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Abstract: In this paper, a recently developed graphical signatures generation tool
is used for diagnosis and on-line parametric estimation of automotive electronic
throttle control (ETC) system. The underlying diagnosis problem corresponds
to variations affecting four system’s parameters. It is shown that this diagnosis
method enables detection, isolation and parameter estimation even under simul-
taneous faults occurrence outperforming existing works on the same problem.
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1. INTRODUCTION

Diagnosis of automotive components and subsys-
tems becomes a crucial issue in the automotive
industry (Krishnaswami et al., 1995; Conatser et

al., 2004; Conatser and Wagner, 2000). Diagnosis
includes fault detection and isolation. By fault de-
tection, one means that a faulty behaviour symp-
toms have been detected while isolation amounts
to identify the precise fault configuration leading
to these symptoms.

There are several techniques that may be used to
perform the above tasks. Diagnosis may be done
using dedicated observers (Ding and Guo, 1998).
Analytical redundancy can also be used in an
algebraic framework in order to detect varia-
tions on parameters (Staroswiecki and Comtet-
Varga, 2001). Fuzzy logic-based schemes may be
invoked through parity equations (Xiang-Fang et

al., 2002). Statistical and local approaches based
on signal processing and statistical properties
monitoring have been proposed (Basseville, 1998)

as well as methods based on the wavelets trans-
formation (Petropol, 2001) that can generically be
applied to detect singular behaviors based on the
spectral content of the measured signals.

In the present paper, a recently developed (Youssef
and Alamir, 2003) signature-based methodology
is used to derive a diagnosis tool for the automo-
tive Electronic Throttle Control (ETC) device.
The signature based methodology proposed in
(Youssef and Alamir, 2003) uses a general sig-
nature generation algorithm to yield a diagnosis
procedure by means of the following three steps :
Step 1: Generating signatures. In this first
step, a family of 2D graphical signatures is gener-
ated for nominal and faulty configurations. This is
done using the physical simulation model in which
variations on the parameters are introduced. Fur-
thermore, several parameterizations of the signa-
ture generation tool are used in order to enhance
detection and isolation capacity.
Step 2: Signature analysis. In this second step,



the high classification ability of human brain is
used to analyse the signatures produced in the
first step. The way variations on parameters in-
duce signature deformations is analysed in order
to define relevant geometrical residuals. This
step may invoke the first one in order to produce
additional signatures enabling detection and iso-
lation to be performed.
Step 3: Definition of mathematical residu-

als. Once a relevant set of geometrical residuals
is defined in Step 2. A mathematical translation
is then performed in order to derive mathematical
residuals that can be used in an on-line diagnosis
framework.

The above three-steps diagnosis design strategy
is applied in this paper to yield a novel diagno-
sis algorithm for the automotive ETC diagnosis
problem. This problem has been recently studied
by (Conatser et al., 2004) using a parity-based
diagnostic strategy. However, while in (Conatser
et al., 2004), only single faults are handled and
no parameter estimation is performed, the strat-
egy proposed here enables simultaneous faults af-
fecting any combinaison of 4 parameters to be
detected and isolated. Moreover, the estimation
of the new parameters configuration is simultane-
ously obtained.

The paper is organized as follows. The ETC

system model is presented in section 2 and the
diagnosis problem under interest is clearly stated.
Section 3 recalls the technique based on graphi-
cal signature (Youssef and Alamir, 2003) for the
fault detection and isolation of dynamical systems
which is used. Application of this methodology
to the ETC diagnosis problem is presented in
section 4. Section 5 shows how one can estimate
the values of parameters using an automatic on-
line ETC parametric estimation. The paper ends
with a conclusion.

2. THE ELECTRONIC THROTTLE
CONTROL DIAGNOSIS PROBLEM

The Electronic Throttle Control system ETC is
used to regulate the inlet airflow rate. This is done
by means of a DC servo-motor which controls the
throttle plate angle. The ETC is integrated into
existing engine management systems (manifold,
fueling, combustion process, and rotational dy-
namics). The driver’s commands and the throttle
position feedback signals are processed by the
ETC controller to regulate the servo-motor volt-
age ea which controls the angle θ ∈ [0, π/2] of the
ETC throttle plate (Huber et al., 1991). Figure
1 shows the electro-mechanical dynamic system
scheme (Conatser and Wagner, 2000).

