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1. INTRODUCTION

Most traditional fault detection methods sug-
gested in literature (Gertler, 1998; Chen and
Patton, 1999; Simani et al., 2002) are based
on filtering elaborations of the plant measure-
ments. Faults are associated to residual signals
which must be insensitive as much as possible to
model uncertainties, disturbances and measure-
ment noise. The origins of these methods can be
found in parity space methodologies and observer–
based approaches on one side and parameter es-
timation techniques on the other side, with many
cross connections among the different approaches.
Many recent investigations continue to show the
advantages and disadvantages of the related resid-
ual filters. In any case almost all these approaches
require the knowledge of the mathematical model
of the process for which the fault detection system
is designed.

This work investigates the identification problem
of residual generators for linear multivariable sys-
tems with additive faults and disturbances. By
following the minimal polynomial approach sug-
gested in (Frisk, 2000; Frisk and Nyberg, 2001)
and by modelling the process under investigation
in terms of input–output canonical description, it
is possible to compute in a straightforward fash-
ion an analytical expression for the basis of the
subspace described by all possible residual gener-
ators. In this way upper and lower bounds for the
minimal order of such dynamic filters can also be
obtained. These results show that the discrete–
time residual generators with disturbance decou-
pling can be obtained without any knowledge
of the mathematical model of the process under
investigation, i.e. with a black–box identification
approach. The design of residual generators can
thus be directly realized from a finite number



of input–output samples, measured in absence of
faults.

It is worth noting that the setup in the paper is
very similar to the well–known PCA approaches.
As an example, when the problem of parity equa-
tion design and PCA is addressed, the paper by
Gertler (Gertler and McAvoy, 1997) can be con-
sidered. It is discussed how PCA is related to
the residual generation problem. The approach
presented in this paper seems more simple and
direct when compared to the technique presented
by Gertler.

2. RESIDUAL GENERATOR MODEL

Let us consider a linear, time–invariant, discrete–
time system described by the following input–
output equation

P (z) y(t) = Q(z)u(t) (1)

where z−1 is the unitary delay operator and P (z)
and Q(z) are polynomial matrices with dimension
(m×m) and (m× �) respectively, with P (z) non-
singular. The terms u(t) and y(t) are, respectively,
the �–dimensional and m–dimensional input and
output vectors of the considered multivariable
system. Models of type (1) can be frequently
found in practice by applying well–known phys-
ical laws to describe the input–output dynamical
links of various systems and are a powerful tool
in all fields where the knowledge of the system
state does not play a direct role, such as residual
generation, identification, decoupling, output con-
trollability, etc. Algorithms to transform state–
space models to equivalent input–output polyno-
mial representations and vice versa are reported
in (Guidorzi, 1975).

For a generic input–output model
{
P (z), Q(z)

}
,

its canonical input–output form is the equiva-
lent representation

{
P̃ (z), Q̃(z)

}
with P̃ (z) =

M(z)P (z), Q̃(z) = M(z)Q(z) and M(z) a uni-
modular matrix, satisfying the following proper-
ties:

deg p̃ii(z) > deg p̃ji(z) i �= j (2)

deg p̃ii(z) > deg p̃ij(z) j > i (3)

deg p̃ii(z) ≥ deg p̃ij(z) j < i (4)

deg p̃ii(z) ≥ deg q̃ij(z) ∀j. (5)

The polynomials p̃ii(z) are monic and, because of
conditions (3) and (4), the integers νi = deg p̃ii(z)
(i = 1, . . . ,m) are equal the corresponding row–
degrees of P̃ (z). A constructive proof of the ex-
istence and uniqueness of a canonical form for a
given pair {P (z), Q(z)} can be found in (Beghelli
and Guidorzi, 1976). In the same work, an ef-
ficient and simple algorithm for transforming a

generic polynomial representation to the equiva-
lent canonical one is also described. The canonical
representation

