
TIME-TRIGGERED REAL-TIME COMPUTING

H. Kopetz ∗

∗ Institut für Technische Informatik
TU Vienna, Austria

email: hk@vmars.tuwien.ac.at

Abstract: Time-triggered (TT) distributed real-time computing systems are mov-
ing into the mainstream for the implementation of safety-critical applications in the
aerospace and automotive sectors. This paper introduces the basic principles of a
time-triggered real-time computing system, and elaborates on the benefits that can
be gained from the availability of a global time base in general, and in specifying
the linking interfaces of components in particular. It describes the concept of a
temporal firewall that forms a fully specified operational interface of a component.
The most important contribution of the TT-paradigm is the capability to precisely
specify operational interfaces in the temporal domain and thus establish a sound
basis for the composability of a design and the reuse of components in distributed
real-time systems. Copyright c 2002 IFAC

Keywords: real-time, linking interface, time-triggered, global time, distributed
system, composability, component reuse

1. INTRODUCTION

Hard real-time computer systems must produce
the intended results at the intended points in real
time. A failure to produce the intended result
at the intended instant can entail catastrophic
consequences. The correctness of a real-time sys-
tem thus depends on both, its proper behavior in
the value domain and in the temporal domain.
It follows that any computer architecture or de-
sign methodology for real-time systems must be
concerned with both issues, the issue of tempo-
ral correctness and the issue of value correctness.
Non-real-time computer systems deal with value
correctness and performance only. In these sys-
tems, temporal correctness is a non-issue. The
focus of this paper is on distributed hard real-time
computer systems.

In many computer systems a new process (either
a computational process or a communication pro-
cess) — we call it a task — is started whenever

the environment delivers a service request. Such
a service request can be the transmission of a
message by an operator from a terminal or the
generation of an interrupt by a physical device. In
a distributed system, such a service request will
normally result in the execution of a sequence of
computational and communication tasks, where
each subsequent task is started whenever the tem-
porally preceding task has progressed beyond a
certain point or finished. If we abstract from the
inner logic of the tasks (the detailed data trans-
formation logic or the detailed protocol execution)
and focus only on the start instant and the ter-
mination instant of each task in a task sequence,
then we get the temporal control structure of the
task sequence (Kopetz, 1997) p.82. If the start
of a task is triggered by an external event (e.g.,
an interrupt) from the environment or by the
progress (termination) of the preceding task, then
the task sequence is called event-triggered. If the
start of the task is triggered by the progression of
a global notion of time, i.e., when the global time

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



reaches a specified value, then the task sequence
is called time-triggered. In a time-triggered system
every task will periodically observe the state of
its environment (e.g., by sampling) to determine
whether a particular computational activity has
to be performed. Event-triggered systems excel in
flexibility, whereas time-triggered systems excel in
temporal predictability.

Time-triggered computing systems have been
around for many years, not only in safety critical
applications where temporal predictability is of
primary concern. The idea of using a periodic
clock signal as the trigger for the initiation of a
task is widely used in control systems, and in com-
munication systems (e.g., time-division multiple
access — TDMA — as a media access strategy).
However, in many of these systems — even if
they are distributed — the time-triggers are gen-
erated locally, such that each subsystem has its
own (uncoordinated) time base. In recent years,
the interest in system-wide synchronized time-
triggers has been growing. In these distributed
computing systems a (fault-tolerant) global time-
base is established and used for the generation of
synchronized time triggers throughout the system.
We will use the term time-triggered system to
describe a distributed computing system where a
system-wide global time base of known precision
is provided at every node to trigger the execution
of significant computational and communication
tasks.

The present paper is organized as follows. In Sec-
tion 2 the requirements for distributed hard real-
time computer systems are elaborated. Section 3
introduces a set of basic concepts that are useful
for the understanding of time-triggered computing
systems. Of particular importance are the con-
cepts of a sparse time base, of state information
versus event information, and of a linking inter-
face . Section 4 describes the principles of opera-
tion of a time-triggered system and elaborates on
the concept of a temporal firewall as a precisely
specified operational interface. Section 5 discusses
further benefits that can be accrued from the exis-
tence of a global time in a distributed computing
system. Section 6 shows how the requirements
established in Section 2 can be fulfilled within
a properly designed time-triggered architecture.
The paper terminates with a conclusion in Sec-
tion 7.

2. REAL-TIME REQUIREMENTS

In this Section we discuss the important require-
ments that must be satisfied by a distributed hard
real-time computing system.