Fig. 1. Mechatronic system diagram for throttle-
by-wire

2.1 The system equations

The evolution of the armature current ia is given
by the following differential equation:

dia
dt

=
1

La

(−Raia − Kb

dθm

dt
+ ea) (1)

where Ra and La are the armature resistance
and inductance, respectively. Kb

dθm

dt
represents

the back e.m.f induced by the motor rotation.
The throttle body’s rotational dynamics may be
described by:

d2θ

dt2
=

1

N2Jm + Jg

(

−(N2bm + bt)
dθ

dt
+ NTm − Tsp − Ta

)

where :
X bm and bt denote the motor shaft and throttle
viscous damping coefficients, respectively.
X N is the gear ratio, that is N = θm/θ (see figure
1)
X Tm is the motor torque that is related to the
current ia since Tm = Ktia.
X Tsp is the spring torque. The spring returns
the plate to a closed position when no armature
voltage is applied. The spring assembly is initial-
ized to an angle θ0 such that Tsp is given by
Tsp = Ksp(θ + θ0).
X Ta is a small torque induced by the airflow over
the throttle plate which can be written as follows
Ta = Raf · Ap · ∆P · cos2 θ. where Raf is the
distance from the throttle plate center to the force
concentration point, Ap = πR2

p is the throttle
plate area, ∆P = Patm − Pm where Pm is the
manifold pressure that is a nonlinear throttle an-
gle dependent function, Pm = f(θ, Patm, N) that
approaches atmospheric pressure as the throttle
approaches a wide-open state.

By taking x = [θ, dθ/dt, ia]T as state vector and
u = ea as input vector, ETC state representation
becomes (J = N2Jm + Jg and Kf = (N2bm + bt)):

ẋ1 = x2

ẋ2 =
1

J

(

−Ksp(x1 + θ0) − Kfx2 + (NKt)x3

−π R2
pRaf∆P · cos2(x1)

)

ẋ3 =
−1

La

(

NKb x2 + Ra x3 + u
)

(2)



2.2 The ETC diagnosis problem

The ETC system is controlled in order to track
some periodic reference signal θd. The correspond-
ing control law may be designed for instance by
exploiting the ”triangular” structure of the equa-
tions (2) to derive a back-stepping based state
feedback law (Kristicacute et al., 1995). The un-
derlying control used in the simulation hereafter is
based on this methodology. The details are how-
ever skipped here since attention is concentrated
on the ETC diagnosis problem. One has just to
note that the diagnosis proposed in this paper
is applied on the controlled system. This enables
an on-line diagnosis to be achieved in order to
monitor the parameters values during the system
life-time. It is assumed that the angle y = x1 = θ
is measured by a rotational potentiometer sensor.
The motor current ia as well as the control input
u are also assumed to be measured and can there-
fore be used in the diagnosis algorithm design.
Therefore, the measurements vector ym ∈ R

3 is
given by : ym :=

(

x1 x3 u
)

. The ETC diagnosis
problem considered in the present paper may be
stated as follows: Design an algorithm that uses
the measurements vector to detect and isolate
any even simultaneous variations in the parameter
vector

(

Kt Ra Kb Kf

)

∈ K ⊂ R
4 where K is a

domain of interest containing probable values of
parameters.

3. DIAGNOSIS BY GRAPHICAL SIGNATURE

The starting point of this method is the known
fact that ”human eyes through the underlying

brain activity” is able to accomplish high com-
plexity classification tasks. This high classification
ability needs however to be applied to some pat-
tern. The aim of this method is to propose output-
measurement-based generated patterns that are
called signatures. More precisely a map from a
high dimensional space to which belong the vector
of past measurements over some moving time-
window to R

2 is defined. When applying this
map to a moving-horizon past measurements, one
obtains a bi-dimensional curve. Now, if for each
faulty scenario, the ”corresponding signature” dif-
fers from the nominal one in a distinguishably
different way, from a human eye ”viewpoint” then
the graphical tool may be used in the context
of fault detection and even isolation under cer-
tain assumptions. In order to clearly summarize
the signature generation algorithm proposed in
(Youssef and Alamir, 2003) and used hereafter to
solve the ETC diagnosis problem, some defini-
tions and notations are needed. This is the aim of
the following section.