{
P̃ (z), Q̃(z)

}
leads directly to a

correspondent canonical state–space realization

x(t+ 1) = Ã x(t) + B̃ u(t) (6)

y(t) = C̃x(t) + D̃u(t), (7)

with order:

n =
m∑

i=1

νi. (8)

The integers νi are the ordered set of Kro-
necker invariants associated to the pair

{
Ã, C̃

}
of every observable realization of

{
P (z), Q(z)

}
(Guidorzi, 1975). In order to design residual gen-
erators of minimal order, model (1) must be
firstly transformed into its canonical representa-
tion

{
P̃ (z), Q̃(z)

}
, satisfying conditions (4)–(7);

this step can be omitted if the minimal order
constraint is relaxed. Then, matrix Q̃(z) can be
decomposed according to the following structure

P̃ (z) y(t) =
[

Q̃c(z) Q̃d(z) Q̃f (z)
][

c(t)
d(t)
f(t)

]
, (9)

where c(t) is the �c–dimensional known–input
vector, d(t) is the �d–dimensional disturbance
vector, f(t) is the �f–dimensional monitored fault
vector and �c + �d + �f = �.

Equation (9) includes also the cases of additive
faults on the input and output sensors. In partic-
ular, when only additive faults fc(t) on the input
sensors of the system are considered, the input
vector measurements can be written as

c(t) = c∗(t) + fc(t) (10)

and Eq. (9) becomes P̃ (z)y(t) = Q̃c(z)c∗(t) +
Q̃d(z)d(t) − Q̃c(z)fc(t). Analogously, when only
additive faults fo(t) on the output sensors of the
system are considered the output vector measure-
ments can be written as

y(t) = y∗(t) + fo(t) . (11)

In this case, it results that P̃ (z)y∗(t) = Q̃c(z)c(t)+
Q̃d(z)d(t) + P̃ (z)fo(t). A general linear residual
generator for the fault detection process of system
(9) is a filter of type:

R(z) r(t) = Sy(z) y(t) + Sc(z) c(t) . (12)

System (12) processes the known input–output
data and generates the residual r(t), i.e. a signal
which is “small” (ideally zero) in the fault–free
case and is “large” when a fault is acting on the
system. Without loss of generality, r(t) can be
assumed to be a scalar signal. In such condition



R(z) is a polynomial with degree greater than or
equal to the row–degree of Sc(z) and Sy(z), in
order to guarantee the physical realisability of the
filter. Moreover, if R(z) has all roots inside the
unit circle filter (12) is asymptotically stable.

An important aspect of the design concerns the
decoupling of the disturbance d(t) in order to
produce a correct diagnosis in all operating condi-
tions. Equation (9) can be rewritten in the form:

P̃ (z) y(t) − Q̃c(z) c(t) − Q̃f (z) f(t) = Q̃d(z) d(t) . (13)

Premultiplying all the terms in (13) by a row
polynomial vector L(z) belonging to the left null–
space of Q̃d(z), N�(Q̃d(z)), we obtain:

L(z) P̃ (z) y(t)−
+L(z) Q̃c(z) c(t)− L(z) Q̃f (z) f(t) = 0 . (14)

Starting from Eq. (14) with f(t) = 0 it is possible
to obtain a residual of type (12) by setting:

Sy(z) = L(z) P̃ (z)

Sc(z) = −L(z) Q̃c(z)
R(z) = znf ,

(15)

where nf is the maximal row–degree of the pair{
L(z) P̃ (z), L(z) Q̃c(z)

}
. The polynomial R(z)

can be arbitrarily selected, for simplicity we will
consider the choice R(z) = znf which guarantees
the asymptotical stability of the filter with nf

poles equal to zero. In absence of faults Equation
(12) can be rewritten also in the form:

r(t+ nf ) = znf r(t) = L(z) P̃ (z) y(t)−
+L(z) Q̃c(z) c(t) = 0 (16)