System

R−Back

L−BackL−Front

R−Front

Communication

Fig. 1. Simple “brake-by-wire” application

2.1 Correctness and Predictability

The foremost requirements of a hard real-time
control system are value correctness and temporal
correctness. Whereas value correctness of compu-
tations is the topic of many scientific contributions
since a long time (e.g., (Boyer and Moore, 1981))
and will not be investigated further in this pa-
per, the issues of temporal correctness have not
received as much attention. The temporal correct-
ness of an implementation can only be ascertained
if the specification contains precise statements
about the intended temporal behavior. The tem-
poral specification of the behavior of a distributed
computer system is simplified, if all nodes of the
system have access to a common global notion of
time.

2.2 Consistent Distributed Computing Base

An important requirement of a distributed real-
time computing system is to provide a consistent
distributed computing base to all correct nodes
in order that reliable distributed applications can
be built with manageable effort (Rushby, 2001).
If a node cannot be certain that every other
node works on exactly the same data, then the
design of distributed algorithms becomes very
cumbersome (Lamport et al., 1982), because the
intricate agreement problem has to be solved at
the application level.

Example: The simple “brake-by-wire” system in
a car (Fig. 1) demonstrates the importance of a
consistent view in a distributed real-time appli-
cation. In this application the four nodes that
control the brakes at the four wheels of a car
are connected by a fault-tolerant communication
system. The R-Front and the L-Back node accept
the brake pedal pressure from one fail-silent brake
pedal sensor, the L-Front and R-Back node accept
the brake pedal pressure from the other fail-silent
brake pedal sensor. Every wheel node informs all
other nodes about its view of the brake pedal sen-
sors, performs a distributed algorithm to allocate
the brake force to each wheel and controls the
brake at its local wheel. The brake is assumed
to be designed in such a way that the brake



autonomously visits a defined state, e.g., wheel
free running — no brake force applied in case the
wheel node crashes or the electric or mechanic
mechanism in the local brake fails. As soon as
the other three wheels learn about the failure at
one wheel, they redistribute the brake force to the
remaining operational brakes in order that the car
is stopped safely with three braking wheels. The
time interval between the instant of a wheel brake
failure and the instant of redistribution of the
brake-force is a safety critical parameter of this
application. During this error detection interval
the braking system is in an inconsistent state. We
conjecture that there is a potential for a fatal ac-
cident if this inconsistent state is not detected and
corrected within at most a few sampling intervals.
Consider the scenario where the R-back node has
an outgoing link failure. In this scenario the other
three nodes will assume the R-back node has failed
(since they don’t receive any message from the R-
back node), but the R-back node will think it is
operating correctly, since it receives all messages
form the other nodes. This scenario illustrates the
need for the prompt detection and elimination
of safety relevant inconsistencies in a distributed
real-time control system.

2.3 Composability

The concept of composability refers to the ease
of composing a system-of-systems out of compo-
nent systems. In a distributed real-time environ-
ment we view the nodes (including their applica-
tion software) as the component systems and the
distributed system as a whole as the system-of-
systems. In a composable real-time architecture
the linking interfaces (LIFs) (Jones et al., 2001)
of the nodes must be specified in the tempo-
ral domain and in the value domain (see also
Section 3.4). The reasoning about the emergent
properties of the system-of-systems can then be
based solely on the LIF specifications without any
knowledge about the internal implementation of
the components.

2.4 Validation

Today, the effort required to validate the behavior
of a large distributed real-time system is very sig-
nificant. What are needed are architecture-based
approaches, where a constructive validation is
supported such that the results of the component-
system validation can be used for the system-
of-systems’validation. Constructive validation is
thus closely related to the requirement of com-
posability, introduced above. If, in addition to
validation, the certification of a system in a safety
critical application is demanded, a systematic val-
idation methodology is even more important.

2.5 Fault Tolerance

In fail-operational applications safety-critical real-
time systems require the provision of fault-
tolerance in the control system in order to toler-
ate the failure of any component. Fault tolerance
will become more important in near future, since
smaller VLSI structures are causing an increase
in the occurrence of transient and intermittent
hardware failures (Constantinescu, 2002). Ideally,
an arbitrary failure of every component (possibly
implemented on a single chip) of the distributed
control system should be tolerated without any
impact on safety critical system services. The soft-
ware required to implement the fault tolerance
should be strictly separated from the application
software in order not to increase the complexity
of the application software.

2.6 Extensibility

Every successful real-time system will be modified
and extended over its lifetime. The effort required
to change existing functions and add new func-
tions is captured by the notion of extensibility.
There are two steps required to effect a change,
the implementation of the new or modified func-
tion and the validation of the value and temporal
properties of the modified system.

3. BASIC CONCEPTS

In this Section some of the basic concepts needed
to describe time-triggered systems are devel-
oped. The fundamental characteristic of a time-
triggered system is the strict separation of the
temporal domain from the value domain of a
process. The instants when a task or a protocol
execution starts, is assumed to be independent
from the involved data. It is further assumed that
the worst-case execution time (WCET) of a task
or a protocol execution is known a priori. It fol-
lows that the worst-case termination instant of a
task or protocol execution is also known a priori.
These instants, the start instant and the worst-
case termination instant, determine the temporal
control structure. The specification of this tem-
poral control structure requires a model of time
that supports the unambiguous identification of
significant instants at every node of a distributed
system.

