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Abstract: In this paper, the notion of the input/output-to-state stability (IOSS)
is extended to the case of the input/output-to-V (x) stability (IOVS), which
implies detectability of the zero-value set of a storage function. Based on this
notion and the notion of passivity of nonlinear systems, we propose and prove
sufficient conditions under which an invariant state set of a class of switched
nonlinear systems can be stabilized by output feedback. Then we show that
a nonlinear system is IOVS if V (x) is an IOSS-Lyapunov function of the
system.Copyright c©2005 IFAC
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1. INTRODUCTION

In control literature there are many papers de-
voted to stabilization problem for the following
nonlinear affine system

{
ẋ = f(x, u)
y = h(x) (1)

where x ∈ X = Rn is the state, u ∈ U = Rm

is the control input which is measurable and
locally essentially bounded, y ∈ Y = Rm is the
measurable output, f : Rn ×Rm → Rn is smooth
mapping, h : Rn → Rm is a continuous function.

Under the hypothesis that the unforced system
of (1), ẋ = f(x), is linear (i.e., f(x) = Ax) and
Lypunove stable, Jurdjevic and Quinn proposed
a sufficient condition under which the equilibrium
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point of the system can be asymptotically stabi-
lized by a smooth state feedback (Jurdjevic and
Quinn, 1978). Since then, various Jurdjevic-Quinn
type sufficient conditions have been developed for
system (1) (e.g., see, Kalouptsidis and Tsinias
(1984); Lee and Arapostathis (1988); Lin (1995)
and references therein).

The stabilization problem for system (1) has been
also extensively studied under the hypothesis that
the system is passive. The complete answer to
the equilibrium point stabilization problem was
given by Byrnes et al. in Byrnes, Isidori and
Willems (1991): the zero-state equilibrium of the
unforced nonlinear passive system with a proper
positive-definite storage function is stabilizable if
the system is zero-state detectable. Recently, this
result was extended by Shiriaev to the case of the
invariant set stabilization via introducing a notion
of V -detectability (Shiriaev, 2000).

In this paper we study the invariant set stabiliza-
tion problem for the following switched system

{
ẋ = fq(x, u)
y = h(x) (2)



where q ∈ Q = {1, 2, · · · , N} is determined by
some switching signal σ(t) : [0,∞) → Q. For
each q ∈ Q, the q-th subsystem of (2) satisfies all
the assumptions given for the system (1), and is
passive with a nonnegative storage function. The
question we raise in this paper is: Can the pas-
sification approach introduced by Byrnes, Isidori
and Willems (1991) and then extended by Shiriaev
(2000) be applied to the switched nonlinear system
or not?

To answer this question, we extend the notion of
the input/output-to-state stability (IOSS) intro-
duced by Sontag and Wang (1997), to the case
of the input/output-to-V (x) stability (IOVS). We
show that IOVS includes the V -detectability in-
troduced by Shiriaev as a special case in which the
control input is set to be zero. Based on this new
notion and the notion of passivity of nonlinear sys-
tems, we propose and prove sufficient conditions
under which an invariant state-set of the switched
system (2) can be stabilized by output feedback. A
multiple-storage-function like theorem is obtained
for solving the problem. The relationship between
IOVS and IOSS is also studied in this paper based
on the concept of IOSS-Lyapunov function (Son-
tag and Wang, 1997). A checkable criterion for the
IOVS property is provided: the nonlinear system
(1) is IOVS if V (x) is an IOSS-Lyapunov function
of the system.

2. PASSIVITY, INPUT/OUTPUT-TO-V
STABILITY AND V -DETECTABILITY

In this section we focus on some notions of the
nonlinear affine control system (1). Throughout
the paper we denote by ‖z‖J the supremum norm
of a signal z on the interval J ⊂ [0,∞).

We first recall the notion of passivity of system
(1).

