theorem states that the number of
unit circle roots is determined by the number ¢
of the reflection vector a’(£1) and the charac-
ter of the roots (real or complex) is determined
by the sign of the boundary reflection coefficient



ki = £1).

Theorem 1. Reflection vectors ai(£1l) , i =
1,...,n of a monic Schur polynomial a(z) have the
following ¢ roots 7; , j = 1,..,4 on the stability
boundary:

1) the positive reflection vector a’(1) has
e for i even r| =1,
ro = -1
and (i — 2)/2 pairs
of complex roots on the unit circle,
e for ¢ odd ry =1,
and (i —1)/2 pairs
of complex roots on the unit circle,
2) the negative reflection vector a’(—1) has
e for i even i/2 pairs
of complex roots on the unit circle,
e foriodd ry = —1,
and (i — 1)/2 pairs
of complex roots on the unit circle.

The proof is given in (Nurges and Riistern, 2002).

3. STABLE POLYTOPE BUILDING BY
REFLECTION VECTORS OF POLYNOMIALS

Two different approaches can be used for stable
simplex (or polytope) building via reflection vec-
tors:

1) choose such a stable point that the linear
cover of its reflection vectors is stable;

2) choose an arbitrary stable point and build
the stable simplex by n edges in directions
of reflection vectors of the starting point.

In the following the first approach will be used.The
next lemma follows immediately from the Cohn
stability criterion

n—1
Z |az\ < 1.
=0

Lemma 3. The innerpoints of the polytope R°
generated by reflection vectors of the origin a = 0

0_ i
R = conv{0*(£1), ) (5)

are Schur stable.

Lemma 3 (or Cohn stability condition) is quite
conservative. The question is: is it possible to
relax the initial condition of Lemma 3 in some
neighborhood of the origin? The answer is given
by the following proposition.

Theorem 2. Let kf € (—1,1), k% € (—1,1) and
k$ = .. =k%_; = 0. Then the innerpoints of the

polytope R® generated by the reflection vectors of
the point a

R® = conv{a’(+1),
i=1,..,n} (6)

are Schur stable.
The proof is given in (Nurges, 2001).

Example 1. Let a(z) = 22—0.7522. The reflection
coefficients and reflection vectors of the polyno-
mial a(z) are following:

¢ =075 ad(1)=01 -1 0 0],
kS =0, a(1)=[1 0o -1 07,
kS =0, a®(1) =[1 —=0.75 0.75 —1 |7,

a'(-1)=[11 0 0],

a?(-1)=[1-15 1 0],

a®(=1)=[1 -0.75 =0.75 1 ]*.
By Theorem 2 the polytope

1 -1 0 0
1 0 -1 0
1-075 075 -1

R® = conv 11 0 0
1 -1.5 1 0
1 -0.75 -0.75 1
is stable.

For generating a "nicely stable” simplex we have
to choose n + 1 most suitable vertices of the
polytope R®. It is well known that the poles
with positive real part are preferred to those
with negative real part (Ackermann, 1993). Thus,
according to Theorem 1, the positive reflection
vectors a’") with ¢ odd and negative reflection
vectors a’(—1) with i even will be chosen. It gives
us n vertices. The (n + 1)-th vertex of the simplex
S will be chosen as the mean of the remaining
reflection vectors.

4. ROBUST OUTPUT CONTROLLER
DESIGN

Let us return now to the problem of robust modal
control . We are looking for a robust output
controller such that the closed-loop characteristic
polynomial will be placed in the stable polytope
(linear cover) of reflection vectors. Three different
problems will be studied:

1) the nicely stable simplex of reflection vectors
is preselected according to Section 3,

2) the initial point for generating a nicely stable
simplex will be chosen in the procedure of
robust controller design,

3) a stable polytope (with 2n vertices) of reflec-
tion vectors will be chosen in the procedure
of robust controller design.



Consider a discrete-time linear SISO system. Let
the plant transfer function G(z) of dynamic order
m and the controller transfer function C(z) of
dynamic order r be given respectively by

b(Z) . bm_lzm_l + -+ biz+bo
a(z) amz™ + -+ a1z + ag

and

(2) @z + - +az+q
r(z) T A riz4Tg

It means that the closed loop characteristic poly-
nomial

f(2) = a(z)r(2) + b(2)q(2)

is of degree m + r.

Let us require that the polynomial f(z) will be
placed in a simplex S of coefficient space . Without
any restrictions we can assume that a,, = r, =1
and deal with monic polynomials.

Let us now introduce a stability measure p in
accordance with the simplex S

p=cle

where

c=8"'f
and S is the (m + r + 1)x(m + r + 1) matrix of
vertices of the target simplex. Obviously, for monic

polynomials
n+1

S e
i=1
where n = m + r. If all coefficients ¢; > 0 ,

i = 1,..,n 4+ 1 then the point f is placed inside
the simplex S.

It is easy to see that the minimum of p is obtained
by

1
n+1

Then the point f is placed in the center of the
simplex S.

Cl =C = ... =Cpt1 =

Now we can formulate the following problem of
controller design : find a controller C(z) such that
the stability measure p is minimal. In other words,
we are looking for a controller which places the
closed loop characteristic polynomial f(z) as close
as possible to the center of the target simplex S.