3.1 Sparse Time

For most applications, a model of time based on
Newtonian physics is adequate. In this model,



duration of silence

Real Time
s aasa

a duration of activity
s

Fig. 2. Sparse time base

real-time progresses along a dense timeline, con-
sisting of an infinite set of instants, from the past
to the future. A duration (or interval) is a section
of the timeline, delimited by two instants. A hap-
pening that occurs at an instant (i.e., a cut of the
timeline) is called an event. An observation of the
state of the world at an instant is thus an event.
The time-stamp of an event is established by as-
signing the state of the local clock of the observer
to the event immediately after the event occur-
rence. Due to the impossibility of synchronizing
clocks perfectly and the denseness property of real
time, there is always the possibility of the follow-
ing sequence of events occurring: clock in node j
ticks, event e occurs, clock in node k ticks. In such
a situation, the single event e is time-stamped by
the two clocks j and k with a difference of one tick.
The finite precision of the global time-base and
the digitalization of the time make it impossible in
a distributed system to order events consistently
on the basis of their global time-stamps based on
a dense time. This problem can be solved by the
introduction of a sparse time base (Kopetz, 1997),
p.55. In the sparse-time model the continuum of
time is partitioned into an infinite sequence of
alternating durations of activity and silence as
shown in Figure 2. The activity intervals form a
synchronized system-wide action lattice.

From the point of view of temporal ordering, all
events that occur within a duration of activity of
the action lattice are considered to happen at the
same time. Events that happen in the distributed
system at different nodes at the same global clock-
tick are thus considered simultaneous. Events that
happen during different durations of activity (at
different points of the action lattice) and are sep-
arated by the required interval of silence (the du-
ration of this silence interval depends among oth-
ers, on the precision of the clock synchronization
(Kopetz, 1992)) can be temporally ordered on the
basis of their global timestamps. The architecture
must make sure that significant events, such as
the sending of a message, or the observation of
the environment, occur only during an interval of
activity of the action lattice. The time-stamps of
events that are based on a sparse time based can
be mapped on the set of positive integers. It is
then possible to establish the temporal order of
events by integer arithmetic.

The timestamps of events that are outside the
control of the distributed computer system (and
therefore happen on a dense timeline) must be

Host Computer

CC

Host

CC

Host

CC

Host

CC

Host

CC

Host

CC: Communication Controller
Host:

Fig. 3. Distributed real-time system with five
nodes

assigned to an agreed lattice point of the ac-
tion lattice by an agreement protocol. Agreement
protocols are also needed to come to a system-
wide consistent view of analogue values that are
digitized by more than one analogue-to-digital
converter.

3.2 RT Entity and RT Image

A distributed time-triggered computer system can
be depicted by a set of nodes that are intercon-
nected by a real-time communication system as
shown in Figure 3. All nodes have access to a
global time of known precision. A node consists
of a communication controller (CC) and a host
computer. The common boundary between the
communication controller and the host computer
within a node is called the communication network
interface CNI (thick black line in Figure 3).

The dynamics of a real-time application is mod-
eled by a set of relevant state variables, the real-
time (RT) entities that change their state as time
progresses. Examples of RT entities are the flow
of a liquid in a pipe, the setpoint of a control
loop or the intended position of a control valve.
An RT entity has static attributes that do not
change during the lifetime of the RT entity, and
has dynamic attributes that change with time.
Examples of static attributes are the name, the
type, the value domain, and the maximum rate
of change. The value set at a particular instant is
the most important dynamic attribute. Another
example of a dynamic attribute is the rate of
change at a chosen instant.

The information about the state of an RT entity
at a particular instant is captured by the notion of
an observation. An observation is an atomic data
structure

Observation = <Name, tobs, Value>

consisting of the name of the RT entity, the instant
when the observation was made (tobs), and the
observed value of the RT entity. A continuous
RT entity can be observed at any instant while
a discrete RT entity can only be observed when
the state of this RT is not changing.



A real-time (RT) image is a temporally accurate
picture of an RT entity at instant t, if the duration
between the time-of-observation and the instant t
is less than the accuracy interval dacc, which is an
application specific parameter associated with the
dynamics of the given RT entity. An RT image is
thus valid at a given instant if it is an accurate
representation of the corresponding RT entity,
both in the value and the time domains (Kopetz
and Kim, 1990). While an observation records
a fact that remains valid forever (a statement
about an RT entity that has been observed at
an instant), the validity of an RT image is time-
dependent and is invalidated by the progression of
real-time.

