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Abstract: The multiobjective control problem is difficult and remains mostly
open. Although the Linear Matrix Inequalities (LMI) provide a powerful analysis
technique, a trade-off must be done in the relaxation to restore LMI’s properties in
control synthesis. The Youla parameterization is one of the skill to restore LMI’s
properties while generating all possible compensators. In this paper, it is shown
that Youla parameterization can lead to H2 optimisation without introducing
additional decision variables, and allows to perform frequency shaping (such as
flexible modes attenuation) without having to choose frequency weights.
Copyright c©2005 IFAC
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1. INTRODUCTION

The aim of multiobjective control problems is
to mix different criteria - which are mathemati-
cal translations of the manufacturer specifications
- into the compensator synthesis. One common
framework for multiobjective control is H2/H∞

synthesis, however the problem formulation must
be well chosen to obtain an efficient solution.

The Linear Matrix Inequalities (LMI) provide
such an attractive formulation due to several
reasons:

• the problem feasibility can be checked
• the optimal solution can be reached, because

they lead to convex optimisation problems
• powerful numerical optimisation techniques

can be used to solve these problems.

Although most of the analysis criteria can be
expressed using LMI formulations, the convexity
property is often lost when the synthesis problem
of designing a controller is considered. Different
works have been done to restore this property, as
e.g. (Gahinet and Apkarian, 1994) for H∞ con-
trol using the elimination lemma. In this paper,
another approach is considered for plants with
one control input. Thanks to the Youla param-
eterization, which defines a convex set describing
all stabilizing controllers, the synthesis problem
becomes convex. It will be shown that this pa-
rameterization leads to a new LMI formulation for
H2 optimisation which avoids the introduction of
additional variables, as involved in the standard
formulation of (Boyd et al., 1994).

As another interesting point, H∞ constraints on
specified frequency ranges can be handled without
roll-off filters or frequency-dependent weights, like



in standard H∞ approaches. It allows to con-
sider attenuation specifications of bending modes
without acting on the control bandwidth. The
proposed approach uses the µ-analysis formula-
tion instead of using a finite frequency Kalman-
Yakubovich-Popov (KYP) lemma as proposed
in (Iwasaki et al., 2000).

The paper is organized as follows: section 2 con-
tains a brief presentation of Youla parameteriza-
tion; the main results appear in sections 3, where a
new LMI formulation of H2 synthesis is proposed,
and 4, which explains how H∞ constraints can
be taken into account. An illustrative example is
finally presented in section 5.

2. YOULA PARAMETERIZATION

Since the work of (Raggazini and Franklin, 1958),
the Youla parameterization has often been used
in multiobjective control problems (Hindi et al.,
1998; Scherer, 1999). Consider a continuous or
discrete-time plant G with state space realization:

G :

w u

z
y





A B1 B2

C1 D11 D12

C2 D21 D22





(1)

where z is the output to be controlled despite
disturbance w, using control input u and measure-
ment y. All stabilizing controllers are described
by the Redheffer product K = J ∗ Q (see the
interconnection structure of Figure 1), where the
Youla parameter Q is any stable transfer function.
System J depends both on G22 (the transfer be-
tween u and y) and an initial compensator K0.
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Fig. 1. Closed-loop structure using Youla param-
eterization

An initial compensator must therefore be known
to use the Youla parameterization. In general,
it is a static or low order controller. In the lit-
erature two kinds of representation for J have
been proposed. The first one results from co-
prime factorizations of G22 and K0 (Walker and
Ridgely, 1995):

J =

(

K0 Ṽ −1

0

V −1

0
−V −1

0
N

)

(2)

with K0 = Ṽ −1

0
Ũ0 = U0V

−1

0
and G22 = NM−1.

The second representation uses the LQG form (3)-
see the top of the next page - if K and G are of
same order: Kc and Kf are respectively a state
space and an observer gain. If K has an order
greater than G, an initial Youla parameter Q0 -
with state space matrices Aq0 , Bq0 , Cq0 , Dq0 - has
to be added (4). This form can not be used if the
compensator has an order less than the plant.

The interconnection G ∗ J exhibits a transfer
function identically equal to 0 between uq and
yq (Figure 1). As an interesting result, the closed
loop transfer matrix Gzw (between input w and
output z) is affine in Q:

Gzw = H − UQV (5)

where H, U and V are stable transfer functions,
resulting from the interconnection G ∗ J .

