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Abstract: The Errors–in–Variables (EIV) stochastic environment constitutes a superset of
most common stochastic environments considered, for instance, in Kalman filtering or in
equation–error identification where the process input is assumed as noise–free. Errors–
in–variables models assume, on the contrary, the presence of unknown additive noise
also on the inputs; the associated filtering procedures concern thus the optimal (minimal
variance) estimation not only of the system state and outputbut also of the input. Optimal
EIV filtering has been formulated and solved only recently (Guidorziet al., 2003) making
reference to SISO models; this paper extends the efficient algorithm proposed in (Diversi
et al., 2003a), based on the Cholesky factorization, to the more general multivariable case.
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1. INTRODUCTION

Most stochastic environments considered in identifica-
tion and filtering assume the presence of disturbances
on the process output and/or state but consider the in-
put as exactly known. This assumption can be consid-
ered as realistic in some cases, for instance in all con-
trol applications where the process input is generated
by known laws, but is restrictive in many others, where
measurement errors are associated to all variables.

Errors–in–Variables models are free from this restric-
tion but require remarkably more complex identifica-
tion and filtering procedures. The EIV filtering prob-
lem, i.e. the optimal (minimal variance) estimation
of the true system input and output on the basis of
their noisy observations and of the knowledge of the
process and noise models, has been, in fact, formu-
lated and solved only recently (Guidorziet al., 2002;
Guidorziet al., 2003) making reference to polynomial
and to state–space models. The computational aspects

of EIV filtering have then been analyzed in (Diversiet
al., 2003a) with the goal of deriving a fast and robust
formulation suitable for real–time implementations.

In these works, the analysis has been limited to the
SISO case in order to focus the presentation only on
the peculiarities of the new algorithms and avoid the
introduction of the inherently more complex notation
required by multivariable models. The extension to
the MIMO case has been subsequently described both
in stochastic contexts (Diversiet al., 2003b) and in
deterministic ones (Markovsky and De Moor, 2003),
making reference to state–space models.

This paper considers the extension to the multivariable
case of the efficient algorithm described in (Diversiet
al., 2003a). This algorithm, differently from previous
ones, works on input–output models and does not
require, at every update, the solution of a Riccati
equation.



The contents are organized as follows. Section 2 de-
fines the optimal EIV interpolation and filtering prob-
lems. Sections 3 briefly recalls the solution of optimal
EIV interpolation while Section 4 proposes a solution
of optimal EIV filtering on the basis of the Cholesky
factorization. The expression of the expected perfor-
mance of the filter is derived in Section 5 while Sec-
tion 6 reports the results of a Monte Carlo simulation.
Some concluding remarks are finally reported in Sec-
tion 7.

2. PROBLEM STATEMENT

Consider the multi–input multi–output, linear, time–
invariant system described by the difference equation

An+1 ŷ(t) + An ŷ(t− 1) + · · ·+ A1 ŷ(t− n) =

Bn+1 û(t) + Bn û(t− 1) + · · ·+ B1 û(t− n), (1)

whereŷ(t) ∈ Rm, û(t) ∈ Rr are the system output
and input respectively andAi, Bi(i = 1, . . . , n + 1)
arem×m andm× r coefficient matrices. Models of
this type can always be used for completely observable
systems (Guidorzi, 1989) and can also be written in
the compact form

Q(z−1) ŷ(t) = P (z−1) û(t),

wherez−1 denotes the backward shift operator and

Q(z−1) = An+1 + An z−1 + · · ·+ A1 z−n,

P (z−1) = Bn+1 + Bn z−1 + · · ·+ B1 z−n.