When a fault is acting on the system the residual
generator is governed by the relation

r(t+ nf ) = −L(z) Q̃f (z) f(t) (17)

and r(t + nf ) assumes values that are different
from zero if L(z) does not belong to N�(Q̃f (z)). In
these conditions, the design freedom in the choice
of the matrix L(z) can be used to optimise the
sensitivity properties of r(t) to the fault f(t), for
example by maximising the steady-state gain of
the transfer function L(z) Q̃f (z). Another design
choice regards the location of the roots of the
polynomial R(z) inside the unit circle, which influ-
ences the frequency response of the residual gener-
ator and, consequently, its robustness with respect
to input–output measurement noises, modelling
errors, parameter uncertainties, etc. It is worth
noting that, in order to introduce more degrees
of freedom, the polynomial R(z) could be chosen
as R(z) = (z − z1) (z − z2) . . . (z − znf

), where
its roots zi have to be selected inside the unit
circle. In other words the diagnostic features of a

residual generator strongly depend on an accurate
selection of the terms L(z) and R(z).

In order to determine the residual generators of
minimal order it is necessary to compute a min-
imal basis of N�(Q̃d(z)). Under the assumption
that matrix Q̃d(z) is of full rank, i.e. rank Q̃d(z) =
�d, N�(Q̃d(z)) has dimension m − �d and a mini-
mal basis of it can be computed as suggested in
(Kailath, 1980). It can be noted that in absence of
disturbances �d = 0 so that N�(Q̃d(z)) coincides
with the whole vector space. Consequently, a set
of residual generators can be expressed as

ri(t + νi) = zνi r(t) = p̃i(z) y(t) − q̃ci (z) c(t)
(i = 1, 2, . . . , m)

(18)

where p̃i(z) and q̃ci
(z) are the i–th rows of ma-

trices P̃ (z) and Q̃c(z) respectively, and νi is the
row–degree of p̃i(z), since q̃ci

(z) cannot show a
greater row–degree. In general, for 0 < �d < m
matrix Q̃d(z) can be partitioned in the following
way

Q̃d(z) =
[
Q̃d1(z)
Q̃d2(z)

]
, (19)

where matrices Q̃d1(z) and Q̃d2(z) have dimension
�d × �d and (m − �d) × �d respectively. It can be
assumed, without loss of generality, that matrix
Q̃d1(z) is non singular. In this case it can be easily
verified that a basis of N�(Q̃d(z)) (not necessarily
of minimal order) is given by the polynomial
matrix:

B(z) =
[

Q̃d2 (z) adj Q̃d1 (z) −det Q̃d1 (z) Im−
d

]
(20)

where adj Q̃d1(z) = 1 if �d = 1. By partitioning
P̃ (z) and Q̃c(z) as Q̃d(z) in (19)

P̃ (z) =
[
P̃1(z)
P̃2(z)

]
Q̃c(z) =

[
Q̃c1(z)
Q̃c2(z)

]
(21)

a basis for the residual generators (12) of system
(9) is obtained by replacing in relation (15) the
row polynomial vector L(z)with the polynomial
matrix B(z), i.e.

Sy(z) = Q̃d2 (z) adj Q̃d1 (z) P̃1(z) − det Q̃d1 (z) P̃2(z)

Sc(z) = −Q̃d2 (z) adj Q̃d1 (z) Q̃c1 (z) + det Q̃d1 (z) Q̃c2 (z)

R(z) = diag

[
z

nf1 z
nf2 . . . z

nfm−�d

]
,

(22)

where nfi
(i = 1, . . . ,m− �d) is the row–degree of

the i–th row of matrix Sy(z). It can be noted that
relation (5) leads to the following inequality

row deg
{
Syi

(z)
} ≥ row deg

{
Sci

(z)
}
, (23)

where Syi
(z) and Sci

(z) denote the i–th rows of
matrices Sy(z) and Sc(z) respectively, so that the
residual generator is physically realizable.

