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Abstract: In this paper, the problem of observer-based state-feedback controller design for 
linear neutral systems is investigated. Employing Lyapunov method and quadratic 
stability theory, a new delay-independent stability criterion is obtained in the form of a 
linear matrix inequality which can be easily solved by well-known interior-point 
algorithms. A numerical example is introduced to demonstrate the effectiveness of the 
proposed method through simulation studies.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Time delays inevitably exist in dynamical and 
physical systems because of the lack of sufficient 
information processing rate and data transmission 
capability throughout the different parts of the 
system. The main effect of the time delay arises as 
the instability of the system behaviour and often 
causes poor and deteriorated performance. This 
situation motivates the researchers to study the 
stabilization of time delay systems. A particular class 
of time delay systems in which the time delay also 
exists in the derivative of the states is called time 
delay systems of neutral type. The robust 
stabilization problem of neutral time delay systems 
has been investigated in the literature (Xu et al., 
2002; Xu et al., 2003; Park, 2003a; Park, 2003b; Xu 
et al., 2004). The stabilization methods reported by 
the above authors are all based on memoryless state-
feedback controllers. This situation preassumes that 
all the states are available or accessible through 
measurements. In order to avoid the requirement of 
all the states to be available which is not so realistic 
in practice for many physical systems, the only 
remedy is to design an observer-based controller.  
 
The design problem of state-observers for time delay 
systems has also been studied by a number of 
researchers (Trinh, 1999; Boutayeb, 2001; Hou et al., 

2002; Wang, 2002; Mahmoud and Zribi, 2003; Trinh 
et al., 2004). However, these authors have generally 
considered delay differential systems of only retarded 
type. There exist quite a few number of work (Wang 
et al., 2002; Chen et al., 2004; Park, 2004) in which 
state observer design for neutral type of time delay 
systems has been investigated.  
 
The problem of observer design for a class of time 
delay nonlinear systems with parameter uncertainties 
is considered by Wang and Unbehauen (2000). An 
algebraic parametrized approach based on a Riccati 
matrix equation is exploited to characterize the 
existence conditions and the set of expected robust 
nonlinear observers. However, the parametrized 
formulation of the observer gain matrix involves 
computational complexity due to the requirement of 
predetermined design parameters. A full-order 
observer that guarantees the exponential stability of 
the error dynamic system has been considered by 
(Wang et al., 2002) where they developed a matrix 
equation approach to solve the problem. (Chen et al., 
2004) addressed the problem of guaranteed cost 
control for a class of neutral delay systems by using 
an observer-based memory state-feedback controller. 
(Park, 2004) developed an observer-based controller 
for a class of linear differential systems of neutral 
type. However, one of the stabilization criterion 
given in (Park, 2004) for the existence of the 



     

observer-based controller can not be expressed in the 
form of linear matrix inequalities. This implies that 
the matrix inequalities for the stabilization criteria 
cannot be solved simultaneously by using convex 
optimization methods. The only way is to put some 
additional conditions in order to convert matrix 
inequalities into linear matrix inequalities (LMIs). 
However, this situation may induce additional 
conservatism into the system. 
 
In this paper, we consider the observer-based 
memoryless state-feedback controller design problem 
for a class of time delay systems of neutral type. The 
delay in the states and state derivatives is assumed to 
be constant. A full-order state-observer is constructed 
and both the error dynamics and closed-loop system 
dynamics are taken into consideration. A delay-
independent stabilization criterion is obtained in 
terms of a linear matrix inequality. Unlike the 
method of (Park, 2004), our stabilization criterion 
can be easily solved by LMI optimization techniques 
in the LMI control toolbox with no requirement to 
make further assumptions. A numerical example is 
given in order to demonstrate the utilization of the 
observer-based stabilization method proposed in this 
note. Some numerical simulations are also presented. 
 
 

2. PROBLEM STATEMENT 
 
Let us consider a class of linear neutral time delay 
system of the following form: 
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with the initial condition function 
[ ]0,),()( htx −∈∀Φ=+ θθθ   (2) 

where ntx ℜ∈)(  is the state vector; mtu ℜ∈)(  is the 

control input vector; pty ℜ∈)(  is the output vector; 
npmnnn

d FBCAA ××× ℜ∈ℜ∈ℜ∈ ,,,,  are constant 

known system matrices; h,τ  are known nonnegative 
constant scalars denoting the neutral and discrete 
delays, respectively; h  is ),max( hτ  and )(⋅Φ  is the 

given continuously differentiable function on [ ]0,h− . 
 