In errors–in–variables contexts the input and output
observations are affected by additive noise:

u(t) = û(t) + ũ(t), (2)

y(t) = ŷ(t) + ỹ(t), (3)

whereũ(t) andỹ(t) are assumed as zero–mean white
noises, uncorrelated witĥu(t) and with covariances

E
[

ũ(t) ũT (t− τ)
]

= Σ̃u δ(τ), (4)

E
[

ỹ(t) ỹT (t− τ)
]

= Σ̃y δ(τ), (5)

E
[

ỹ(t) ũT (t− τ)
]

= Σ̃yu δ(τ), (6)

whereδ(τ) denotes the Kronecker delta function.

When a sequence ofN input–output samples is avail-
able, it is possible to write equation (1) fort = n +
1, . . . , N and to express this set of relations in the
compact form

G v̂ = 0, (7)

whereG is the(N − n)m×N(m + r) matrix

G =











A1 −B1 A2 −B2 · · · An −Bn An+1 −Bn+1

0 0 A1 −B1 A2 −B2 · · · An −Bn

...
...

0 · · · · · · · · · · · · · · · · · · · · · A1

0 · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · · · · · · · · · · · · · 0

An+1 −Bn+1 0 · · · · · · · · · · · · 0

...
...

−B1 A2 −B2 · · · An+1 −Bn+1 0 0

0 A1 −B1 · · · An −Bn An+1 −Bn+1











andv̂ theN(m + r)× 1 vector

v̂ =
[

ŷT(1) ûT(1) · · · ŷT(N) ûT(N)
]T

. (8)

From (2), (3) and (7) it follows that

Gv = G (v̂ + ṽ) = G ṽ = Γ, (9)

where

v =
[

yT(1) uT(1) · · · yT(N) uT(N)
]T

, (10)

ṽ =
[

ỹT(1) ũT(1) · · · ỹT(N) ũT(N)
]T

. (11)

The paper will treat the following problems.

Problem 1 (Optimal interpolation). Determine the
minimal variance estimate of the noiseless signals (8)
on the basis of the knowledge of model (1), covariance
matrices (4)–(6) and the noisy observations (10).

Problem 2 (Optimal filtering). Determine, at every
t, the minimal variance estimate of the current values
of û(t), ŷ(t) on the basis of the knowledge of model
(1), covariance matrices (4)–(6) and the input–ouput
observations{u(1), y(1), . . . , u(t), y(t)}.

3. OPTIMAL INTERPOLATION

If ũ(t) andỹ(t) are jointly gaussian processes, Prob-
lem 1 can be solved by considering the maximum
likelihood estimation of̂v under constraint (7), as done
in (Guidorziet al., 2003). An alternative approach can
be based on the computation of the minimal variance
estimate of̃v conditioned byΓ:

ṽ∗ = E [ ṽ |Γ ] = E
[

ṽ ΓT
]

E
[

Γ ΓT
]

−1
Γ .

In fact, sincev = v̂ + ṽ andE [ṽ v̂T ] = 0, we have

ṽ∗ = Σ̃ GT
(

G Σ̃ GT
)

−1
Γ = Σ̃GT

(

G Σ̃ GT
)

−1
Gv,

(12)

where

Σ̃ = E
[

ṽ ṽT
]

=















Σ̃y Σ̃yu . . . 0 0

Σ̃yu Σ̃u . . . 0 0
...

...
. . .

...
...

0 0 . . . Σ̃y Σ̃yu

0 0 . . . Σ̃yu Σ̃u















,



so that

v̂∗ = v − ṽ∗ =
[

I − Σ̃ GT
(

G Σ̃ GT
)

−1
G
]

v. (13)

Remark 1. Whenũ(t) andỹ(t) are not gaussian, ex-
pression (13) constitutes the best (minimal variance)
linear unbiased estimate ofv̂ that can be obtained from
Γ, i.e. from the noisy observationsv under condition
(7).

Remark 2. The covariance matrix of the estimation
error e = v̂ − v̂∗ is given, as shown in (Guidorziet
al., 2003), by

E [e eT ] = Σ̃
(

I −GT (GΣ̃GT )−1GΣ̃
)

.

