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Abstract: This paper presents the fuzzy linear control design method for a class of 
stochastic non-linear time-delay systems with state feedback. First, the Takagi and 
Sugeno fuzzy linear model is employed to approximate a non-linear system. Next, based 
on the fuzzy linear model, a fuzzy linear controller is developed to stabilize the non-
linear system. The control law is obtained to ensure stochastically exponential stability 
in the mean square, independent of the time-delay. The sufficient conditions for the 
existence of such a control are proposed in terms of certain linear matrix inequality. 
Finally, a simulation example is given to illustrate the applicability of the proposed 
design method. Copyright © 2005 IFAC  
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1.   INTRODUCTION 
Most of the systems, which are encountered in 
control engineering, contain various nonlinearities 
and are affected by random disturbance signals. Non-
linear systems with time-delay constitute basic 
mathematical models of real phenomena, for instant 
in biology, mechanics and economics, see e.g. (Hale, 
1997; Niculescu, et al., 1997). Control of time-delay 
systems has been a subject of great practical 
importance, which has attracted a great deal of 
interest for several decades. On the other hand, it 
turns out that the delayed state is very often the cause 
for instability and poor performance of systems. 
Moreover, considerable attention has been given to 
both the problems of robust stabilization and robust 
control for linear systems with unavoidable time-
varying parameter uncertainties in modelling 
dynamical systems and certain types of time-delays 
(Malek-Zavarei and Jamshidi, 1987). 
 
Since the introduction of fuzzy set theory by Zadeh 
(1973), many people have devoted a great deal of 
time and effort to both theoretical research and 
implementation technique for fuzzy logic controllers 

(Mamdani and Assilian, 1974; Tanaka and Wang, 
2001). With the development of fuzzy systems, it is 
known that the qualitative knowledge of a system can 
also be represented in non-linear functional form. On 
the basis of this idea, some fuzzy models based 
control system design methods have appeared in the 
fuzzy control field (Chen, et al., 1993; Tanaka and 
Wang, 2001; Wang, et al., 1996). These methods are 
conceptually simple and straightforward. Fuzzy 
controllers are usually characterized using Mamdani 
and T-S type. In general, Mamdani type fuzzy 
controllers are designed empirically. However, T-S 
controllers can be designed using the information of 
several local linearized models of a given system via 
the so-called parallel-distributed compensation 
scheme. Various stability conditions of fuzzy 
systems have been obtained by employing Lyapunov 
stability theory (Chen, et al., 1999; Hwang and Lin, 
1992; Lam, et al., 2001), passivity theory (Sio and 
Lee, 1998), and other methods (Feng, et al., 1997; 
Lee, et al., 2001; Tanaka and Wang, 2001). Problem 
of control design based on the state feedback for T-S 
fuzzy systems using LMI approach has been studied 
by Xiadong and Qingling (2002) and the delay-
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independent stability of T-S fuzzy model for a class 
of non-linear time-delay systems investigated by Gu, 
et al., (2001). Extension of the T-S fuzzy model 
approach to the stability analysis and control design 
for both continuous and discrete-time non-linear 
systems with time-varying delay has been considered 
by Cao and Frank (2000) and also Lee, et al. (2000) 
presented design of an output feedback robust  
controller based on T-S fuzzy model for uncertain 
fuzzy dynamic systems with time-varying delayed 
state. 

∞H

 
Recently, several criteria of input-to-bounded state 
(IBS) stabilization and bounded-input-bounded-
output (BIBO) stabilization in mean square for non-
linear and quasi-linear stochastic control systems 
with time-varying uncertainties has been investigated 
by Feng and Liao (2003), also, another stability 
concepts in the mean-square sense such as mean-
square stability (MSS) and the internal mean-square 
stability (IMSS) have been studied by Lu and 
Skelton (2002). The stabilization of stochastic 
systems with multiplicative noise has been studied 
since the late sixties, particularly in the context of 
linear quadratic optimal control, see e.g., (Mclane, 
1971; Willems, 1983). Also, a stochastic fuzzy 
control has been proposed by applying the stochastic 
control theory, instead of using a traditional fuzzy 
reasoning (Watanabe, 1995) and a class of fuzzy 
stochastic control systems with random delays 
investigated by Sinha, et al. (2002).  
 
