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Abstract: Current methods identify the physical parameters of continuous-time ARMA(X)
processes via discrete-time approximations. Based on a frequency domain maximum
likelihood estimator described in Ljung (1999), this paper proposes an exact continuous-
time noise modeling approach. The theory is illustrated on real measurement examples.
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1. INTRODUCTION

The goal of operational modal analysis is to estimate
the resonance frequencies and damping ratios of
mechanical structures (bridge, air plane, building ...)
from their response to non-measurable external forces
induced by e.g. the wind, earth quakes, traffic,
turbulence ... The classical approach for identifying
these physical parameters consists in straightforward
discrete-time = ARMA modeling of the true
continuous-time process from discrete-time data
(Peeters and De Roeck, 2001). Refined discrete-time
approximations are proposed in Walhlberg et al.
(1993), Soderstrom et al. (1997), and Fan et al.
(1999). In this paper we model the continuous-time
noise processes using the frequency domain Box-
Jenkins framework developed in Ljung (1999) for
data collected in open loop. The advantages of this
modeling approach are (i) it is exact for a realistic
class of continuous-time noise processes, (ii) it can
handle time domain as well as frequency domain data.

The main contributions of this paper are the
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following. (i) A theoretical justification is given for
modeling the noise at the sampling instances as
filtered continuous-time band-limited white noise. As
such the continuous-time Box-Jenkins (BJ) model can
be used for physical modeling of continuous-time
stochastic processes. (ii) It is shown that the
maximum likelihood (ML) cost function described in
Ljung (1999) can be reduced to a quadratic-like form.
As a consequence classical Newton-Gauss based
iterative schemes can still be used for calculating the
ML estimates. (iii) The usefulness and feasibility of
the proposed continuous-time modeling approach is
illustrated on two real life problems: operational
modal analysis of a bridge, and flight flutter testing.

2. THE NOISE MODEL
The response n(f) of a lumped time-invariant
continuous-time system to a second order continuous-

time stationary stochastic process e (f) can be written
as

n(t) = H(p)e (1) ey

with p the derivative operator (px(r) = dx(t)/dt),
and H(p) a rational form of p (Astrom, 1970).
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Fig. 1. Band-limited noise and measurement
assumption. 7' is the sample period and AA(s)
the anti-alias filter.

Without any loss of generality we will assume that
e (t) has zero mean. The fact that the values of e ()
at different times are correlated complicates the
handling of n(f) in identification algorithms.
Therefore, it is tempting to study (1) for continuous-
time white noise e (f). However, since continuous-
time white noise has infinite variance, this leads to the
mathematical difficulty of treating stochastic
differential equations (Astrom, 1970). A way to avoid
the difficulty of handling correlated driving noise
sources e (t) or stochastic differential equations is to
use the concept of band-limited (BL) white noise
(Astrom, 1970). In the sequel of the section it is
shown that in a BL-measurement set up (Pintelon and
Schoukens, 2001) (1) can be approximated very well
at the sampling instances by filtered continuous-time
band-limited white noise.

Consider the measurement set up shown in Fig. 1.

Assumption 1 (Band-limited)

(a) BL-white noise: the power spectral density S, ( 1)
(Fourier transform of the auto-correlation of e (t) ) is
constant for [f| < fp and zero elsewhere, where
fg=zfy/2, with fo=1/T, the sampling
frequency.

(b) BL-set up: the anti-alias filter AA(s) in the
measurement set up is perfect AA(j2nf) = 1 for
|fl < f¢/2 and zero elsewhere. O

Theorem 1: Under Assumption 1 the band-limited
observation v(f) of n(f) (1) is exactly described by
following continuous-time noise process

v(n) = H(p)e(r) 2)

with H = H_, e(t) continuous-time band-limited
white noise. At the sampling instances ¢ = nT, e(?)
is discrete-time white noise with zero mean and
variance o2.