Previous considerations can be summarised in the
following theorem.



Theorem 1. The order n∗
f of a minimal or-

der residual generator for the system (9) is con-
strained in the following range

νmin ≤ n∗
f ≤ min

{
(�d + 1) νmax, n

}
. (24)

where νmin and νmax are the least and the greatest
Kronecker invariant respectively and n is the order
of the system.

The lower bound can be obtained in the no–
disturbance case (�d = 0) from relation (18)
by selecting the rows of P̃ (z) associated to the
minimal Kronecker invariant. The upper bound
follows by considering the maximal degree of the
polynomials of the matrices in (22).

A similar result, obtained with a different ap-
proach, can be found in (Frisk, 2000).

3. RESIDUAL IDENTIFICATION

In this section we will consider the problem of
identifying the residual generators with minimal
order n∗

f . More precisely, among the m − ld
difference equations in the relation Sy(z) y(t) +
Sc(z) c(t) = 0, we are interested in determining
those with minimal order n∗

f . Note that the num-
ber of such equations is not a priori known. A
minimal order residual generator can be expressed
by a difference equation of the type

m∑
i=1

n∗
f∑

k=0

αik yi(t + k) +


c∑
j=1

n∗
f∑

k=0

βjk cj(t + k) = 0, (25)

where, in general, some coefficients αik, βjk can be
equal to zero.

In absence of noise in the data, the identification
problem can be stated as follows.

Problem 1. Given a finite sequence of variables
yi(t) (i = 1, . . . ,m) and cj(t) (j = 1 . . . , �c) with
t = 1, . . . , N generated by a system of type (9) in
absence of faults, determine the order n∗

f and the
parameters αik, βjk of the equations of type (25).

Define now the following vectors and matrices:

Yi(t) =
[
yi(t) . . . yi(t+ L− 1)

]T

Cj(t) =
[
cj(t) . . . cj(t+ L− 1)

]T

Xh(yi) =
[
Yi(1) . . . Yi(h+ 1)

]
Xh(cj) =

[
Cj(1) . . . Cj(h+ 1)

]
,

(26)

for i = 1, . . . ,m, j = 1, . . . , �c. Define also the
Hankel matrix

Hh =
[

Xh(y1) . . . Xh(ym) Xh(c1) . . . Xh(c
c )
]

, (27)

and compute the sample covariance matrix

Σh =
1
L
HT

h Hh . (28)

If the integer L satisfies the condition:

L ≥ (m+ lc) (h+ 1) (29)

the number of rows in matrix Hh is greater than
or equal to the number of columns and it is easy
to verify that

Σh > 0 for h < n∗
f (30)

Σh ≥ 0 for h ≥ n∗
f . (31)

In particular

Σn∗
f
Θ = 0, (32)

where Θ is a matrix with dimension ((m+lc) (n∗
f+

1))×ν and the dimension ν of ker(Σn∗
f
) equals the

number of the residual generators with minimal
order n∗

f . The entries of Θ are the coefficients of ν
relations of type (25). For simplicity, these vectors
will be considered with unitary Euclidean norm.
On the basis of these considerations, Problem 1
can be solved by means of the algorithm described
below.

Algorithm 1

(1) Consider the sequence of symmetrical in-
creasing dimension non negative definite ma-
trices

Σ1,Σ2, . . . (33)

and test the linear independence of their
columns as long as a singular matrix Σh̄ is
encountered. Then n∗

f = h̄ and the number
of residual generators of minimal order is
ν = (m+ �c) (h̄+ 1)− rankΣh̄.

(2) Compute the basis Θ of the null space of Σn∗
f
.

From (26) and (29) it can be verified that the
number of the available samples N must sat-
isfy the condition N ≥ (m + lc) (n∗

f + 1) + n∗
f .