3.1 Some definitions and notations

The definitions given here refer to the case of one-
dimensional output measurement. To this respect,
each of the three components of ym given above
is used to generate a different signature.

3.1.1. The normalization function Nε

Consider a scalar output y that is measured with
some sampling rate. The vector of past measure-
ments y(t1), . . . , y(tN ) is then used to construct
a measurement vector Y . A normalization map is
then applied to Y in order to obtain components
that lie in [−1, 1], namely

Nε : R
N → R

N ; Nε(Y ) = Ȳ =
Y

‖Y ‖∞ + ε
(3)

where ε > 0 is some small regularizing coefficient
while ‖Y ‖∞ is given by: ‖Y ‖∞ = max|Yi|

N
i=1

3.1.2. Definition of a pencil Pε

A pencil is a map Pε : R
N × R → R

2 that
associates to each element (Y, y) of R

N × R (a
set of N + 1 measurements) a point in the bi-
dimensional plane:

Pε : R
N × R → R

2

(Y, y) → Φ0(Ȳ ) + λε(Ȳ , y)[Φ1(Ȳ ) − Φ0(Ȳ )]

where:
λε(Ȳ , y) = y

‖Ȳ ‖∞+ε
− 1

N

∑N

i=1 Ȳi,

Φ0(Ȳ ) = 1

N

∑N

j=1
Ψj(Ȳ ); Φ1(Ȳ ) = 1

N

∑N

j=1
ȲjΨj(Ȳ ),

Ψi(Ȳ ) = 1
2 [(1 + Ȳi)Q(i+1|N) − (Ȳi − 1)Qi]

Qi : image(e2j(i−1) π

N ) ; j2 = −1

(Qi)
N
i=1 are the N nodes of a regular N -dimensional

polygone in R
2, (i + 1|N) = (i + 1)Modulo N .

Pε(Y, y) is a point on the line
−−−→
Φ0Φ1 with rel-

ative position defined by y. See (Youssef and
Alamir, 2003) for more details.

3.2 Dynamical signature generation

Let us denote by δ the sampling time for measure-
ments acquisition and define the following vector:

Y (t,N) = [y(t − Nδ), . . . , y(t − δ)]T ∈ R
N (4)

Using a moving window of width N from measure-
ments [y(t− iδ)]m−1+N

i=0 and the pencil Pε defined
above, the following points in the 2D plane can be
defined:

Pi(t,N) = Pε

(

Y (t − (i − 1)δ,N),

y(t − (i − 1)δ)
)

i = 1...m (5)



(Pi(t,N))m
i=1 define m points in R2 which con-

stitute the two-dimensional signature Sε(t,N)
at time t. Analytically, Sε(t,N) can be writ-
ten as follow: Sε(t,N) = (Sx

ε , Sy
ε ) where Sx

ε =
(

P x
1

(t, N)...P x
m(t, N)

)T
and S

y
ε =

(

P
y
1

(t, N)...P y
m(t, N)

)T
.

Note that Different signatures can be obtained
by modifying the value of N which will be called
signature order.

4. APPLICATION TO THE ETC DIAGNOSIS
PROBLEM

In this section, the signature generation tool is
used to solve the ETC diagnosis problem stated
in section 2. The simulation parameters are listed
in table 1. The throttle plate follows a sinusoidal
reference signal of amplitude 0 ≤ θ ≤ Π

2 and
frequency f = 0.17H.

Tab. 1. Electronic throttle control system model
parameter values.