3.3 State-Information versus Event-Information

The information that is exchanged across an in-
terface is either state information or event infor-
mation, as explained in the following paragraphs.
Any property of a real-time (RT) entity (i.e., a rel-
evant state variable) that is an observed by a node
of the distributed real-time system at a particular
instant, e.g, the temperature of a vessel, is called a
state attribute and the corresponding information
state information. A state observation records the
state of a state variable at a particular instant,
the point of observation. A state observation can
be expressed by the atomic triple

<Name of the observed state variable, observed
value, time of observation>

For example, the following is a state observation:
“The position of control valve A was at 75 de-
grees at 10:42 a.m.” State information is idem-
potent and requires an at-least once semantics
when transmitted to a client. At the sender, state
information is not consumed on sending and at
the receiver, state information requires an update-
in-place and a non-consumable read. State infor-
mation is transmitted in state messages.

A sudden change of state of an RT entity that
occurs at an instant is an event. Information that
describes an event is called event information.
Event information contains the difference between
the state before the event and the state after the
event. An event observation can be expressed by
the atomic triple

<Name of the observed state variable, value
difference, time of event>

For example, the following is an event observation:
“The position of control valve A changed by 5
degrees at 10:42 a.m.” Event observations requires
exactly-once semantics when transmitted to a
consumer. Events must be queued on sending
and consumed on reading. Event information is
transmitted in event messages.

Periodic state observations or sporadic event ob-
servations are two alternative approaches for the
observation of a dynamic environment in order to
reconstruct the states and events of the environ-
ment at the observer (Tisato and DePaoli, 1995).
Periodic state observations produce a sequence of
equidistant “snapshots” of the environment that
can be used by the observer to reconstruct those
events that occur within a minimum temporal dis-
tance that is longer than the duration of the sam-
pling period. Starting from an initial state, a com-
plete sequence of (sporadic) event observations
can be used by the observer to reconstruct the
complete sequence of states of the RT entity that
occurred in the environment. However, if there is
no minimum duration between events assumed,
the observer and the communication system must
be infinitely fast.

3.4 Linking Interface (LIF)

In a distributed real-time system, the components
realize emerging services by the timely exchange
of messages across linking interfaces (LIF) (Jones
et al., 2001). The emergent services refer to those
properties of the system of components that are
not part of the components themselves but come
into existence by the interactions among the com-
ponents across the LIFs (Leveson, 2000).

The specification of a LIF should be complete
and of minimal cognitive complexity. Complete-
ness implies that all information that a user of
the services needs to deploy a component must be
contained in the LIF specification. The LIF spec-
ification must thus comprise the following parts:

(1) The syntactic specification of the messages,
i.e., the specification of the data elements
that cross the interface. Out of the sequence
of bits in a message the syntactic speci-
fication forms larger (information) chunks
(such as a number, a string, a method call,
or a structure consisting of a combination
thereof) and assigns a name to each chunk.
Although from the view of mechanical pro-
cessing any name would suffice, a descriptive
name that establishes a link between the
chunk and its meaning helps human under-
standing. The syntactic specification bridges
the gap between the logical level and the in-
formational level (Avizienis, 1982). It can be
formalized by expressing it in a well-defined
interface definition language (IDL).

(2) The temporal specification of the message
send and receive instants, e.g., at what in-
stants the messages are sent and arrive, how
the messages are ordered, and the rate of
message arrival. This information can be for-
malized if an appropriate model of real-time



is available. In non-safety critical applica-
tions the temporal specification can be ex-
pressed in probabilistic terms.

(3) The conceptual interface model specification.
In many cases the concept associated with
the name of a chunk (the result of the syn-
tactic specification) is not sufficiently precise
to cover all aspects of the semantics of the
interface data. In these cases it is necessary
to specify a conceptual interface model that
relates the names of the chunks to the user’s
conceptual world and thus assigns a deeper
meaning to the chunks generated by the syn-
tactic specification. It follows that the con-
ceptual interface model must be expressed
in concepts that are familiar to the user of
the interface services. The conceptual model
bridges the gap between the informational
level and the user’s level (Avizienis, 1982).

Of course, there are interdependencies between
these three different parts of the specification.
For example, the concept of an observation, in-
troduced before, contains an element of each one
of the three parts. Nevertheless, we feel that the
introduced partitioning brings structure into a
LIF specification and thus contributes to solving
the specification problem.

We subsume under the term operational specifica-
tion of an interface the syntactic specification and
the temporal specification. Consistency of the op-
erational specification of interacting components
is a necessary (but not sufficient) prerequisite for
the proper operation of the system of components.
Consistency of the specifications of the conceptual
interface models of the communicating partners,
called the meta-level specifications, assures that
the meaning of the information chunks in all in-
volved components is in agreement with the user’s
intent.