In order to perform correctly the independence
test in step 1 of Algorithm 1, the Hankel matrix[
Xh(c1) . . . Xh(c�c

)
]
must be of full rank, i.e. the

known inputs c1, c2, . . . , c�c
must be persistently

exciting of sufficient orders (identifiability condi-
tions). A check of this rank should thus be in-
cluded in step 1.

When the input–output sequences c(·) and y(·)
are corrupted by noise, the previous procedure
is obviously useless since the matrices in the se-
quence (33) are always non singular. As a natural
assumption we can state that

All the variables are affected by additive noise, i.e.

y∗i = yi + ỹi i = 1, . . . ,m (34)

c∗j = cj + c̃j j = 1, . . . , lc (35)

and only the noisy variables y∗i and c∗j are avail-
able. The processes ỹi (i = 1, . . . ,m) and c̃j (j =



1, . . . , lc) are zero–mean, ergodic and mutually un-
correlated white noise, whose variances are known
up to the same scalar factor λ (unknown).

In the noisy case Problem 1 can be re–formulated
as follows.

Problem 2. Given a finite sequence of noisy
variables y∗i (t) (i = 1, . . . ,m) and c∗j (t) (j =
1 . . . , �c) with t = 1, . . . , N generated by a system
of type (9) in absence of faults and corrupted
by noise according to Assumption 1, determine
the order n∗

f and the parameters αik, βjk of the
equations of type (25).

Under previous assumptions, it can be easily
proved that the following relation holds:

Σ∗
h = Σh + Σ̃h, (36)

where the covariance matrices are defined as

Σh = lim
L→∞

1

L
HT

h Hh (37)

Σ̃h = lim
L→∞

1

L
H̃T

h H̃h (38)

Σ∗
h = lim

L→∞
1

L
H∗

h
T H∗

h, (39)

with obvious meaning of the terms. Since no
correlation is assumed between the noise samples
at different time lags we have:

Σ̃h = diag
[
σ̃y1Ih+1 . . . σ̃ymIh+1

σ̃c1Ih+1 . . . σ̃c�c
Ih+1

]
≥ 0. (40)

Note that Assumption 1 implies the following
relation

Σ̃h = λ Σ̃#
h (41)

where Σ̃#
h is known and the scalar λ is unknown,

so that equations (30) and (31) become

Σh =Σ∗
h − λ Σ̃#

h > 0 h < n∗
f (42)

Σh =Σ∗
h − λ Σ̃#

h ≥ 0 h ≥ n∗
f . (43)

Relation (43) leads to

Σ∗−1
h Σ̃#

h − 1
λ
Ih ≤ 0 h ≥ n∗

f , (44)

i.e. 1/λ is the maximum eigenvalue of Σ∗−1
h Σ̃#

h .

The solution of Problem 3 in the asymptotic case
N → ∞ can thus be obtained by performing the
following algorithm.

Algorithm 2

(1) Consider the sequence of symmetrical in-
creasing dimension positive definite matrices

Σ∗
1,Σ

∗
2, . . . (45)

and construct the corresponding noise covari-
ance matrices Σ̃#

1 , Σ̃
#
2 , . . ..

Compute

µh = max eig Σ∗−1
h Σ̃#

h (46)

and the terms

1
µ1

,
1
µ2

· · · (47)

as long as it results

1
µh̄+1

=
1
µh̄

· (48)

Then n∗
f = h̄ and λ = 1/µh̄.

(2) Compute the matrix

Σn∗
f
= Σ∗

n∗
f
− λ Σ̃#

n∗
f

(49)

and determine the basis Θ of the null space
of Σn∗

f
.