Using the most common formulations of H2 and
H∞ constraints (Boyd et al., 1994), such an affine
dependence of the plant results in matrix inequal-
ities being bi-affine in the decision variables. In
the literature two kinds of methods are proposed
to restore LMI constraints. By using a change of
variables on the Lyapunov matrix (Scherer, 1999),
LMI constraints with respect to the output matri-
ces of Gzw can be obtained in most cases. However
this technique can not be applied automatically,
because the choice of the change of variables is not
obvious. A second approach (Hindi et al., 1998)
consists in increasing the representation of Gzw

using the Kronecker product: again LMI con-
straints with respect to the output matrices of
Gzw are obtained in most cases. The inconvenient
is a large number of state space variables, which
can yield a numerically infeasible problem if the
number of inputs and/or outputs is high.

For the case where the plant has only one control
input, and if it is possible to consider only one
controlled output (in the case of more than one
output, a weighted combination of them can be
considered), U is scalar and Gzw can be rewritten:

Gzw = H −QUV (6)

From state space realizations of H, U , V and Q,
a non minimal realization of Gzw is as follows:

Gzw =

(

Azw Bzw

Czw Dzw

)

= (7)












Ah 0 0 0 Bh

0 Aq BqCv BqDvCu BqDvDu

0 0 Av BvCu BvDu

0 0 0 Au Bu

Ch −Cq −DqCv −DqDvCu Dh −DqDvDu













According to (7), matrices Cq, Dq enter linearly
in Czw, Dzw and not in Azw, Bzw. Suppose Aq



J =





A−B2Kc −KfC2 + KfD22Kc Kf B2 −KfD22

−Kc 0 I
−C2 + D22Kc I −D22



 (3)

J =









A−B2Kc −KfC2 −B2Dq0C2 B2Cq0 Kf + B2Dq0 B2

−Bq0C2 Aq0 Bq0 0
−Kc −Dq0C2 Cq0 Dq0 I

−C2 0 I 0









(4)

and Bq are chosen; for instance in discrete time
one can use an FIR structure or a real Kautz
filter (Paarero, 2003) for the Youla parameter;
similarly the one proposed by (Akcay and Ninness,
1999) can be used for continuous time.

Note that the order of the Youla parameter is a
priori chosen. In that case, different LMI formu-
lations with respect to Cq, Dq can be obtained:
they are derived in sections 3 and 4.

3. H2 OPTIMIZATION

Only the discrete-time case is considered in this
section, but similar results are easily obtained
in continuous time. The commonly used LMI
formulation of discrete-time H2 optimization is:

min
x,X

ξ such that:
(

AT
zwXAzw −X ∗
BT
zwXAzw BT

zwXBzw − I

)

< 0,





X ∗ ∗
0 I ∗

Czw(x) Dzw(x) S



 > 0

Trace(S) − ξ < 0

(8)

where vector x contains the decision variables in
Cq ,Dq and ξ is an upper bound of ‖Gzw‖2

2
.

It can be noticed that the constraints in prob-
lem (8) are LMI’s in x and X, where the additional
decision variable X is a symmetric matrix with the
same size as Azw. Therefore such a problem can
be solved using convex optimization techniques.

Using the time-domain definition of the H2 norm,
a more simple formulation can be obtained, where
the introduction of this additional variable is
avoided. It is derived in the following.

The H2 norm measures the energy of output z
for a unitary white noise w. Suppose that only
one controlled output is considered (in the case
of multi-outputs, a H2 constraint is associated to
each output). In such case, the trace in (8) can be
omitted and the H2 norm can be written:

‖Gzw‖
2

2
= lim

n→∞

E
{

y(nT )y(nT )T
}

(9)

with y(nT ) = Czw(x)
(
∑n

k=1
Ak−1

zw Bzww(n− k)
)

+
Dzw(x)w(n).

The white noise w having unity variance, one
obtains equivalently the relation:

‖Gzw‖
2

2
=

Czw(x)WcCzw(x)T + Dzw(x)Dzw(x)T
(10)

where Wc =
∑

∞

k=0
Ak
zwBzwBT

zw

(

Ak
zw

)T
represents

the controllability grammian, which is commonly
computed as the solution of the Lyapunov equa-
tion:

AzwWcA
T
zw −Wc + BzwBT

zw = 0

Therefore (8) can be reformulated as:

min
x

ξ such that:

Czw(x)WcCzw(x)T + Dzw(x)Dzw(x)T − ξ < 0
(11)

Writing Wc = W
1/2
c (W

1/2
c )T and using the Schur

lemma, one finally obtains the following problem:

min
x

ξ such that:




ξ ∗
(

(W 1/2
c )T 0
0 I

)(

Czw(x)T

Dzw(x)T

)

I



 > 0
(12)

Having no additional variable, this last LMI prob-
lem is particularly interesting for plants with large
state space dimensions, which is often the case
when using the Youla parameterization.