4. OPTIMAL FILTERING

The solution of Problem 1 does not require the intro-
duction of the timet because interpolation is a batch
procedure based on all available samples. Since, on
the contrary, filtering is an on–line procedure work-
ing with increasing–time sequences{u(1), y(1), . . . ,

u(t), y(t)}, it is convenient to replaceN with t in all
definitions and to rewrite (12) and (13) as

ṽ∗(t) = E [ ṽ(t) |Γ(t) ] (14)

= Σ̃(t)GT (t)
[

G(t) Σ̃(t)GT (t)
]

−1
Γ(t),

v̂∗(t) = v(t)− ṽ∗(t). (15)

It is now possible to observe that in the whole interpo-
lated sequence (13) the last two termsû∗(t), ŷ∗(t) are,
actually, filtered:

û∗(t) = u(t)− ũ∗(t) = u(t)− E
[

ũ(t) |Γ(t)
]

, (16)

ŷ∗(t) = y(t)− ỹ∗(t) = y(t)− E
[

ỹ(t) |Γ(t)
]

. (17)

A possible way to solve Problem 2 could thus con-
sist in computing or updating (15) ast increases. A
procedure of this kind would however exhibit poor ef-
ficiency because it does not rely on previous computa-
tions and requires a computational load that increases
at every step with the dimensions ofG(t). These prob-
lems can be overcome by developing a finite–memory
recursive filtering algorithm or a state–space solution
based on the realization ofΓ(t) (Guidorziet al., 2003).
A more efficient solution can, however, be based on
Cholesky factorization and Bauer’s algorithm as de-
scribed in (Diversiet al., 2003a) for the SISO case. To
extend this approach to the MIMO case, note that the
entries ofΓ(t) are the samples of am–dimensional
stochastic processγ(t):

Γ(t) = G(t) v(t) (18)

=
[

γT (n + 1) γT (n + 2) · · · γT (t)
]T

,

whereγ(t) is the sum of two moving average pro-
cesses driven by the white noisesỹ(t), ũ(t). In fact

γ(t) = Q(z−1) y(t)− P (z−1)u(t)

= Q(z−1) ỹ(t)− P (z−1) ũ(t) (19)

= An+1 ỹ(t) + An ỹ(t− 1) + · · ·+ A1 ỹ(t− n)

−Bn+1 ũ(t)−Bn ũ(t− 1)− · · · −B1 ũ(t− n).

The autocorrelationsRγ(k) = E
[

γ(t) γT (t− k)
]

are
given by

Rγ(0) =
n+1
∑

i=1

(

Ai Σ̃y AT
i + Bi Σ̃u BT

i

− Ai Σ̃yu BT
i −Bi Σ̃T

yu AT
i

)

, (20)

Rγ(k) =

n−k+1
∑

i=1

(

Ai Σ̃y AT
i+k + Bi Σ̃u BT

i+k

− Ai Σ̃yu BT
i+k −Bi Σ̃T

yu AT
i+k

)

, 1 ≤ k ≤ n (21)

Rγ(k) = 0, for k > n. (22)

The optimal estimatẽu∗(t) can be rewritten as

ũ∗(t) = E
[

ũ(t) | γ(t), γ(t− 1), . . . , γ(n + 1)
]

or, equivalently,

ũ∗(t) = E
[

ũ(t) | ε(t), ε(t− 1), . . . , ε(n + 1)
]

= E
[

ũ(t) | ε(t)
]

= E
[

ũ(t) εT (t)
]

E
[

ε(t) εT (t)
]

−1
ε(t), (23)

whereε(t) is the innovation process ofγ(t) (Anderson
and Moore, 1979; Caines, 1988). A similar result
holds for the optimal estimatẽy∗(t)

ỹ∗(t) = E
[

ỹ(t) | ε(t), ε(t− 1), . . . , ε(n + 1)
]