Whereas the operational specification must be
rigorous, it is often difficult to develop a formal
system for the meta-level specification if the in-
formation chunks exchanged across an interface
relate to concepts of the real world (as they nor-
mally do). For example, how can we formalize the
concept of temperature or the concept of drive at
a safe speed? This qualitative difference in the
nature of the operational specification and meta-
level specification justifies the clear distinction
between these two kinds of specifications.

The demand for minimal cognitive complexity of
a LIF has the following consequences:

(1) An interface should only serve a single pur-
pose. If there is a need to interact with a
component for different purposes, different
interfaces should be provided. For example,
a component may support, in addition to

a LIF, a diagnostic interface for diagnosis
and a configuration interface for configur-
ing the component into a new environment
(Kopetz, 2001). Since these three interfaces
are directed to different user groups and deal
with different views of a component, interfac-
ing would become unnecessarily complicated
for each one of these users if all three inter-
faces were integrated into a single one (Ran
and Xu, 1997).

(2) If multiple users of a sequential LIF can ac-
cess a component concurrently (e.g., a server
of an e-commerce application), then it should
be tried to hide this concurrency from the
LIF user. The concurrency inside the compo-
nent should not be visible from the vantage-
point of the LIF, since concurrency increases
the cognitive complexity of an interface sig-
nificantly.

(3) The LIF conceptual model should be struc-
tured along a stratified means-end hierarchy
(Vicente and Rasmussen, 1992) in order to
limit the amount of information that must
be dealt with at a selected level of abstrac-
tion. This requirement is derived from the
characteristic of human cognitive informa-
tion processing (Reason, 1990). The proper
structure and representation of the concep-
tual interface model is crucial for controlling
the conceptual effort needed to understand
the component and for reusing the compo-
nent in a new context.

As mentioned before, communication across an
interface is only successful if the operational spec-
ification and the meta-level specification of the
interfaces of all communication partners are con-
sistent with each other. If there are syntactic prop-
erty mismatches among the interface specifica-
tions of the communicating partners, it is possible
to resolve these syntactic property mismatches by
connection systems inserted between the compo-
nent interfaces (Jones et al., 2001). These con-
nection systems are not needed, if all components
are designed according to the same architectural
style. Property mismatches that have their cause
in conflicts of the conceptual interface models can-
not be resolved by connection systems but require
human intervention.

4. PRINCIPLES OF OPERATION

In this Section we describe the principles of op-
eration of a time-triggered real-time computing
system.



Memory

Time−Triggered

Sender CNI
Memory

Receiver

Information Pull
Ideal for ReceiverCommunication System

Information Push
Ideal for Sender

CNI

Fig. 4. Data Flow (full line) and Control Flow
(dashed line) at a Temporal Firewall Inter-
face

4.1 Temporal Firewall Interfaces

Many hard real-time systems in control applica-
tions have a regular behavior. The sensors observe
the state of the controlled object, the control
algorithms are calculated, and the setpoints are
delivered to the actuators. The components of the
systems, the sensors, control modules, and actu-
ators, exchange state information periodically. In
order to support these applications effectively, a
special interface, the temporal firewall, has been
designed as the fundamental interface of a time-
triggered architecture. A temporal firewall is an
operationally fully specified digital interface for
the unidirectional exchange of state information
between a sender/receiver over a time-triggered
communication system. The basic data and con-
trol transfer of a temporal firewall interface is
depicted in Figure 4, showing the data and control
flow between a sender and a receiver.

The CNI memory at the sender forms the output
firewall of the sender and the CNI memory of the
receiver forms the input firewall of the receiver.
The sender deposits its output information into
its temporal firewall (update in place) according
to the information push paradigm, while the re-
ceiver must pull the input information out of its
CNI (non-consumable read). The transport of the
information is realized by a time-triggered com-
munication system that derives its control signals
autonomously from the progression of time. It is
common knowledge to the sender and the receiver
at what instants (on a sparse time base) the typed
data structure is fetched from the sending CNI
and at what instants this data structure is de-
livered at the receiving CNI by the communica-
tion system. On input, these precise operational
interface specifications (in the temporal and value
domain) are the pre-conditions for the correct
operation of the application software. On output,
the precise interface specifications are the post-
conditions that must be satisfied by the appli-
cation software, provided the preconditions have
been satisfied by the environment.

Since no control signals cross such a temporal
firewall interface, control-error propagation across
this interface is eliminated by design. A tempo-
ral firewall also eliminates (low-level) concurrency

from the interface. The sparseness of the global
time establishes a system wide action lattice, the
lattice points of which are precisely synchronized
with the global time. The behavior of a system can
be explained by the sequential stepwise progres-
sion through this action lattice. The elimination
of concurrency from the interface simplifies the
understanding of the interface, since the human
mind is ill-equipped to handle concurrent pro-
cesses (Reason, 1990).