The main contribution of this paper, is the fuzzy 
linear control problem for a class of stochastic non-
linear time-delay systems has been investigated and 
their attention were focused on the design of state 
feedback controller which ensures stochastically 
exponentially stable in the mean square, independent 
of the time- delay. Finally, the simulation results 
show that fuzzy linear state feedback controller can 
achieve the robust stability in the mean square and 
independent of the time-delay.  
 
 

2.    PRELIMINARIES AND PROBLEM 
FORMULATION 

 
Consider a class of non-linear continuous-time state 
delayed stochastic system described by 
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A fuzzy dynamic model has been proposed by 
Takagi and Sugeno (1985) to represent local linear 
input-output relations of non-linear systems. This 
fuzzy linear model is described by fuzzy If-Then 

rules and will be employed here to deal with the 
control design problem of the non-linear system (1-
2). The ith rule of this fuzzy model for the non-linear 
system (1-2) is of the following form (Hwang and 
Lin, 1992; Takagi and Sugeno, 1985; Wang, et al., 
1996): 
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for Li ,,2,1 K=  where is the fuzzy set, , 
, , is the number of If-Then rules, 

and are the premise variables. 
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The overall fuzzy system is inferred as follows: 
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Therefore, from (1) we get (Chen, et al. 1999) 
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Suppose the following fuzzy controller is employed 
to deal with the above control system design: 
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for Lj ,,2,1 K= . Hence, the overall fuzzy controller is 
given by 
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where  is defined in (8) and (9) and are the 
control parameters. 
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Substituting (13) into (10) yields the closed-loop 
non-linear control system as follows: 
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and the bounding matrices , and can be 
described by 
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where 1≤iδ , 1≤idδ  and 1≤iη , for Li ,,2,1 K=  
(Boyd, et al. 1994).  
According to assumption 2, we get 
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Theorem 1: Let the control parameters , 
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Lj ,,2,1 K= , be given. If the fuzzy controller (13) 
is employed in the non-linear system (1-2) and there 
exists positive scalars and a positive 
definite matrix  such that the following matrix 
inequalities 
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Next, observe the closed-loop system (14) and let 
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 denote the state trajectory from the initial data 
)(θζθ =x  on 0≤≤− θh  in . Clearly, 

the system (14) admits a trivial solution 
corresponding to the initial data 
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concepts. 
 
Definition 1 (Wang, et al., 2001): For the system (14) 
and every , the trivial solution is 
asymptotically stable in the mean square if 
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and is exponentially stable in the mean square if 
there exist constants 0>α and 0>β such that 
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Definition 2 (Wang, et al., 2001): we say that the 
system (1-2) is exponentially stabilizable in mean 
square if, for every , there exists a 
fuzzy linear control law (13) such that the resulting 
closed-loop system is exponentially stable in mean 
square. 
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The objective of this paper is to design a fuzzy linear 
control for the stochastic non-linear time-delay 
system (1-2). More specifically, we are interested in 
seeking the control parameters , for jK Lj ,,2,1 K= , 
such that the closed-loop system (14) is 

exponentially stable in mean square, independent of 
the unknown time-delay.  
 
 

3.    MAIN RESULTS AND PROOFS 
 
We first give the following lemma, which will be 
used in the proof of our main results.  
Lemma 1 (Zhou and Khargonekar, 1988): For any 
matrices X and Y with appropriate dimensions and for 
any constant 0>η , we have: 
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3.1.  Stochastic Stability Analysis 
 
In this section, assuming that the fuzzy linear control 
is known and we will study the conditions under 
which the closed-loop system is stochastically 
exponentially stable in the mean square. The 
following theorem will play a key role in the stability 
analysis of closed-loop system and design of the 
expected fuzzy linear control. 
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non-linear system (14) is exponentially stable in the 
mean square and independent of the unknown time-
delay . h
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The stochastic differential of along a given 
trajectory is obtained as 
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Now, by Lemma 1, it is trivial to show that for any 
positive scalars of  the following matrix 
inequalities hold: 
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This subsection is devoted to the design of control 
parameters , for , by using the result in 
Theorem 1. We will show that the design of control 
parameters problem can be solved via the resolution   
of matrix inequalities. Our approach follows the one 
developed by Gahinet for the deterministic case (Fu 
and Liao, 2003). The key tool, which makes this 
possible, is the stochastic version of the Bounded 
Real Lemma. From deterministic  control theory 