Proof: Using Assumption 1, the power spectral
density S (f) of v(z) equals

S(f) = \H(jan)\2\AA(j2nf)\ZSec(f)

= |H(27HI%S ()

3)

where S (f) = \AA(]Zrcf)\zS (f) is the power
spectral density of band- limited zero mean white

noise e(f) with bandwidth f /2. Defining
S,(f) = 62/ f for |f] < f,/2, the auto-correlation
R, (7) of e(r) equals

R,(D) = FI{S,()} = o’sinc(nf 1) 4)

with F~1{} the inverse Fourier transform, and
R,(0) = var(e(?)) = o2. Since R [Ty =0 for
n=0, it follows that e(f) is uncorrelated at the
sampling instances ¢ = nT . O

Note that the proof of Theorem 1 still holds when the
BL-signal condition in Assumption 1 (S, ( f) = 0 for
|fl = fg) is relaxed to

S, (f) = o(f™) for |f]= fg, 5)

which is the weakest decay giving a finite variance
var(e (1)) = S ( f)df < oo If the anti-alias filter
AA(s) is no deal then (2) is an approximation of
BL-observations of (1) at the sampling instances.

Using the BL assumption/CT model (2), the
relationship between the discrete Fourier transform
(DFT) V(k) of the measured samples v(nT,),

n=20,1,...,N-1,and the DFT E(k) of the driving
white noise samples e(nT), n = 0,1,..., N-1,is
given by

V(k) = H(sp)E(k) + T p(s;) (6)
where s, = j2nkf /N and

Xty = NS xnr )z (7)

the DFT of x(nTy) with X = V,E and x = v, e
(Pintelon and Schoukens, 2001). The noise transfer
function H and the noise transient term 7, are
rational functions of the Laplace variable s

H(s) = % = [Efczocrs’}/[zr_odrsJ

15 . (8)
_ H § _ nih . r

Ty(s) = Do) - [Er:()lhrs J/[E _Odrs }
where n; > max(n,, n,) — The  numerator

coefﬁ(:lents zh of Ty, depend on the initial and final
conditions of 'the experlment and decrease as an
O(N-1/2) as N — . Hence, for N sufficiently
large, the transient term 7, in (6) can be neglected
w.r.t. H(Q,)E(k) (Pintelon and Schoukens, 2001).

The DFT E(k) of the driving white noise source
e(nT) has the following properties. Since e(nT ) is
zero mean white (uncorrelated over n) noise, it



follows that E(k) (7) is zero mean white
(uncorrelated over k) noise with
var(E(k)) = var(e(r)) = o2 and S{E%k)} =0 (=
circular complex distributed) (Pintelon and
Schoukens, 2001). If e(nT) is normally distributed,
then E(k) is circular complex normally distributed. If
e(nTy) is independent and identically distributed
with existing moments of any order, then E(k) is
asymptotically (N — o) independent, circular
complex normally distributed (see Pintelon and
Schoukens, 2001, Lemma 14.24).

All these properties motivate the following noise
assumptions in the frequency domain.

Assumption 2 (Noise model)
The observed frequency domain noise V(k) can be
written as

V(k) = H(sp)E(k) 9

where H(s) is defined in (8). E(k) is independent
(over k), circular complex (S{E2(k)} =0)
normally distributed noise, with zero mean, and
variance A = var(E(k)) = &{|E®)|?}. ]

3. PLANT MODEL

The BL-assumption (Assumption 1.b) on the
measurement set up, leads in a natural way to a CT-
representation of the plant

y(@) = G(p)u() (10)

The input U(k) and output Y(k) DFT spectra are
then related by

Y(k) = G(s)U(k) + T (s,) (11)

where the plant G and the plant transient T'; transfer
functions are rational forms of the Laplace variable s

G(s) = % = [Ef"zobrs’}/[zf‘;oarsq i
Ifs) n 1

T = 45 = S i [0 ]

with n; >max(n, n,)—1 (Pintelon and Schoukens,
2001). gimilarly to (6), the numerator coefficients i
of T, decrease as an O(N-1/2) and, hence, for N
sufficiently large, the transient term 7' in (11) can
be neglected w.rt. G(s)U(k). It motivates the
following plant model assumption in the frequency
domain.