4. FREQUENCY CONSTRAINTS

One of the biggest problems encountered in robust
synthesis is the conception of weighting filters,
particularly when a trade-off must be done be-
tween high and low frequency behavior (see e.g.
the mixed sensitivity problem), or when there
is only specifications on particular intervals of
frequencies and no constraint in the rest of the
frequency domain: this is for instance the case
when attenuation of bending modes is required.

In this section, an LMI problem is proposed for
frequency shaping with specification on particu-
lar intervals. It is based on a result introduced
in (Friang et al., 1998) to avoid frequency griding



in µ-analysis, which allows to consider the fre-
quency as an uncertain real parameter. Using this
formulation, an LMI constraint will be derived for
control synthesis using Youla parameterization.

As in (Friang et al., 1998), continuous-time sys-
tems will be considered in the following. Equiv-
alent results are obtained for the discrete-time
case using a Tustin transform with sample time
T . This transformation does not affect the result
of the H∞ problem, if the frequency values are
computed by considering the warped frequency
axis. It results in state-space matrices given below
(index c indicates the matrices of the equivalent
continuous-time system):

Azwc
= −

2

T
(I −Azw)R, Bzwc

=
4

T
RBzw

Czwc
(x) = Czw(x)R

Dzwc
(x) = Dzw(x) − Czw(x)RBzw

(13)

with R = (I + Azw)−1

As seen in (13), this transformation preserves the
affine dependence in x of the output matrices Czwc

and Dzwc
.

The transfer Gzwc
can be expressed as the upper

LFT Gzwc
(s) = Fu(M, s−1I) (Figure 2) with:

M =

(

Azwc
Bzwc

Czwc
(x) Dzwc

(x)

)

(14)
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Fig. 2. Gzwc
expressed in LFT form

Considering that s = jω and assuming ω belongs
to [ω1, ω2] (with ω1 possibly 0 and ω2 possibly
+∞), one can note that:

1

jw
I = Fu(N (ω1, ω2), δI) δ ∈ [−1,+1] (15)

with N (ω1, ω2) =

(

−aI bI

jcI −jdI

)

and:

a =
ω2 − ω1

ω1 + ω2 + 2ω1ω2

, d =
ω2 + ω1 + 2

ω1 + ω2 + 2ω1ω2

b = c =

√

2(ω2 − ω1)(1 + ω1)(1 + ω2)

ω1 + ω2 + 2ω1ω2

Using these results, the frequency response Gzwc
(jω)

for ω ∈ [ω1, ω2] is described as the interconnection
M̃ = N (ω1, ω2)∗M, with δ ∈ [−1,+1] (Figure 3).
M̃ is written using complex valued matrices as:

M̃ =

(

Ãzwc
B̃zwc

C̃zwc
(x) D̃zwc

(x)

)

(16)
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Fig. 3. Gzwc
with frequency as real uncertain

parameter

Again the vector of decision variables x enter
linearly in C̃zwc

and D̃zwc
only.

Considering δ as an uncertain real parameter and
using the upper bound of the structured singular
value in (Fan et al., 1991), the frequency response
Gzwc

(jω) is guaranteed to have a magnitude less
than γ if the matrix inequality (17) holds, with
L = LH > 0 and P = PH .

Using the Schur lemma, one obtains finally the
inequality (18), which is an LMI in x, L and P .

Remark 1. Matrices L and P are complex valued.
To save time calculation and memory space in the
case of bending modes attenuation, this LMI can
be used with the rigid model of the plant (i.e.
the plant without bending modes) by choosing
adequately the value of γ (see the example in the
next section).

5. NUMERICAL EXAMPLE

The digital control of a hard-disk read/write
head is considered. It is taken from a Matlab
demo (Grace et al., 1995). The head-disk assembly
(HDA) and actuators are modeled by a SISO
system where the input is the current ic driving
the voice coil motor and the output is the position
error signal εθ = θref − θ. The order of the state
space representation is 10 including two rigid-
body modes and the first four resonances. The
model also includes a small delay Tr = 10−5 sec.

Only the rigid modes are considered for the com-
pensator design, although the bending modes are
to be attenuated while rejecting an input dis-
turbance with zero static error. The rigid model
is first discretized using a zero-order hold with
sample time T = 7.10−5 sec. To handle distur-
bance rejection, a H2 performance ξ1 is considered
between input disturbance and error εθ. To reduce
the control effort, another H2 performance ξ2 is
defined between input disturbance and control
input ic. The following functional will be min-



M̃H

(

L 0
0 I

)

M̃ + j

[(

P 0
0 0

)

M̃ − M̃H

(

P 0
0 0

)]

<

(

L 0
0 γ2I

)

(17)





ÃH
zwc

LÃzwc
+ jP Ãzwc

− jÃH
zwc

P − L ∗ ∗
B̃H
zwc

LÃzwc
− jB̃H

zwc

P B̃H
zwc

LB̃zwc
− γ2I ∗

C̃zwc
(x) D̃zwc

(x) −I



 < 0 (18)

imized to determine the trade-off between both
objectives:

ξ = λ1ξ1 + λ2ξ2 (19)

where λ1 and λ2 are real positive parameters
weighting each H2 performance.