Definition 2.1 (Willems, 1972). The system (1)
is passive if there exists a C0 nonnegative storage
function V (x) : X → R, V (0) = 0, such that
for all piece-wise continuous control input u(s)
along the solution x(t) = x(t, x0) defined on the
maximal interval [0, t∗) the inequality

V (x)− V (x0) ≤
t∫

0

yT (s)u(s)ds, t ∈ [0, t∗), (3)

holds.

A function V is said to be proper if the set {x ∈
Rn : V (x) ≤ c} is compact for all c ≥ 0.

Note that if V (x) is a Cr (r ≥ 1) function, the
passivity condition, inequality (3), is equivalent
to

V̇ ≤ yT u, ∀u ∈ U. (4)

In Sontag and Wang (1997) the input/output-
to-state stability for system (1) was defined as
follows.

Definition 2.2. The system (1) is input/output-
to-state stable (IOSS) if there exist some β ∈ KL
and γ1, γ2 ∈ K such that

|x(t, x0, u)| ≤ β(|x0|, t) + γ1(‖y‖[0,t])

+γ2(‖u‖[0,t]) (5)

for every initial state x(0) = x0 ∈ X and control
input u ∈ U .

This definition describes the property that “small
input and small output mean (eventually) small
state trajectory”. If we consider the behavior of
the nonnegative storage function V (x) instead of
the state trajectory, it is natural to extend the
above notion to the case of input/output-to-V
stability.

Definition 2.3. The system (1) is input/output-
to-V stable (IOVS) if there exist some β ∈ KL
and γ1, γ2 ∈ K such that

V (x) ≤ β(V (x0), t) + γ1(‖y‖[0,t]) + γ2(‖u‖[0,t])(6)

for every initial state x(0) = x0 ∈ X and control
input u ∈ U . If Eq.(6) holds only for x0 ∈ N =
{x ∈ X : V (x) < c}, where c > 0 is a constant,
then system is locally input/output-to-V stable.

Obviously, when V (x) = |x|, IOVS is identical to
IOSS.

The notion of IOVS can also be considered as a
generalization of the V -detectability of system (1)
introduced by Shiriaev which is given below.

Definition 2.4 (Shiriaev, 2000). The system (1)
is locally V -detectable if there exists a constant
c > 0 such that for every x0 ∈ N = {x ∈ X :
V (x) < c} and t > 0 the following implication
holds

h(x(t, x0, 0)) = 0 ⇒ lim
t→∞

V (x(t, x0, 0)) = 0. (7)

If N = X, then system is said to be V -detectable.

Indeed, if u(t) ≡ 0 for any t ≥ 0, then from (6) it
immediately follows the implication (7).



3. STABILIZATION OF INVARIANT SETS
OF SWITCHED SYSTEMS

In this section we consider the set stabilization
problem for the switched system (2), in which q ∈
Q = {1, 2, · · · , N}, is determined by the switching
signal σ(t) : [0,∞) → Q. σ(t) can be considered
as a right-continuous, piece-wise, constant-value
function. Let ti, i = 0, 1, 2, · · · , be the sequence of
time at which σ(t) is discontinuous, i.e., the field
of system (2) is switched from one to another at
ti. Assume that the dwell time at each subsystem
is no less than a positive constant τ , i.e.,

ti+1 − ti ≥ τ > 0, i = 0, 1, 2, · · · . (8)

Note that the sequence t0, t1, t2, · · · , tM , · · · , may
be finite or infinite. However, the finite case can
always be regarded as a special case of the in-
finite case. Indeed, in the finite case, we can
artificially introduce infinitely many “switching
points” tM+1, · · · , tM+j · · ·, after the last real
switch at tM with σ(tM+j) having the same value
for all j. Then, all the further results hold. So in
the rest of the paper we will consider only the
infinite case.

Theorem 3.1. Suppose that the switched system
(2) satisfies the following assumptions

(1) For each q ∈ Q, the q-th subsystem of (2) is
passive with a nonnegative Cr-smooth stor-
age function Vq(x), r ≥ 1.

(2) For each q ∈ Q, V 0
q = {x ∈ X : Vq(x) = 0}

is a compact set.
(3) For each q ∈ Q, the q-th subsystem of (2) is

input/output-to-Vq stable in a neighborhood
of V 0

q defined as

V cq
q = {x ∈ X : Vq(x) ≤ cq}.