Para- Value Units Para- Value Units

meter meter

bm 0.03 Nms
rad

La 0.003 H

bt 3.397e−3 Nms
rad

N 4 -

Lg 0.005 kgm2 Patm 1.01325e5 N
m2

Jm 0.001 kgm2 Ra 1.9 Ω

Kb 0.1051 V s
rad

Raf 0.002 m

Ksp 0.4316 Nm
rad

Rp 0.0015 m

Kt 0.1045 Nm
A

θ0
π
2 rad

Tab. 2. ETC system faults, domaine of variations
of the parameters (K).

No. Description Parameter Interval
1 Motor torque coeff Kt [0.05 0.15]
2 Motor resistance Ra [1.5 2.5]
3 Back EMF Kb [0.05 0.15]
4 Throttle or Motor Kf [0.48 0.8]

damping

According to the definition of the signature, one
degree of freedom can be modified to be useful
in diagnosis, namely, the signature order N . By
taking 700 measurements of ia, θ and u with a
sampling period of 0.01s that is a moving window
of 7s, one generates four dynamical signatures:
S1 = Sε(t, 100) and S2 = Sε(t, 200) (without
normalisation, ‖Y ‖∞ = 1) generated from ia
measurements, S3 = Sε(t, 100) generated from θ
measurements and S4 = Sε(t, 50) generated from
u measurements. Using this signatures, one could
detect isolate and estimate all even simultaneous
variations of the four considered parameters Kf ,
Kt, Ra and Kb within the prescribed regions given
in table 2. As it is shown in the following section,
ETC diagnosis is done in the following order: Kf ,
Kt, Ra and then Kb.

4.1 Detection of variations on Kf

The allure of the signature S1 in the case of
variations affecting Kf under nominal values of
(Kt, Ra,Kb) is illustrated on figure 2. It is easy
to notice that when Kf increases, the allure of
the signature S1 lengthens. Now, the interesting
question is: How does this property (residual )
changes when the other parameters vary ?
Figures 3,4, 5 show that the signature S1 is in-
sensitive to variations on the other parameters,
thus one can use this signature to detect, isolate
and estimate variations on Kf without knowing
the other parameters. Note that interesting points
of S1 are clearly those corresponding to minimal
values for y-coordinate. Consequently the math-
ematical, say residual rkf which allows us to de-
tect, isolate and estimate variations on Kf can be
written as follow: rkf (t) = min[Sy

1 ].

−0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

kf=0.48
kf=0.64
kf=0.8

Fig. 2. Sensitivity of the signature S1 to variations
on Kf , (Kt, Ra,Kb) = (0.1045, 1.9, 0.1051).
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Fig. 3. The signature S1 is insensitive to variations
on Kt, (Kf , Ra,Kb) = (0.48, 1.9, 0.1051).
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Fig. 4. The signature S1 is insensitive to variations
on Ra, (Kf ,Kt,Kb) = (0.48, 0.1045, 0.1051).
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Fig. 5. The signature S1 is insensitive to variations
on Kb, (Kf ,Kt, Ra) = (0.48, 0.1045, 1.9).



4.2 Detection of variations on Kt

The allure of the signature S2 in the case of
variations affecting Kt under nominal values of
(Kf , Ra,Kb) is illustrated on figure 6. It is clear
that when Kt decreases, the allure of the signature
S2 lengthens. Like the previous case, interesting
points of S2 are those corresponding to mini-
mal values for y-coordinate and consequently Kt-
estimation can be done using this points. Note
that this property of S2 remains valid for all
admissible values of Kf and this signature is in-
sensitive to variations on Ra and Kb (see figures
7,8). Thus one can use this signature to detect,
isolate and estimate variations on Kt if the value
of Kf is known and without knowing the value of
(Ra,Kb). Note that the value of Kf can be esti-
mated by using the signature S1. Consequently,
residual rkt which allows us to detect, isolate and
estimate variations on Kt can be written as follow:
rkt(t) = min[Sy

2 ].
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Fig. 6. Sensitivity of the signature S2 to variations
on Kt, (Kf , Ra,Kb) = (0.48, 1.9, 0.1051).
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Fig. 7. The signature S2 is insensitive to variations
on Ra, (Kf ,Kt,Kb) = (0.48, 0.1045, 0.1051).
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Fig. 8. The signature S2 is insensitive to variations
on Kb, (Kf ,Kt, Ra) = (0.48, 0.1045, 1.9).