In matrix form we have

=Gz (7)

where G is the plant Sylvester matrix

ap 0 0 bo 0 0
ar  ag 0 by b 0
G=|an_1 apn_2 ag  bp_1 bp_s bo

| 0 0 ..apn1 O 0 ... by
of dimensions (m + r + 1)x(2r + 1) and z is
the (2r 4+ 1)-vector of controller parameters z =
[q07"'7q7“7177‘07"'77‘7“]T-

The above controller design problem is equivalent

to the quadratic programming problem: find =z
such that the minimum

J =min2zTGT(SST) "Gz

x

is obtained by the linear restrictions
S7'Gz >0

17s Gz =1
where 17 = [1...1] is an n vector.
Let us now consider the case where the plant is
subject to parameter uncertainty. We represent
this by supposing that the given plant transfer

function coefficients ag, ..., a1 and bg, ..., bm_1
are placed in a polytope P with vertices p', ..., pM

P = conv{p’,j=1,..,M}.

Because the relations (7) are linear in plant pa-
rameters we can claim that for an arbitrary fixed
controller = the vector f of closed loop character-
istic polynomial coefficients is placed in a polytope
F with vertices f', ..., fM

F =conv{fl,j=1,...,M}
where ‘ '
fi=pig
and P/ is a (m + r + 1)x(2r + 1) Sylvester
matrix composed by the vertex plant p =

j j ; j
[ad,....al,_1,b0F, ., b, 4]

The problem of robust controller design can be
formulated as follows : find a controller x such that
all vertices 7, j =1,..., M are placed inside the
simplex S.

This problem can be solved by quadratic program-
ming task : find 2 which minimizes

J = mzina:TpT(I 2 (ST H(I e S 1Pz
by linear restrictions
S™1Piz >0,
115 1pig =1, j=1,.. M.

Here I is the unit matrix, ® denotes the Kronecker
product and PT = [P[, ..., PT].

Up to now the ”nicely stable” simplex S has been
fixed (preselected). According to Theorem 2 the



reflection coefficients £{ and k% of the generating
point a can be freely chosen from the interval —1, 1

So we have obtained the following , more general,
optimization task for solving the robust output
controller design problem:

find z and k¢ € (-1,1), k% € (—1,1) such that
the criterion

J = mina" PT(I&((S" (k1 kn)) ™) I©S (k1 kn) ') P

will be minimized by linear restrictions
S(ki,kn) Pz >0,
17S(ky, kp) " Pz =1, j=1,..,M.

Of course, we can choose instead of a ”nicely
stable” simplex S the polytope R of reflection
vectors as a convex approximation of the stability
region. Then the square (n + 1)x(n + 1) matrix
S(k1, ky) will be replaced by a (n + 1)x2n matrix
R(k1,ky). It means , we have n — 1 degrees of
freedom in the previous optimization task and so
we can choose n — 1 additional restrictions to
obtain a single solution. Additional restrictions
can be given via reflection coefficient placement of
the nominal closed loop characteristic polynomial
f(2). A reasonably damped system has reflection
coefficients with following properties:

a) kI is nonnegative, k; € (0,1);

b) the sign of successive reflection coefficients
is alternating sign(k!) = sign(—1)"*', i =
1,...,n;

c) the absolute values of successive reflection
coefficients are decreasing \sz\ > |klf+1 ,
1=1,...,n.

Example 2. Let us consider an uncertain second
order interval plant
bo

G(2) = 224+ a1z + ag
with parameters in the intervals 1.78 < by < 2.02,
—1.62 < a; < —-1.38, 043 < a9 < 0.67 and we
are looking for a first order robust controller

r4Z + X3
Co(z) = ———.
0() Troz + 11

For preselected k{ =05, kg = kg = 0 we obtain
the "nicely stable” simplex according to Theorem
2 as follows

0 0 -1 0.3333

0 1 05 -05

-1 -1 —-0.5 0.1667

11 1 1

By the use of MATLAB Optimization Toolbox
and above quadratic programming formulation we
have find the robust controller

_0.45382 - 0.2656

Cl) = — T ommn
with Jpin (k1 = 0.5) = 6.5987.

S =

It can be easily checked that the closed loop
polytope

—0.056 —0.2162 —0.056 —0.2162
0.519 0.3529 0.3972 0.1772
—0.6519 -0.6519 —-0.8919 —0.8919
1 1 1 1
P =
0.0078 —0.1524 0.0078 —0.1524
0.463 0.243 0.2882 0.0682
—0.6519 —0.6519 —0.8919 —0.8919
1 1 1 1

is placed inside the simplex S.

A simple search for optimal k; gives

Jmin (ki = 0.1) = 3.3500.

5. CONCLUSIONS

A constructive procedure for generating stable
polytopes in polynomial coefficients space is given.
This procedure of stable polytope (or simplex)
building is quite straightforward because you need
to choose only one stable point with some re-
strictions for reflection coefficients of it. Then all
the vertices of the polytope (or simplex) will be
generated by reflection vectors of this point.

It is shown, first, that reflection vectors are placed
on the stability boundary with specific roots de-
pending on the reflection vector number and the
argument sign and, second, that the line segments
between an arbitrary Schur polynomial and its
reflection vectors are Schur stable.

The procedure of robust output controller design
by quadratic programming is based on a stabil-
ity measure p which indicates the placement of
vertices of the polytope of closed loop system
against the stable simplex of reflection vectors of
a (optimally) selected stable point .
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