Assumption 3 (Plant model)

The input U(k) and output Y(k) frequency domain
data are related by

Y(k) = G(spU(k) (13)

where G(s) is defined in (12). O

4. OPEN LOOP FRAMEWORK

The stochastic framework is set by the following
assumption.

Assumption 4 (Open loop)

(a) The input and output are observed without errors.
(b) The observed output is the sum of the plant
response to the input, and the process noise.

(c) The input is independent of the process noise.

Under Assumptions 2-4, the observed input and
output frequency domain data are respectively related
by

Y(k) = G(sp)U(k) + H(s ) E(k) (14)

According to the particular parametrization of the
plant (12) and noise (8) model one distinguishes
different model structures, such as ARMA (G = 0),
OE(H = 1),ARMAX (D = A),B]J, ...

5. IDENTIFICATION OF THE PLANT AND
NOISE MODEL PARAMETERS

5.1 Maximum likelihood cost function

Consider the parametric models G(s, 8) (12) and
H(s, 0) (8), with 6 = [al, b7, T, dT "

al = [ag, ays .- ana], L, dT = [dy ""d"d] (15)

and assume that the frequency domain data U(k),
Y (k) is available at frequencies k = 1,2, ..., F.

Theorem 2 (Log-likelihood  function):  Under
Assumptions 2-4 the negative Gaussian log-
likelihood function is, within a constant, given by

Efz  Jog(A|H(s;, 0)]?) + %Ei: |e(s O (16)

with A = var(E(k)) , and & the prediction error,

e(s;, 6) = (Y(k) - G(s,, OUK))/H(s,, ) (17)



Table 1 Possible parameter constraints

Model structure Constraints on 6

ARMA ¢, =d, =1
c
OE a, =1
a
ARMAX a, =c, =1
c
Box-Jenkins (BJ) a, =c, = d"d =1
a c
Proof: see Ljung (1999), p. 230. O

By eliminating A, cost function (16) can be
simplified to a quadratic function of the residuals.

Theorem 3 (Maximum likelihood cost function):
Under the assumptions of Theorem 2 the Gaussian
maximum likelihood (ML) cost function V (6, Z) is
given by

1
Vi(0,2) = 23 [esp g0
1 SENE
gp(0) = exp(l—:ziz 1logH(sk, 6))

with &(s;, ) defined in (17).

Proof: Calculating the derivative of (16) w.r.t. A gives
MO = L3 el 02 (19)
FEk =117k

Eliminating A in (16) using (19) and taking the
exponential function gives (18) within a 0-
independent constant. O

As a result the minimizer of (18) can be calculated in
a numerical stable way via the iterative Newton-
Gauss and Levenberg-Marquardt methods.

5.2 Maximum likelihood estimator

The parametric models G(s, 8) (12) and H(s, 6) (8)
are overparametrized. Indeed, replacing e.g. in a Box-
Jenkins model parameters a, b, ¢, d by 714, ylb,
YoC, Yod respectively, leaves the plant and noise
models unchanged. Further, the fact that E(k) in (14)
is not observed, and that the term H(s;, 6)E(k)
remains the same when multiplying H(s, 6) and
dividing E(k) by the same non-zero real number ¥y,
imposes an additional constraint on the parameters of
H(s, 6) . Hence, according to the particular model
structure, one (OE), two (ARMA, ARMAX), or three
(BJ) parameter constraints are needed (see Table 1).
Since the cost function V.(6,Z) (18) contains

exactly the same parameter ambiguities as G(s, 0)
(12), H(s, 0) (8), and H(sy, B)E(k) in (14), the
estimated models G(s, 9) and )\. H(s 8) with 0
the minimizer of (18) and A= AMO) (19), are
independent of the particular parameter constraint(s)
chosen (Pintelon and Schoukens, 2001).