= E
[

ỹ(t) | ε(t)
]

= E
[

ỹ(t) εT (t)
]

E
[

ε(t) εT (t)
]

−1
ε(t). (24)

The evaluation of (23) and (24) can rely on an ap-
proach similar to that proposed by Rissanen and Bar-
bosa (Rissanen and Barbosa, 1969; Caines, 1988). In
fact, the covariance matrix ofΓ(t) exhibits a band
Toeplitz structure

E [ Γ(t) Γ(t)T ] = ΣΓ(t) = G(t)Σ̃(t)GT (t) =




















Rγ(0) RT
γ (1) · · · RT

γ (n) 0 · · ·

Rγ(1) Rγ(0) · · · RT
γ (n− 1) RT

γ (n) · · ·
...

. . .
...

...
. . .

Rγ(n) Rγ(n− 1) · · · Rγ(0) RT
γ (1) · · ·

0
. . .

. . .
. . .

...
... · · ·

· · · · · · 0
· · · · · · 0
. . .

...
· · · RT

γ (n) 0 · · · 0
. . .

...
· · · Rγ(n) · · · · · · Rγ(0)





















and admits, thus, the Cholesky factorization

ΣΓ(t) = LΓ (t)LT
Γ (t),

LΓ(t) =

























L(1, 1) 0 . . .

L(2, 1) L(2, 2) . . .
...

...
. . .

L(n + 1, 1) L(n + 1, 2) . . .

0 L(n + 2, 2) . . .
...

...
. . .

0 0 . . .

(25)

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
L(n + 1, n + 1) 0 . . . 0
L(n + 2, n + 1) L(n + 2, n + 2) . . . 0

...
...

. . .
...

L(t, t− n) L(t, t− n + 1) . . . L(t, t)























.

The elements ofLΓ(t) can then be computed by
means of Bauer’s algorithm

L(t, t)LT (t, t) = Rγ(0)−

τ=t−1
∑

τ=t−n

L(t, τ)LT (t, τ),

(26)

L(t, t− k) =

(

Rγ(k)−

τ=t−k−1
∑

τ=t−n

L(t, τ)LT (t− k, τ)

)

×L−T (t− k, t− k), (27)

wherek = 1, . . . , n, L(1, 1)LT (1, 1) = Rγ(0) and
L−T is a short notation for(L−1)T . The innovation
representation ofγ(t) is given by the time–varying
model

γ(t) = L(t, t) ε(t) + L(t, t− 1) ε(t− 1)

+ · · ·+ L(t, t− n) ε(t− n). (28)

By comparing the expressions ofE [ũ(t) γT (t)] com-
puted by means of (19) and (28) it is possible to write
the relation

E [ũ(t) εT (t)] =
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

L−T (t, t).

Finally, by recalling thatE [ε(t) εT (t)] = I, relation
(23) leads to

ũ∗(t) =
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

L−T (t, t) ε(t).(29)

The same considerations can be repeated forỹ(t) in
order to derive the expression

ỹ∗(t) =
(

Σ̃y AT
n+1 − Σ̃yu BT

n+1

)

L−T (t, t) ε(t).(30)

The minimal variance estimates ofû(t) and ŷ(t) can
then be computed by means of (16), (17)

û∗(t) = u(t)−
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

(31)

×L−T (t, t) ε(t),

ŷ∗(t) = y(t)−
(

Σ̃y AT
n+1 − Σ̃yu BT

n+1

)

×L−T (t, t) ε(t). (32)

The following optimal filtering algorithm can thus be
formulated.

Algorithm 1.

(1) Start at timet = n+1 by computingRγ(0), . . . ,
Rγ(n) (20)–(22).

(2) Compute the termsL(t, t − n), . . . , L(t, t −
1), L(t, t) by means of (26)–(27).

(3) Computeγ(t):

γ(t) = An+1 y(t) + · · ·+ A1 y(t− n)

−Bn+1 u(t)− · · · −B1 u(t− n).