we will need the following lemma, so-called, 
Projection Lemma.  
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Lemma 2 (Xu and Chen, 2002): Given a symmetric 
matrix and two matrices and , 
consider the problem of finding some matrix 
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 The inequality (43) has the form 
The expected exponential stability (in the mean 
square) of the closed-loop system (14) can be proved 
by making some standard manipulation on (36), see 
(Mao, 1996). Let be the unique root of the 
equation 
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 where  and are defined, respectively, in (37) and 
(30) and is the positive definite solution to (28) 
and is the unknown time-delay. Then, by Wang and 
Burnham, (2001), we have 
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Theorem 2: The closed-loop fuzzy system (14) is 
exponentially stable in the mean square and 
independent of the unknown time-delay , if the 
following conditions are satisfied, for , 

h
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Notice that, according to (40), the definition of 
exponential stable in Definition 1 is satisfied and this 
completes the proof of Theorem 1.   
The result of Theorem 1 may be conservative due to 
the use of inequalities (32-35). However, such 
conservativeness can be significantly reduced by 
appropriate choices of the parameters  in a 
matrix norm sense.    
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Proof: The proof follows directly from Theorem 1 
and Projection lemma.   

 
 

 3.2.  Fuzzy Control Design 
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         Robust stability of the state of system (53) in the 
presence of disturbance, i.e. Brownian motions has 
been depicted in Figure 1 and it is seen that due to 
Brownian motion as the external disturbance, state 
still is bounded. The overall fuzzy controller is shown 
in Figure 2.  

Substituting the above parameters into Theorem 3, 
using the LMI toolbox in MATLAB the solutions of     
(45), i.e., state feedback gains, can be obtained as 

 and  and the positive scalars 
 found as .  

1.01 =K

3,, εεε

1709.02 =K

1 =ε4, ε 1.0432 === εεε

                                                                                (51) 
Using the Schur complement formula, it is easy to see 
that (51) is equivalent to  

0)( 2
4321 <ΨΨ++++++ i

T
ii

T
i PAPPA εεεε .                (52)  

 

 

If the LMI in (52) have a positive-definite solution 
for , then the closed-loop system (14) is 
exponentially stable in the mean square and 
independent of the unknown time-delay . 
Moreover, in this case, a set of particular solutions of 
control parameters , for , corresponding 
to a feasible solution can be obtained by using the 
result of matrix inequality (52). Then, we obtain the 
following result: 

P

h

jK Lj ,,2,1 K=

P

 
Theorem 3: If there exist positive scalars  
such that the linear matrix inequality (52) has positive 
definite solution , then, the fuzzy control with 
parameters  for can be easily 
obtained by solving (45) and will be such that the 
closed-loop system (14) is exponentially stable in the 
mean square and independent of the unknown time-
delay .  

4321 ,,, εεεε

P

jK=Ω : Lj ...,,2,1=

h

Fig. 1. Time behavior of the state of system 
 
 

 

 
 

4.    SIMULATION RESULTS 
 
In this section, to illustatrte the effectiveness of the 
proposed method, we will design a fuzzy linear 
controller for the following stochastic non-linear 
time-delay system 

Fig. 2. Control input 
 

 )()]()()(06.0[)( 3 tdwdttuhtxtxtdx ++−+−=                  (53) 
 ]0,[,1)( httx −∈= .                                                (54) 

5.    CONCLUSIONS Consider  second as the time-delay parameter. 
To use the fuzzy linear controller design, we consider 
a fuzzy model, which represents the dynamics of the 
non-linear plant. Therefore, we represent the system 
(53-54) by the following T-S fuzzy model 

1=h

 

)()](2)(5.0)(3[)(
,)(

:1

11

tdwdttuhtxtxtdxThen
FistxIf

RulePlant

++−+−=

                                                                    

)()]()(1.0)(2[)(
,

:2

21

tdwdttuhtxtxtdxThen
FisxIf

RulePlant

++−+−=
                                                                    

In this paper, the fuzzy linear control design method 
for a class of stochastic non-linear time-delay 
systems with state feedback was developed. First, the 
Takagi and Sugeno fuzzy linear model was employed 
to approximate a non-linear system. Next, based on 
the fuzzy linear model, a fuzzy linear controller was 
developed to stabilize the non-linear system. The 
control law has been obtained such that ensures 
stochastically exponentially stable in the mean 
square, independent of the time-delay and the 
sufficient conditions for the existence of such a 
control was proposed in terms of certain linear matrix 
inequality. A simulation example was given to 
illustrate the applicability of the proposed design 
method. 

 

where the membership functions of and are 
given as follows: 

11F 21F
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1
1111 xe
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