(4) At each switching point ti, i = 1, 2, · · · , the
following inequality holds

Vq(x(ti)) ≥ Vp(x(ti)), (9)

where q = σ(t),∀t ∈ [ti−1, ti), and p = σ(ti).

Let φq : Y → U be any continuous function
satisfying φq(0) = 0, yT φq(y) > 0 for y 6= 0. Then
under the feedback control

uq = −φq(y), (10)

the set V0 =
N⋃

q=1
V 0

q is invariant and asymptoti-

cally stable for the switched system (2). Moreover,
if the function Vq is proper and, for each q ∈ Q,
the q-th subsystem of (2) is input/output-to-Vq

stable, then, under (10), V0 is a globally asymptot-
ically stable invariant set of the switched system
(2).

Proof. First of all, we note that assumption 4
implies any trajectory starting from V 0

q will enter
V 0

p when the field is switched from subsystem q to
subsystem p. Therefore, V0 is indeed an invariant
set for the switched system. The rest of this proof
consists of two parts: the first part is devoted to
the local asymptotic stability of V0 and the second
part to the global asymptotic stability.

(1) Since the set V 0
q , ∀q ∈ Q, is compact and

Vq,∀q ∈ Q, is a smooth function, there exists
a small positive constant εq such that the set
Vεq

= {x ∈ Rn : Vq(x) ≤ εq} is also compact.

Let ε = min{min
q∈Q

εq, min
q∈Q

cq}, and Vε =
N⋃

q=1
V ε

q ,

where V ε
q = {x ∈ Rn : Vq(x) ≤ ε}. Then Vε

is compact and for any x0 ∈ V ε
q subsystem q is

IOVS by assumption 3.

By assumption 1 of the theorem, subsystem q
is passive with a nonnegative smooth storage
function Vq(x). So from the passivity condition
(4) and the feedback control law (10) it follows
that

V̇q(x) ≤ yT uq = yT (−φq(y)) = −yT φq(y) ≤ 0.(11)

Inequality (11) plus the assumption 4 of the
theorem guarantees the set Vε is also invariant for
the switched system.

The invariance of the set Vε implies for any time
interval [ti, ti+1) with σ(t) = q, ∀t ∈ [ti, ti+1), we
have x(ti) ∈ V ε

q . So from the IOVS property of
subsystem q in V ε

q we get

Vq(x(t))≤ β(Vq(ti), t) + γ1(‖y‖[ti,t])

+γ2(‖u‖[ti,t]) (12)

for t ∈ [ti, ti+1), where β ∈ KL, γ1, γ2 ∈
K. For any pair of consecutive time intervals
[tm, tm+1), [tn, tn+1) on which σ = q we have

Vq(x(tn)) ≤ Vq(x(tm)).

So from (12) we further get

Vq(x(t))≤ β(Vq(tiq
0
), t) + γ1(‖y‖[ti,t])

+γ2(‖u‖[ti,t]), (13)

where tiq
0

denotes the time at which subsystem q
becomes active for the first time.

In the infinite sequence ti, i = 0, 1, 2, · · ·, we
can always find an infinite subsequence tiq

j
, j =

0, 1, 2, · · ·, such that σ(tiq
j
) = q, q ∈ Q. Inequality

(11) and the assumption 4 tell that Vq(x(tiq
j
)), j =

0, 1, 2, · · · is non-increasing in j. On the other
hand, Vq(x(tiq

j
)) ≥ 0, ∀j ≥ 0. Therefore, there

exists a constant ηq ≥ 0 such that

lim
j→∞

Vq(x(tiq
j
)) = ηq.



Next we will show that ηq = 0. Since lim
j→∞

Vq(x(tiq
j
))

exists, for any small ε1 ∈ (0, ε) there must exist an
integer K such that for any j > K the following
inequality holds.

|Vq(x(tiq
j+1

))− Vq(x(tiq
j
))| < ε1.