Assumption 1. We assume that the pairs ),( BA  and 

),( CA  are controllable and observable, respectively. 
Let us define the following type of an operator as 

)()()( τ−−= tCxtxxD t    (3) 
it follows from Lemma 1 given by Ivanescu et al. 
(2003) that the operator )( txD  is guaranteed to be 
stable if the matrix C  is stable in the sense of Schur-
Cohn. Moreover, this situation also enables to assure 
the stability of (3) for any neutral time-delay 
satisfying ∞<≤ τ0 . We can consider the following 
type of a full-order memory state-observer for the 
system described in (1), (2) 
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and we choose the state-feedback control law as 
follows 

)(~)( txKtu −=     (5) 

where ntx ℜ∈)(~  is the estimated state vector; 
nmK ×ℜ∈  is the constant feedback gain matrix and 

pnL ×ℜ∈  is the constant observer-gain matrix to be 
selected.  
In order to obtain the error dynamics, we can define 
the estimation error as 

)(~)()( txtxte −=    (6) 

where )(te  is the estimation error vector. Then we 
can formulate the error dynamics as follows 
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or we can rewrite (7) in the form of neutral type 
delay-differential equation as  

)()()()()( hteAteLFAteCte d −+−=−− τ��  (8) 
Moreover, substituting the control law (5) into 
system (1) gives the closed-loop system dynamics as 
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The objective of this paper is to design an observer-
based state-feedback controller )(tu  for the neutral 
system (1) such that the error dynamics (7) and the 
resulting closed-loop neutral system (9) are 
asymptotically stable. 
 
 

3. MAIN RESULT 
 
In this section we develop a delay-independent 
criterion presented in the form of a linear matrix 
inequality assuring the asymptotic stabilizability of 
the neutral delay-differential system (1) with the 
memory observer-based state-feedback controller (5). 
The following theorem summarizes the main result of 
this note. 
 
Theorem 1. Given a nonnegative constant scalar, 

0>α , if there exist symmetric and positive definite 
matrices X , Q , R , S , T , Z  and an arbitrary 
matrix W , an arbitrary vector K , all with 
appropriate dimensions satisfying 

0<Σ   (10) 
where  

RQBKBKAAXAXA TTTT ++−−+++=Σ ααα )(11

dd
T XAA +=Σ=Σ α1221 , 

CRQBKCACXACT )(1331 ++−+=Σ=Σ αα , 

BKT α=Σ=Σ 1441 , BKCT α=Σ=Σ 1661 ,  

XBT 21771 =Σ=Σ , TT K=Σ=Σ 1881 , Q−=Σ22 , 

CRQCR T )(33 ++−=Σ , TTT KC=Σ=Σ 3993 , 

ZTWFWFSASA TTT ++−−+=Σ44 , 

d
T SA=Σ=Σ 4554 , WFCSACT −=Σ=Σ 4664 ,  

TT K=ΣΣ 10,44,10 , T−=Σ55 ,  

CZTCZ T )(66 ++−=Σ , TTT KC=Σ=Σ 11,66,11 , 



     

Ι−=Σ77 , Ι−=Σ88 , Ι−=Σ99 , Ι−=Σ 10,10 , Ι−=Σ 11,11 . 

and the remaining entries are zero, then system (1), 
(2) is asymptotically stabilizable with the observer-
based controller )(~)( txKtu −= . 
 
Proof. Let us choose a candidate Lyapunov-
Krasovskii functional as 
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where 
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with P , Q , R , S , T , Z  being symmetric and 
positive definite matrices all to be selected 
appropriately. Computing the time derivative of iV  

)6,1( �=i  along the state and error trajectories of 
(8) and (9) respectively yields, 
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Substituting (9) and the relation of 
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and we also compute the following 
)()()()(2 htQxhtxtQxtxV TT −−−=�  (15) 

)()()()(3 ττ −−−= tQxtxtRxtxV TT�  (16) 
and in a similar manner we obtain  
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Using (7) and replacing )(te  with )()( τ−+ tCeeD t  
in the above equation gives 
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Finally, we get the following derivatives 
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Summing up iV�  )6,1( �=i  in (14)-(19) to get 
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We can express the quadratic terms involving )(tx  

and )(te  in terms of )( txD  and )( teD , respectively. 
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Thus, substituting (21)-(23) into (20) yields, 
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We can rewrite (24) in quadratic form as follows 
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d
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and the remaining entries are all zero. Hence, in order 
to guarantee the asymptotic stability of system (1) 
with the memory observer-based controller (5), one 
needs to satisfy the following inequality 

0)()())(( <Ω= tttxV T χχ�     



     

which implies that  
0<Ω   (26) 

Note that, the matrix inequality given in (26) is not in 
the form of linear matrix inequalities. We can employ 
matrix decomposition technique (Bartholomeus et al., 
1997) to be able to reexpress (26) in the form of a 
linear matrix inequality.  
 