The design follows two steps: the first one uses
objective (19) without considering any attenua-
tion constraint, and compares formulations (8)
and (12). The Youla parameter has an FIR form.

The initial compensator is taken from the Matlab
demo:

Kinit(z) =
46.29z2 − 89.32z + 43.09

z2 − 0.2801z − 0.7199
(20)

The maximum value of the resulting error for a
unit impulse disturbance is εθ = 0.0281 (Figure 4).
The initial compensator having the same order as
the rigid model, system J is represented using (3).

Fig. 4. Impulse response

For comparing both H2 formulations (8) and (12),
the values λ1 = λ2 = 0.5 are considered. Table 1
outlines this comparison for different orders of
the Youla parameter, using a Pentium4 2.53 GHz
processor.

nq LMI (12) LMI (8)

time (s) result time (s) result

1 0.16 0.553 26.07 0.557

2 0.18 0.553 26.74 0.555

3 0.22 0.553 47.73 0.554

4 0.27 0.553 59.99 0.553

5 0.29 0.553 107.63 0.553

Table 1. Comparison of H2 formulations

Although the value of objective (19) in both LMI
fomulations is nearly the same, the computation

time is much higher when using (8). This gap
increases when the order of the Youla parameter
rises. As shown by the table, the value of the
objective does not really decrease when the order
of the Youla parameter rises. For this reason, the
order of the Youla parameter nq is kept equal to
1 in the following.

For choosing λ1 and λ2 (taking λ1+λ2=1), differ-
ent values are considered. The control input ic is
not affected by λ1 and λ2, but it must be taken
into account for getting a reasonable bandwidth.
Table 2 shows the maximal value of error εθ with
respect to a unit impulse disturbance when the
resulting compensator is applied on the complete
hard-disk model.

λ1 λ2 (εθ)max

1 0 unstable

0.9 0.1 unstable

0.8 0.2 0.0279

0.7 0.3 0.0298

0.6 0.4 0.0318

0.5 0.5 0.0341

Table 2. Choice of λ1,λ2

The value of εθ decreases when λ1 increases, but
for λ1 = 1 and λ1 = 0, 9 the closed loop system
is unstable (although it is stable when only the
rigid model is considered). The frequency response
between the input disturbance and the output of
the compensator is helpful to analyze the reason
of this instability (Figure 5).

Fig. 5. Frequency response according to λ1 and λ2

λ1 = 1 results in a large bandwith which implies
that flexible modes cannot be neglected. Concern-
ing λ1 = 0.9, the instability is due to the reso-
nance peak. This last point is interesting, because
instability can thus be avoided by minimizing γ



under LMI constraint (18). The compensator ob-
tained previously for λ1 = 0.9 and λ2 = 0.1 is
used as an initial compensator with J under the
form (4).

H2 constraints are simultaneously taken into ac-
count with the fixed values ξ1 = 0.0109 and
ξ2 = 1.1169 obtained in the first step, in or-
der to preserve the time-domain performance.
The range of frequencies where γ is minimized
is [2.9.104,3.5.104]. Figure 6 outlines the benefit
of using (18), for different values of nq. It can
be noticed that the LMI constraint (18) acts effi-
ciently in the chosen frequency domain. The value
nq = 1 is not sufficient to reduce significantly
the magnitude. For nq = 2 the peak resonance
is significantly reduced and stability is restored,
without acting on the bandwidth. Furthermore
the disturbance rejection is also improved, with
maximal error εθ = 0.0264 (Figure 4).

Fig. 6. Reduction of the peak magnitude

6. CONCLUSION

Designing a multiobjective controller, by consid-
ering H2 and H∞ performance (for time responses
and bending modes attenuation respectively), can
be done through the Youla parameterization with-
out introducing the Lyapunov matrix for H2 per-
formance and without weighting filters for H∞

attenuation.

The numerical efficiency of the proposed develop-
ments using LMI constraints has been showed by
considering an example where a compensator has
been gradually designed in a very simple way ac-
cording to engineering specifications. Contrary to
most design methods, the proposed approach does
not require to tune finely the design parameters.
The FIR base can be replaced by another more
efficient one, but it should be notice that FIR
orthonormal functions provide a good initializa-
tion to determine the parameters (i.e. the poles)
of the suitable base. Another way to determine the
poles of the Youla parameter is the one proposed
in (Henrion et al., 2004).

The same developments can be proposed to con-
sider gain and delay margins, which will be the
subject of a forthcoming publication.
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