4.2 Observation Lattice

We call the periodic sequence of time points of the
action lattice at which an RT-entity observes its
environment the observation lattice. The distance
between the lattice points of this observation lat-
tice is called the observation granularity g0 (which
often will be significantly larger than the granu-
larity of the action lattice (Kopetz, 1992)). Inde-
pendent of the current activity in a RT-entity, the
state of a RT-entity is sampled at a constant rate
at the a priori specified instants of the observation
lattice. Although it is impossible to influence the
time of occurrence of a (rare) event in a RT entity,
the time of recognition of the consequences of this
event — the new state — is restricted to the
lattice points of the observation lattice in a TT-
architecture. Because of this enforced regularity,
TT-architectures are inherently more predictable
than ET-architectures.

At the communication network interfaces (CNI)
within a node of a time-triggered architecture,
the pictures of the RT entities are periodically
updated by the real-time communication system
to establish temporally accurate RT-images of the
RT-entities. The computational tasks within the
host of a node take these temporally accurate RT-
images as inputs to calculate the required outputs
within an a priori known worst-case execution
time (WCET). The outputs of the host are stored
in the CNI and transported by the time-triggered
communication system to the CNIs of other nodes
at a priori determined instants. The interface
nodes transform the received data to/from the
representation required by the controlled object or
the human operator and activate control actions
in the physical world (Kopetz, 1998).

4.3 Guaranteed Resource Availability

TT systems must be designed according to the
principle of resource adequacy (Lawson, 1992).
It is assumed that sufficient computing resources
are available to handle the specified peak load
scenario of all hard real-time tasks, even if all
faults specified in the fault hypothesis occur simul-
taneously. In the past, there have been a number



of real-time applications where resource adequacy
was ruled out on the basis of economic arguments.
It was accepted that the system does not provide
the desired service in case of the occurrence of
a rare event of system overload. However, with
the decreasing cost of computing resources the
economic arguments for not providing resource
adequacy are losing ground.

4.4 Prompt Error Detection in the Temporal
Domain

The a priori knowledge of the receive instant of a
message in a time-triggered system can be used to
implement prompt error detection at the receiver
of the message. As soon as the instant of arrival of
a time-triggered message has passed without the
message arriving, an error handling process can
be initiated at the receiver. This form of time-
based error detection at the receiver can also be
deployed in systems that provide unidirectional
information and unidirectional control flow only.
In an event-triggered system, where it is not
known a priori when a message ought to arrive at
a receiver, a bi-directional control flow is required
for error detection. This bi-directional control
makes the interface more complex, in particular
when a multi-cast communication topology must
be supported (Kopetz, 1999).

5. ADDITIONAL BENEFITS OF A GLOBAL
TIME

As mentioned in the introduction, a time-triggered
computing system requires the existence of a glob-
ally synchronized time in order to generate the
temporal triggers for the communication and sig-
nificant processing tasks in the individual nodes. If
the existence of a dependable global time base can
be assumed, the solution to many other difficult
problems in the design of a distributed real-time
system can be simplified. Thus time moves from
the problem space to the solution space.

5.1 Temporal Validity of Data

The concept of an observation, introduced in
Section 3.2, contains the instant of observation as
an integral part. Only if a global time is available
is it possible for any node to learn precisely about
the age of an observation. Knowledge about the
age of an observation determines whether the
observation may be used in a particular real-
time control context. If no global time base is
available, often implicit assumptions about the
performance of the communication system are
used to establish the age of an observation. These

(implicit) assumptions about the temporal delay
may become invalid when the system is deployed
in a dynamically changing environment, giving
rise to sporadic errors.

5.2 Consistent Order of Events

The timestamps of events on a sparse global time-
base can be used to establish a consistent order of
events in distributed system. A consistent order
is needed by many distributed algorithms. If no
global time-stamps of events are available, spe-
cial distributed algorithms for the establishment
of a consistent order must be executed. These
algorithms require additional computational and
communication resources, which are not needed in
a TT system that is based on a sparse global time.

5.3 Mutual Exclusion

The availability of a sparse global time base can
be used to deterministically solve the mutual ex-
clusion problem when accessing shared resources
in a distributed system. For example, the time-
axes can be partitioned into an (infinite) set of
successive periodic windows. Each window con-
sists of a sequence of durations, where each one
of these durations is assigned to a process that
intends to access the common resource. A process
is only allowed to access the resource during the
duration assigned to it a priori. Such a time-
based solution of the distributed mutual exclusion
problems is free of race conditions and maintains
replica determinism in the distributed system.

5.4 Synchronization of Distributed Actions

The global time can also be used to precisely
coordinate a distributed action that is composed
of a set of local actions performed at different
nodes of a distributed system. The timestamps of
the instants when the distributed action must take
place are transported to the nodes participating
in the distributed action ahead of the distributed
action. As soon as the globally synchronized time
reaches the prescribed value, every node executes
its local part of the distributed action, thus giving
rise to a tightly synchronized global distributed
action, even if the communication system is not
free of jitter.