Cost function (18), subject to the constraints of Table
1, still contains another parameter ambiguity. Indeed,
let o+ jP be a zero of H(s, ) or a pole of H(s, 0)
not in common with G(s, ) , then with some abuse of
notation the cost function (18) has the property

Vip(=a+jB,Z) = Vi(a+ jB, 2) (20)

It shows that no distinction can be made between
noise models which only differ in poles and/or zeros
that are mirrored w.rt. the jw-axis, and that
V (6, Z) contains at least as many global minima as
possible mirrored noise pole/zero patterns. As a
practical result one should not stabilize the zeroes
(and poles) of the noise model during the
minimization of (18). The identifiability problem is
avoided by restricting the allowable poles/zeros
positions of the noise model to the stable region of the
s -domain.

Assumption 5 (Constraint noise model)

H-1(s, 0) is a stable transfer function. The poles of
H(s, 6) that are not in common with G(s, 6) are
stable. O

These results are summarized in the following
theorem.

Theorem 4 (ML estimator): Under Assumptions 2-5
the maximum likelihood (ML) estimator @(Z) of the
plant and noise model parameters minimizes (18)
subject to the constraints in Table 1.

Theorem 4 describes the ML estimator starting from
frequency domain data U(k), Y(k) (Assumptions 2-
4) described by model (14). If the raw data are time
domain signals then (14) and (18) are asymptotically
(time domain samples N — o) valid. To improve the
finite sample behaviour of the estimate 6(Z) , model
(14) is replaced by the sum of (6) and (11)

Y(k) = G(s,)U(k) + H(s)E(k) @
+ T 5(s) + T(sy)

This results in the same cost function (18) where the
prediction error &(s;, ) is replaced by

e(s;, 0) = H\(s,, O)[Y(k) = G(s;, O)U(K) )

- TG(Sk, 0) - TH(Sk, 0)]
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Fig. 2. Villa Paso bridge. Top: picture bridge.
Bottom: schematic top view with numbered test
points.

6. APPLICATIONS

In both examples the input/output signals are lowpass
filtered before sampling.

6.1 Villa Paso bridge

The Villa Paso arch bridge shown in Fig. 2 is excited
by the traffic in its vertical direction and by the wind
mainly in its horizontal direction. These excitations
cannot be measured and are assumed to be white in
the frequency band of interest (= operational modal
analysis). Acceleration measurements have been
performed on the deck of the bridge at fourteen test
points, both in horizontal and vertical direction (see
Fig. 2). All signals are measured simultaneously
during about 14 min. at the sampling rate
fy = 400 Hz, giving N = 337700 data points per
measurement channel. Only the measurements in the
horizontal direction at test points one and six are
handled here. This data is modelled in the frequency
band [1.18 Hz, 4.14 Hz] (DFT lines
k = 999, 1000, ...,3499 = F = 2501 ) with a CT-
ARMA model structure of order 8/8 (n. = n; = 8,
and n; = 11). Fig. 3 validates the identified noise
model " Al/ 2(G)Ll’-l(sk, 0)| with the measured noise
DFT spectrum V(k)

Vik) = Y(k)~ T (s, 0) (23)

The zero patterns of the noise models differ because
they depend on the location of the test point on the
bridge. Table 2 gives the estimated resonance
frequencies and damping ratios. It can be seen that the
differences between the two results are much smaller
than the standard deviation of the estimates. This can
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Fig. 3. Validation of the identified CT ARMA model
(order 8/8) of the Villa Paso bridge at test points
one (left) and six (right). Dots: measured noise
spectrum V(k). Solid line: noise model times
standard deviation driving white noise source.
Dashed line: standard deviation model.