(4) Compute the innovationε(t):

ε(t) = L−1(t, t)
(

γ(t)− L(t, t− 1) ε(t− 1)

− · · · − L(t, t− n) ε(t− n)
)

.

(5) Compute the optimal estimateŝu∗(t), ŷ∗(t) by
means of (31), (32).

(6) Sett← t + 1 and return to step 2.

5. COVARIANCE OF THE ESTIMATION
ERRORS

The purpose of this section is to derive the expected
performance of the filter, i.e to determine the expres-
sion of the covariance matrices of the estimation errors

eu(t) = û(t)− û∗(t)

=
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

L−T (t, t) ε(t)− ũ(t),

ey(t) = ŷ(t)− ŷ∗(t)

=
(

Σ̃y AT
n+1 − Σ̃yu BT

n+1

)

L−T (t, t) ε(t)− ỹ(t).

Since

E
[

ũ(t) εT (t)
]

=
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

L−T (t, t),

E
[

ỹ(t) εT (t)
]

=
(

Σ̃y AT
n+1 − Σ̃yu BT

n+1

)

L−T (t, t),

it is easy to obtain the relations

Pu(t) = E
[

eu(t) eT
u (t)

]

= Σ̃u −
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

L−T (t, t)

×L−1(t, t)
(

An+1 Σ̃yu −Bn+1 Σ̃u

)

,

Py(t) = E
[

ey(t) eT
y (t)

]



= Σ̃y −
(

Σ̃y AT
n+1 − Σ̃yu BT

n+1

)

L−T (t, t)

×L−1(t, t)
(

An+1 Σ̃y −Bn+1 Σ̃T
yu

)

.

From (20)–(22) it follows thatγ(t) has the polynomial
spectrum

Π(z) =

k=n
∑

k=−n

Rγ(k) z−k,

wherez denotes a complex variable. In (Rissanen and
Barbosa, 1969) it has been proved that the elements
of the t-th row of matrix (25) converge fort → ∞ to
stationary terms

lim
t→∞

L(t, t− k) = Lk

if and only if ΣΓ(t) > 0 for every t; under this
condition the associated polynomial

L(z) = L0 + L1 z−1 + · · ·+ Ln z−n

is the minimum–phase spectral factor ofΠ(z), i.e.

Π(z) = L(z)LT (z−1),

whereL(z) is asymptotically stable. It follows that

Pu = lim
t→∞

Pu(t)

= Σ̃u −
(

Σ̃T
yu AT

n+1 − Σ̃u BT
n+1

)

L−T
0

×L−1

0

(

An+1 Σ̃yu −Bn+1 Σ̃u

)

, (33)

Py = lim
t→∞

Py(t)

= Σ̃y −
(

Σ̃y AT
n+1 − Σ̃yu BT

n+1

)

L−T
0

×L−1

0

(

An+1 Σ̃y −Bn+1 Σ̃T
yu

)

. (34)

6. SIMULATION RESULTS

A 200 runs Monte Carlo simulation has been per-
formed on a two–input two–output system with coef-
ficient matrices

A3 =

[

1 0

0 1

]

, A2 =

[

−0.4 1

−0.2 0

]

, A1 =

[

0.3 0.2

0.1 −0.4

]

,

B3 =

[

1.2 0

0 0.8

]

, B2 =

[

0 0.8

0.5 −1

]

, B1 =

[

−0.1 1

0.5 0.5

]

.

The inputs are pseudo random binary sequences with
unit variance and lengthN = 2000. In every run
the noiseless signalŝu(·), ŷ(·) have been corrupted
by adding gaussian white noise sequencesũ(·), ỹ(·)
generated with the functionrandn in MATLAB and
characterized by the following covariance and cross–
covariance matrices

Σ̃u =

[

0.12 0.15

0.15 0.25

]

, Σ̃y =

[

1.3 1.5

1.5 2.1

]

, Σ̃yu =

[

0.3 0.5

0.4 0.7

]

.