5.5 Membership Service

In order to establish a consistent distributed com-
puting base it is necessary to provide a uni-
form view about the health state of each node



— whether it is operating correctly or has failed
— to all correct nodes of the ensemble within a
short latency. The service that provides this view
is called the membership service. It is known that
it is impossible to implement a timely membership
service in a purely asynchronous system (Fischer
et al., 1985). Every membership service is based
on some type of failure detector that is based
on a priori knowledge about the behavior of a
node in the temporal domain (Fetzer, 2001). In
a time-triggered system the periodic transmission
of messages by the nodes at instants that are
common knowledge to all members of the ensemble
can be interpreted as life signs of the nodes and
be used for implementing the membership service
(Kopetz and Grünsteidl, 1993).

5.6 Coordination of Timeaouts

Most communication protocols use timeouts for
error detection. If there is no global time base
available, these time-outs can only refer to the
clock of the local node but not to a system-wide
notion of time. The existence of a sparse global
time makes it possible to coordinate these time-
outs on a system-wide basis and thus eliminate
many tricky problems, e.g., the orphan problem
(Rao et al., 2000).

6. MEETING THE REQUIREMENTS

In this section we argue that within a properly
designed time-triggered architecture (see, e.g.,
(Kopetz and Bauer, 2001)) it is possible to satisfy
all requirements listed in Section 2.

6.1 Temporal Predictability

TT-systems require careful planning during the
design phase. First it is necessary to establish the
interaction pattern among the components and
the temporal and value parameters of the CNIs.
Because of this early planning effort, a detailed
specification of the temporal properties of the LIF
of each component is available after the architec-
ture design phase. The dynamics of a RT-entity
determines the granularity of the observation lat-
tice and thus the required minimum duration of
states that can be guaranteed to be observed. (If
these assumptions are violated, short lived states
may evade the observation.) Since the temporal
control structure of a TT system is derived from
the progression of the global time, TT systems are
as predictable as time.

In an ET-system it is not necessary to develop
such a set of detailed plans during the design

phase, since the execution schedules evolve dy-
namically as a consequence of the actual demand.
Depending on the sequence and timing of the
events, which are presented to the system in a
specific application scenario, different schedules
unfold dynamically. In an ET-system, the critical
external assumption is the conjectured distribu-
tion of the event occurrences, both in normal
and peak load situations. This distribution forms
the basis for the system test and the predictions
about the adequacy of the system to meet the
specified deadlines. If this assumed distribution is
not representative of the distributions that evolve
in the real world, then the basis for predicting
the timeliness of the system is compromised. The
temporal behavior of ET systems is thus less pre-
dictable than that of TT systems.

6.2 Consistent Distributed Computing Base

In a distributed TT system it is a priori common
knowledge at which instant a message of a correct
node must arrive at all other nodes. This common
knowledge can be used to design a consistent dis-
tributed computing base, such as the one realized
in the time-triggered architecture with the TTP
protocol (Kopetz and Grünsteidl, 1993), p181.
TTP is based on a time-division-multiple-access
(TDMA) strategy to replicated communication
channels. The TTP protocol provides, in addition
to a fault-tolerant clock synchronization, a dis-
tributed membership service and a clique avoid-
ance service. The membership service of TTP
informs consistently all correct nodes about the
health state of all nodes within two TDMA rounds.
If a fault outside the fault hypothesis causes the
formation of cliques, the clique avoidance mecha-
nism of TTP will force the minority clique into
a restart in order that a consistent distributed
computing base remains available at all times.
The correctness of the membership protocol of
TTP has been investigated by formal methods
(Rushby, 2000).

It is impossible to maintain a consistent dis-
tributed computing base in an ET system that
has to cope with faults (Fischer et al., 1985).

6.3 Composability

In a distributed real-time computer system the
nodes interact via the communication system to
provide the emerging real-time services. These
emerging services depend on the timely arrival
of the real-time information at the linking in-
terfaces of the nodes. For an architecture to be
composable, it must adhere to the following four
principles:



(1) Independent node development.
(2) Stability of prior services.
(3) Communication system performance.
(4) Replica determinism.

Independent Node Development: A com-
posable architecture must distinguish distinctly
between architecture design and node design.
Principle one of a composable architecture is
concerned with design at the architecture level.
Nodes can only be designed independently of
each other, if the architecture supports the ex-
act specification of all node services provided at
the LIFs during architecture design. The inter-
face data structures musts be precisely specified
in the value domain and in the temporal domain
and a proper conceptual interface model of the
node service, as viewed by a user of the node,
must be available (See also Section 3.2. Only
then is the node designer in the position to know
exactly what can be when expected from the
environment and what must be when delivered
to the environment by the node across its LIF.
This knowledge is a prerequisite for the inde-
pendent development of the node software, for
reusing a node in a new application context, and
for reasoning about the composition of nodes
into a system-of-systems. The temporal firewall
interface of a time-triggered architecture, de-
veloped during the architecture design phase,
supports this requirement.