Given a constant nonnegative scalar, 0>α , we 
assume that P  is chosen such thatbe decomposed as  

XP +Ι= α    (27) 
where X  is a symmetric and positive definite matrix. 
Then we can recompute the entries of Ω  that involve 
P  by substituting (27) appropriately 
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RQBKBKAAXAXA TTTT ++−−+++= ααα )(  
XBKXBK TT −− , and CRQCBKAP )()( ++−  

XBKCCRQBKCACXAC −++−+= )(αα , and 
XBKBKPBK += α , and XBKCBKCPBKC += α , 

and ddd XAAPA += α . 
Now we can rewrite (26) by substituting the above 
expressions to obtain  
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dd
T XAA +=Φ=Φ α1221 , 

CRQBKCACXACT )(1331 ++−+=Φ=Φ αα , 

BKT α=Φ=Φ 1441 , BKCT α=Φ=Φ 1661 , Q−=Φ 22 , 

CRQCR T )(33 ++−=Φ , 

ZTLFASSLFA T ++−+−=Φ )()(44 , 

d
T SA=Φ=Φ 4554 , CZTCLFAST )()(4664 ++−=Φ=Φ , 

T−=Φ55 , CZTCZ T )(66 ++−=Φ , XBK−=Γ11 , 

XBKC−=Γ13 , XBK=Γ14 , XBKC=Γ16  and the 
remaining entries  of Φ  and Γ  are all zero.  
Note that we can represent Γ  in the following sum 
of product terms 
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where  
[ ]TT XB 000000 −=Γ , 

[ ]000001 K=Γ , 

[ ]000002 KC=Γ , 

[ ]000003 K=Γ , 

[ ]KC000004 =Γ . 
We can utilize Lemma 1 given in (Wang, 2002) as 
follows: 
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Substituting (30) appropriately into (28) allows to get 
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1616 Φ=Π , 2222 Φ=Π , KCKC TT+Φ=Π 3333 , 

KK T+Φ=Π 4444 , 4545 Φ=Π , 4646 Φ=Π , 5555 Φ=Π , 

KCKC TT+Φ=Π 6666 . Choosing an arbitrary matrix 
W  such that 

WSL 1−=    (32) 
and using Schur’s complement (Boyd et al., 1994), 
we can represent (31) as a matrix inequality form 
given by (10). If the condition (10) is satisfied, then 
system (7), (9) are guaranteed to be asymptotically 
stable. Hence the proof is completed. 
 
Remark 1. Note that the inequality (10) is in the form 
of a linear matrix inequality which can be easily 
solved using interior point algorithms (Boyd et al., 
1994). 
 
Remark 2. The problem of how to choose the scalar 
parameter α  can be handled by choosing repeatedly 
arbitrary positive values for α  until the LMI control 
toolbox has given feasible solutions for the LMI (10). 
 
 

4. NUMERICAL EXAMPLE 
 
In this section we consider a numerical example in 
order to demonstrate the effectiveness of the 
proposed design approach. 
 
Example. Consider the following linear neutral 
system: 
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We first choose 50=α  and solve (10) with interior-
point algorithms in the LMI control toolbox. The 
feasible solutions are obtained as follows 
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For the simulation case study, we chose the neutral 
and discrete delays as sec1=τ  and sec3=h , 



     

respectively and using the design parameters K  and 
L  provided by the LMI control toolbox, we obtain 
the explicit dynamic equations for the closed-loop 
system as 
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and similarly we get the state-observer dynamic 
equations  
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The simulation case study has been carried out with 
the estimated state-feedback control input signal 
which can be seen in Figure 1. Figure 2 depicts the 
response of the actual and estimated signals for 

)(1 tx .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Input signal )(tu . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Response of the actual and estimated signal 

)(1 tx , )(~
1 tx , respectively. 

 

The estimation error in the transient period is quite 
low and it rapidly converges to zero in the steady-
state. The actual and estimated signals for )(2 tx  are 
shown in Figure 3 where a similar performance with 
that of )(1 tx  is noticed in the estimation of )(2 tx . 
Therefore, the simulation results indicate that the 
proposed delay-independent observer-based 
controller exhibits a satisfactory performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Response of the actual and estimated signal 

)(2 tx , )(~
2 tx , respectively. 

 
 

5. CONCLUSION 
 
In this paper, the memory observer-based 
stabilizability problem of a class of neutral time-
delay systems is addressed. Based on Leibniz-
Newton model transformation and Lyapunov 
quadratic stability theory, a new delay-independent 
linear matrix inequality form of stabilization criterion 
that ensures the asymptotic stability of both the error 
dynamics and the closed-loop systems dynamics is 
obtained. Unlike a recently given method by (Park, 
2004), the proposed stabilizability condition for the 
existence of a memory observer-based controller can 
be directly solved using effective interior-point 
algorithms. 
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