Figures 1 and 2 report, as an example, the last 100
samples of the second noiseless input and output (con-
tinuous line) and their observations (dotted line) in a
typical run of the Monte Carlo simulation.

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

−2

−1

0

1

2

Fig. 1. Comparison between the second noiseless in-
put (continuous line) and its observation (dotted
line).

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
−6

−4

−2

0

2

4

6

Fig. 2. Comparison between the second noiseless out-
put (continuous line) and its observation (dotted
line).

The effectiveness of the filter can be observed, in
the same typical case, in Figures 3 and 4, where
the second noiseless input and output (continuous
line) are compared with the corresponding sequences
filtered by means of Algorithm1 (dotted line).

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

−2

−1

0

1

2

Fig. 3. Comparison between the second noiseless in-
put (continuous line) and its optimal estimation
(dotted line).

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
−6

−4

−2

0
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4

6

Fig. 4. Comparison between the second noiseless out-
put (continuous line) and its optimal estimation
(dotted line).



The asymptotic covariance matrices of the estimation
errors, computed by means of (33) and (34) are

Pu =

[

0.0592 0.0440
0.0440 0.0602

]

,

Py =

[

0.2012 0.1798
0.1798 0.2934

]

,

while the mean values obtained in the 200 runs and the
associated standard deviations are

P̄u =

[

0.0591± 0.0014 0.0440± 0.0020
0.0440± 0.0020 0.0603± 0.0029

]

,

P̄y =

[

0.2015± 0.0090 0.1800± 0.0129
0.1800± 0.0129 0.2939± 0.0195

]

.

The theoretical results are thus in complete agreement
with the numerical simulation.

7. CONCLUSIONS

This paper has described a solution of the errors–
in–variables filtering problem for multi–input multi–
output processes. The efficient algorithm proposed in
(Diversi et al., 2003a) for SISO models, has been
extended to the more general multivariable case. The
Monte Carlo simulation that has been performed
shows an excellent agreement between the expected
performance of the filter and the observed one.

REFERENCES

Anderson, B.D.O. and J.B. Moore (1979).Opti-
mal Filtering. Prentice–Hall, Englewood Cliffs,
New Jersey.

Caines, P.E. (1988).Linear Stochastic Systems. Wiley.
Diversi, R., R. Guidorzi and U. Soverini (2003a). Al-

gorithms for optimal errors–in–variables filter-
ing. Systems & Control Letters, 48, 1–13.

Diversi, R., R. Guidorzi and U. Soverini (2003b).
Kalman filtering in symmetrical noise environ-
ments.Proceedings of the 11th IEEE Mediter-
ranean Conference on Control and Automation,
Rhodes, Greece.

Guidorzi, R. (1989). Equivalence, invariance and dy-
namical system canonical modelling–Part I.Ky-
bernetika, 25, 233–257.

Guidorzi R., R. Diversi and U. Soverini, (2002).
Errors–in–variables filtering in behavioural and
state–space contexts. In:Total Least Squares
and Errors–in–Variables Modelling: Analysis,
Algorithms and Applications(S. Van Huffel and
P. Lemmerling (Eds.)), pp. 281–291. Kluwer
Academic Publishers, Dordrecht.

Guidorzi, R., R. Diversi and U. Soverini (2003). Op-
timal errors–in–variables filtering.Automatica,
39, 281–289.

Markovsky, I. and B. De Moor (2003). Linear dynamic
filtering with noisy input and output.Preprints
of the 13th IFAC Symposium on System Identifi-
cation, pp. 1749–1754, Rotterdam, The Nether-
lands.

Rissanen J. and L. Barbosa (1969). Properties of in-
finite covariance matrices and stability of opti-
mum predictors.Information Sciences, 1, 221–
236.