This procedure can be used also in presence of
a finite number of data, i.e. when only sample
covariance matrices

Σ∗
h =

1
L
H∗

h
TH∗

h (50)

are available. In this case an exact value n∗
f can

not be determined in step 1 because the sequence
in (47) does not exhibit a stabilisation for a certain
value h̄. However, when the assumptions are only
slightly violated, n∗

f can be estimated as the first
value of h for which it results∣∣∣ 1

µh+1
− 1

µh

∣∣∣/∣∣∣ 1

µh

∣∣∣ <<

∣∣∣ 1

µh

− 1

µh−1

∣∣∣/∣∣∣ 1

µh−1

∣∣∣ . (51)

Note that when the system structural indexes
{ν1, . . . νm} are known, test (54) can be per-
formed only for the values νmin ≤ h ≤
min

{
(�d + 1) νmax, n

}
.

4. NUMERICAL EXAMPLE

The method described in previous sections has
been tested on a simulated system with m =
2, �c = 1, �d = 1, characterised by the following
canonical representation

P̃ (z) =

[
z2 − 0.2 z + 0.4 0.2
−0.2 z − 0.1 z + 0.4

]
(52)

Q̃c(z) =

[
z2 − 0.1

0.5 z + 0.5

]
(53)

Q̃d(z) =

[
z2 − 2 z − 0.65

0.8 z + 1.1

]
. (54)

It can be easily verified that ν1 = 2, ν2 = 1 and the
system admits only one residual generator with
order n∗

f = 3. The known input c(t) is a piecewise
constant binary sequence while the disturbance
d(t) is a pseudo random binary sequence. Both



sequences have zero–mean and unit variance and
are corrupted by zero–mean mutually uncorre-
lated white noise with variances

 σ̃y1

σ̃y2

σ̃c1


 = λ


 0.9574
0.2663
0.1116


 , (55)

where λ is unknown.

The effectiveness of the method has been tested by
considering different conditions of signal-to-noise
ratio (SNR). For each SNR a 100 runs Monte
Carlo simulation with N = 500 has been per-
formed by assuming that the structural indexes
of system (56)–(57) are known. In this case test
(55) has been performed with 1 ≤ h ≤ 3 and it
has led to the correct estimation of the order n∗

f in
every run. Figure 1 shows the root–mean square
error (RMSE) versus the SNR, where the RMSE
is defined as

RMSE =

√√√√ 1
100

100∑
i=1

‖Θ̂i −Θ‖2, (56)

and Θ̂i is the estimate, from the i–th trial, of the
coefficient vector Θ. Tables 1 and 2 refer to the
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Fig. 1. RMSE versus SNR.

case SNR = 15 dB and report the true values of
the coefficients of vector Θ, their mean values and
the corresponding standard deviations.

Table 1. True and estimated parameters
αik.

α11 α12 α13
true -0.1072 0.0658 -0.1830
ident. -0.1062 ± 0.011 0.0637 ± 0.013 -0.1832 ± 0.012

α21 α22 α23
true -0.2859 -0.1372 -0.4603
ident. -0.2850 ± 0.007 -0.1409 ± 0.032 -0.4590 ± 0.016

5. CONCLUSION

The problem of identifying residual generators for
fault detection purposes in linear multivariable
systems has been addressed in this work. The

Table 2. True and estimated parameters
βjk.

β11 β12 β13
true -0.4575 0.2859 0.0615
ident. -0.4549 ± 0.022 0.2857 ± 0.013 0.0636 ± 0.029

β21 β22 β23
true 0.3560 0.4575 0.0858
ident. 0.3596 ± 0.029 0.4520 ± 0.026 0.0875 ± 0.027

paper shows that the order and the parameters
of these filters can be determined by following an
identification approach, starting from the knowl-
edge of a finite number of input–output samples
describing the behaviour of the process in absence
of faults. This result is obtained by using canonical
input–output polynomial representations, which
lead to a simple characterisation of the polynomial
basis of the subspace described by all residual
generators. The robustness of the suggested iden-
tification approach has been verified by means of a
Monte Carlo simulation. The use of this procedure
in real fault detection and isolation problem is
currently under investigation.
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