Table 2 Estimated resonance frequencies f o and
damping ratios & of the Villa Paso bridge

test point 1 test point 6

Fo i =st(fy ) (Hz) 1575900016  1.5763 +0.0016

0.73£0.10 0.74 £0.10

Cl * Std(Cl) (%)
fo.oxstd(fy ) (Hz) 2.6623 +£0.0025 2.6622 +0.0025

0.99 £0.10 0.96 +£0.09

&y = (&) (%)
Fos=std(fy5) (Hz) 3.5068+0.0030 3.5067 0.0031

0.80 £0.08 0.78 £0.09

C; * Std(C3) (%)
fo axstd(fo o) (Hz) 3.7756 £0.0034  3.7759 +0.0033

0.89 +0.09 0.88 £0.09

Gy = std(Ey) (%)

be explained as follows: since the measurements at
the two test points are done simultaneously, the
observed signals stem from the same realisation of the
driving white noise source (the wind) and, hence, the
two estimates are not independent of each other.

6.2 Flight flutter testing

To excite the air plane during flight, a perturbation
signal is injected in the control loop of the flap
mechanism at the tip side of the right wing. The angle
perturbation of the flap is used as a measure of the
applied force, and the acceleration is measured at the
tip of the left wing. Beside the applied perturbation,
the air plane is also excited during flight by the
natural turbulence. The resulting turbulent forces
acting on the air plane cannot be measured and are
assumed to be white in the frequency band of interest.
The input/output signals are measured during about
109 s at the sampling rate f, = 300 Hz, giving
N = 32768 data points per channel. Fig. 4 shows the
force to acceleration frequency response function
(FRF) in the band [4.70 Hz, 16.40 Hz] (DTF lines
k = 513,514, ...,1791 = F = 1279). Since it is
not known beforehand whether the natural turbulence
excites the same modes as the applied excitation, the
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Fig. 4. Validation of the identified CT models of the
flight flutter test. Top row: validation with the
measured FRF G( Jop) . BotAtom row: validation
with the output residual V(k). Left column:
ARMAX model. Right Column: BJ model. Dots:
respectively measured FRF and output residual.
Solid line: respectively estimated plant model and
noise model times standard deviation driving
white noise source. Dashed line: standard
deviation estimated models.

data is modelled using a CT-BJ and a CT-ARMAX
model structure. It turns out that a CT-BJ model of
order n,=6, n,=8, n, =2, n.=10,
ng = 6, nih = 13, and a CT ARMAX model of
order n, = 6, n, = 8, n, = 10, n; +n; = 13
explain the data very well (see Fig. 4). The FRF
G( Jjo,) , and the output residual V(k) in Fig. 4 are

calculated using

G(jwy) = (Y~ T gs; 0) = T (R, 0)/Uk) »
Vik) = Y(k) — G(s;, O)UK) — T (51, 0) — T (s, 0)

From Table 3 it can be seen that only the first pole of
the BJ noise model coincides within its uncertainty
with the first pole of the BJ plant model. For the air
plane manufacturer it is important to know whether
the air plane has five (BJ model) or three (ARMAX
model) different resonance frequencies in the band
[4.70 Hz, 16.40 Hz] . Although the ML cost function
\%4 F(@, Z) (18) is the smallest for the BJ model
structure (BJ: 0.202, ARMAX: 0.207), the minimum
description length (MDL) criterion (Ljung, 1999),

V (B, Z)eP "0 P (25)

with p(ng, F) = nglog(F)/F and ng, the number of
free model parameters, selects the ARMAX model
structure (BJ: 0.264, ARMAX: 0.257). However,
since the differences between the criteria are small,
more data are needed to give a decisive answer.

Table 3 Estimated resonance frequencies and
damping ratios £ of the flight flutter test

ARMAX Bl plant  BIJ noise
model model
R S
b= stdlE) (0 203 205 20s
s R, T,
b = std(&) (%) o0 008 zoa
oty o S
b= stdlEy () 0006 so0s  x0s

7. CONCLUSION

Using the concept of band-limited (BL) white noise it
has been shown that the noise observed in a BL
measurement setup can be modelled exactly at the
sampling instances as CT filtered BL white noise. The
usefulness and feasibility of this modeling approach
been demonstrated on two real measurement
examples.
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