4.3 Detection of variations on Ra

Figure 9 illustrates the allure of the signature S3

in the case of variations affecting Ra under nomi-
nal values of (Kf ,Kt,Kb). It is easy to notice that
when Ra increases, the right point of the signature
S3 shift to the right. In this case, Interesting
points which allow us the estimation of Ra are
those of S3 corresponding to maximal values for x-
coordinate. Note that this property of S3 remains
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Fig. 9. Sensitivity of the signature S3 to variations
on Ra, (Kf ,Kt,Kb) = (0.48, 0.1045, 0.1051).
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Fig. 10. The signature S3 is insensitive
to variations on Kb, (Kf ,Kt, Ra) =
(0.48, 0.1045, 1.9).
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Fig. 11. Sensitivity of the signature S4

to variations on Kb, (Kf ,Kt, Ra) =
(0.48, 0.1045, 1.9).

valid for all admissible values of (Kf ,Kt) and this
signature is insensitive to variations on Kb (see
figure 10). Thus one can use this signature to
detect, isolate and estimate variations on Ra if the
value of (Kf ,Kt) is known and without knowing
the value of Kb . (Kf ,Kt) can be estimated using
the signatures S1 and S2. Consequently residual
rra which allows us to detect, isolate and esti-
mate variations on Ra can be written as follow:
rra(t) = max[Sx

3 ].

4.4 Detection of variations on Kb

Figure 11 illustrates the allure of the signature
S4 in the case of variations affecting Kb under
nominal values of (Kf ,Kt, Ra). It is easy to no-
tice that when Kb increases, the allure of the
signature S4 lengthens. Interesting points of S4

are those corresponding to minimal values for y-
coordinate and consequently Kb-estimation can
be done using this points. Note that this property
of S4 remains valid for all admissible values of
(Kf ,Kt, Ra). Thus one can use this signature to
detect, isolate and estimate variations on Kb if
the value of (Kf ,Kt, Ra) is known. (Kf ,Kt, Ra)
can be estimated using the signatures S1, S2 and
S3 associated to the above sections. Consequently
residual rkb which allows us to detect, isolate and
estimate variations on Kb can be written as follow:
rkb(t) = min[Sy

4 ].



5. ETC PARAMETERS ESTIMATION
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Fig. 12. On line ETC estimated parameters in the
case of simultaneous change at t=10s (real
parameters: solide line ’-’, estimated param-
eters: dashed line ’- -’, estimated parameters
after filtering: dotted line’:’).

Based on the mathematical residuals defined
above, the on-line ETC parameters estimation
can be done by cubic interpolation method. Pa-
rameters estimation is done in the following or-
der: Kf , Kt, Ra and then Kb. For instance the

estimated Ra given K̂f , K̂t is the solution of
ϕ(Ra) = measured [rra(t)] where ϕ(σ) is the
residual rra(t) computed with Kf = K̂f ,Kt = K̂t

and Ra = σ. Figure 12 shows estimated parame-
ters in the case of simultaneous parameters change
from [Kf = 0.5, Kt = 0.1, Ra = 2, Kb = 0.1] to [Kf =

0.8, Kt = 0.05, Ra = 2.5, Kb = 0.05] at t=10s. A white
noise is added to measurements (see figure 13).
Since all signatures and residuals are defined for
a constant values of the parameters in a moving
window of width L = 7s, signatures generated
by a measurement window containing the step
change are not relevant. For this reason estimated
parameters are filtered by a low pass filter with
cut-off frequency f0 = 1/L.
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Fig. 13. Measurements with simultaneous param-
eters change at t=10s.

6. CONCLUSION

In this paper, automotive electronic throttle sys-
tems diagnosis based on graphical signature tool is

proposed. This graphical tool when joined to the
particularly powerful human classification abil-
ity facilitates the extraction of relevant graphical
residuals. The latter can then be expressed in a
mathematical form for use in a real time context.
Representative numerical results are presented
and discussed to demonstrate the performance
of the graphical signature tool in diagnosing a
suite of ETC system failures. On line parameters
estimation are presented.
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