Since we have assumed that the dwell time at each
subsystem is no less than a positive constant τ ,
there exist ta, tb ∈ [tiq

j
, tiq

j
+1), ta < tb, such that

σ(t) = q for all t ∈ [ta, tb]. Then we have

|Vq(x(tb))− Vq(x(ta))| ≤ |Vq(x(tiq
j
+1))− Vq(x(tiq

j
))|

≤ |Vq(x(tiq
j+1

))− Vq(x(tiq
j
))|

< ε1.

From the above equation and the passivity of
subsystem q we get

−ε1 < Vq(x(tb))− Vq(x(ta))

≤−
tb∫

ta

yT (s)φq(y(s))ds ≤ 0.

So we conclude that y → 0 and hence uq → 0
according the property of the function φq(y) when
t →∞. With this conclusion let us be back to Eq.
(13). Since γ1, γ2 are K functions and β is a KL
function, we get from (13)

Vq(x(t)) → 0

when t →∞. This proves the asymptotic stability
of the invariant set V0 according to the definition
of asymptotic stability of a set (see, e.g., Bacciotti,
Mazzi and Sabatini (1996)).

(2) The proof of the global asymptotic stability of
V0 immediately follows from the proof of part (1).
Indeed, by assumption, the set Vε is compact for
any ε > 0 and all the subsystems of (2) are IOVS
and hence all the arguments in part (1) hold with
any initial state x0 ∈ X. Q.E.D.

Remark 3.2. If Vq(x)’s are all positively definite,
V0 contains the only state x = 0. In that case,
Theorem 3.1 gives a result for the equilibrium
stabilization problem of the switched system.

4. RELATIONSHIP BETWEEN IOVS AND
IOSS

Sontag and Wang introduced the following notion
to characterize the IOSS property of system (1).

Definition 4.1 (Sontag and Wang, 1997). An
IOSS-Lypunov function for system (1) is any
smooth function V with the following properties:

(1) There exist K∞-functions α1 and α2 such
that

α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ X. (14)

(2) There exist K∞-functions α3, σ1 and σ2 such
that

∂V (x)
∂x

[f(x) + g(x)u(t)] ≤
−α3(|x|) + σ1(|u|) + σ2(|y|), ∀x ∈ X.(15)

By Theorem 2.4 of Krichman, Sontag, and Wang
(2001), system (1) is IOSS if and only if it admits
an IOSS-Lyapunov function. Using the notion of
IOSS-Lyapunov function we can establish the fol-
lowing theorem which gives a sufficient condition
of IOVS and reveals the relationship between
IOVS and IOSS.

Theorem 4.2. (1) If V (x) is an IOSS-Lyapunov
function of system (1), then system (1) is in-
put/output-to-V stable; (2) If system (1) is in-
put/output-to-V stable, and there exist K∞ func-
tions α1, α2 such that α1(|x|) ≤ V (x) ≤ α2(|x|),
∀x ∈ X, then the system is inpit/output-to-state
stable.

Proof. (1) If V (x) is an IOSS-Lyapunov function
of system (1), then, by Theorem 2.4 in Krichman,
Sontag, and Wang (2001), system (1) is IOSS, i.e.,
there exist β ∈ KL and γ1, γ2 ∈ K such that

|x(t, x0, u)| ≤ β(|x0|, t) + γ1(‖y‖[0,t])

+γ2(‖u‖[0,t]), ∀x0 ∈ X, ∀u ∈ U.

By the definition of the IOSS-Lyapunov function
we have

V (x)≤ α2(|x|)
≤ α2(β(|x0|, t) + γ1(‖y‖[0,t]) + γ2(‖u‖[0,t]))

≤ α2(3max{β(|x0|, t), γ1(‖y‖[0,t]),

γ2(‖u‖[0,t])})
≤ α2(3β(|x0|, t)) + α2(3γ1(‖y‖[0,t]))

+α2(3γ2(‖u‖[0,t])).

Now, from Proposition 7 of Sontag (1998) we
know that there exist K∞ functions θ1 and θ2 such
that

V (x)≤ α2(3θ1(θ2(|x0|)e−t))

+α2(3γ1(‖y‖[0,t])) + α2(3γ2(‖u‖[0,t]))

≤ α2(3θ1(θ2(α−1
1 (V (x0)))e−t))



+α2(3γ1(‖y‖[0,t])) + α2(3γ2(‖u‖[0,t]))

= β̃1(V (x0), t) + γ̃1(‖y‖[0,t]) + γ̃2(‖u‖[0,t])

where

β̃1(V (x0), t) = α2(3θ1(θ2(α−1
1 (V (x0)))e−t)),

γ̃1(‖y‖[0,t]) = α2(3γ1(‖y‖[0,t])),

γ̃2(‖u‖[0,t]) = α2(3γ2(‖u‖[0,t])).

It is easy to see that β̃1(·, ·) ∈ KL and γ̃1, γ̃2 ∈ K.
Then, by Definition 2.3, we can conclude that
system (1) is input/output-to-V stable.

(2) Suppose that system (1) is input/output-to-V
stable and there exist K∞ functions α1, α2 such
that α1(|x|) ≤ V (x) ≤ α2(|x|), ∀x ∈ X. Then,
by Proposition 7 of Sontag (1998) we know that
there exist θ1, θ2 ∈ K∞ such that

α1(|x|)≤ V (x)

≤ β(V (x0), t) + γ1(‖y‖[0,t]) + γ2(‖u‖[0,t])

≤ θ1(θ2(V (x0))e−t) + γ1(‖y‖[0,t])

+γ2(‖u‖[0,t]), ∀x0 ∈ X, ∀t > 0.

Therefore,

|x| ≤ α−1
1 (θ1(θ2(V (x0))e−t) + γ1(‖y‖[0,t])

+γ2(‖u‖[0,t]))

≤ α−1
1 (3max{θ1(θ2(V (x0))e−t),

γ1(‖y‖[0,t]), γ2(‖u‖[0,t])})
≤ α−1

1 (3θ1(θ2(V (x0))e−t)) + α−1
1 (3γ1(‖y‖[0,t]))

+α−1
1 (3γ2(‖u‖[0,t]))

≤ α−1
1 (3θ1(θ2(α2(x0))e−t)) + α−1

1 (3γ1(‖y‖[0,t]))

+α−1
1 (3γ2(‖u‖[0,t]))

= β̃2(|x0|, t) + ψ̃1(‖y‖[0,t]) + ψ̃2(‖u‖[0,t])

where

β̃2(|x0|, t) = α−1
1 (3θ1(θ2(α2(x0))e−t)),

ψ̃1(‖y‖[0,t]) = α−1
1 (3γ1(‖y‖[0,t])),

ψ̃2(‖u‖[0,t]) = α−1
1 (3γ2(‖u‖[0,t])).

It is easy to see that β̃2(·, ·) ∈ KL and ψ̃1, ψ̃2 ∈
K. Then we can conclude that system (1) is
input/output-to-state stable. Q.E.D.

5. CONCLUSION

In this paper, we have proposed and solved the
problem of the global (local) stabilization of in-
variant sets of a class of switched systems, every
subsystem of which is a passive and nonlinear
system. The main idea of our approach is to
extend the passification scheme for equilibrium

point stabilization introduced by Byrnes, Isidori
and Willems (1991), to the problem of invari-
ant set stabilization for switched nonlinear sys-
tems. To this end, we have extended the notion
of the input/output-to-state stability introduced
by Sontag and Wang (1997), to the case of the
input/output-to-V (x) stability, which implies de-
tectability of the zero-value set of a storage func-
tion. Based on this notion and the notion of pas-
sivity of nonlinear systems, we have proposed and
proved sufficient conditions under which an in-
variant state set of the switched nonlinear system
can be stabilized by output feedback. We have
also shown that a nonlinear system is IOVS if
V (x) is an IOSS-Lyapunov function of the system.
The relationship between IOVS and IOSS is also
characterized by the concept of IOSS-Lyapunov
function.
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