Stability of Prior Services: Principle two of a
composable architecture is concerned with the
design at the node level. A node is a nearly au-
tonomous subsystem that comprises the hard-
ware, the operating system and the application
software. The node must provide the specified
services at its LIF and to its environment. The
design of the node can take advantage of any
established software engineering methodology,
such as object based design methods, and can
use any scheduling technique as long as the in-
stants defined in the temporal firewall specifica-
tion are met. Since an input firewall is accessed
by the receiver according to the information
pull paradigm, the temporal behavior of a com-
ponent is not compromised by the integration.
The stability-of-prior-service principle ensures
that the validated service of a node — both in
the value domain and in the time domain — is
not refuted by the integration of the node into
an encompassing system-of-systems.

Communication System Performace: Prin-
ciple three of a composable architecture is
concerned with the performance of the com-
munication system. Normally, the integration
of the nodes into the system follows a step-
by-step procedure. The performability-of-the-
communication-system principle ensures that if
n nodes are already integrated, the integration

1 2 3 number of nodes4 5 6

real−time
network

delay
critical application
specific network

delay

Fig. 5. Maximum network delay at critical instant
as a function of the number of nodes.

of the n+1 node will not disturb the correct op-
eration of the n already integrated nodes. This
principle guarantees that the integration activ-
ity is linear and not circular. It has stringent
implications for the management of the network
resources. If the network resources are managed
dynamically, then it must be ascertained that
even at the critical instant, i.e., when all nodes
request the network resources at the same in-
stant, the specified timeliness of all communi-
cation requests can be satisfied. Otherwise fail-
ures will occur sporadically with a failure rate
that is increasing with the number of integrated
nodes. A time-triggered communication system
satisfies this requirement. Example: If a real-
time service requires that the network delay
must always remain below a critical upper limit
(because otherwise a local time-out within the
node may signal a communication failure) then
the dynamic extension of the network delay by
adding new nodes may be a cause of concern.
In a dynamic network the message delay at the
critical instant (when all nodes request service
at the same instant) increases with the number
of nodes. The system of Figure 5 will work
correctly with up to four nodes. The addition
of the fifth node may lead to sporadic failures.

Replica Determinism: If fault-tolerance is im-
plemented by the replication of nodes, then
the architecture and the nodes must support
replica determinism. A set of replicated nodes
is replica determinate (Poledna, 1994) if all the
members of this set have the same externally
visible state, and produce the same output mes-
sages at points in time that are at most an
interval of d time units apart (as seen by an
omniscient outside observer). In a fault-tolerant
system, the time interval d determines the time
it takes to replace a missing message or an
erroneous message from a node by a correct
message from redundant replicas. The imple-
mentation of replica determinism is simplified
if all nodes have access to a globally synchro-
nized sparse time base and use the time to
the mutual exclusion problem (see Section 5.3).



Replica determinism also decreases the testing
and debugging effort significantly.

In a time-triggered system all four of these prin-
ciples can be satisfied. A properly designed TT
system thus supports composability. Since the
temporal specification of the CNI of an ET system
is necessarily incomplete (there is no notion of
global time in a pure ET system), temporal com-
posability is difficult to achieve in an ET systems.

6.4 Validation

In a TT-system, the results of the test of every
node can be compared with the specification of
the CNI. Since the time-base is discrete and de-
termined by the granularity of the action lattice,
every input case can be observed and reproduced
in the domains of time and value. Therefore test-
ing of a properly designed TT-system is deter-
ministic and constructive. To achieve the same
test coverage, the effort to test an ET-system is
much greater than that required for the testing
of the corresponding TT-system. The difference
is caused by the smaller number of possible exe-
cution scenarios that have to be considered in a
TT-system, since in such a system the order of
state changes within a granule of the observation
lattice is not relevant (Schütz, 1991).

6.5 Extensibility

From a temporal point of view, every node of a
TT-system is encapsulated. There are no control
signals crossing the CNI between two TT sub-
systems. Every subsystems exercises autonomous
control derived from the progression of the syn-
chronized time that is available locally. As long as
a modified node does not require a change of the
CNI, the change has no temporal effect on the rest
of the system. The effort required to add a new
node depends on the information flow to/from
this new node. If the node is passive, i.e., it does
not send any information into the system (e.g., a
display), then no modification of the existing sys-
tem is required since the communication protocols
are unidirectional and of the broadcast type. If
the new node is active, i.e., information is sent
from the new node into the existing system, then
a preplanned spare communication slot must be
taken or a new schedule must be generated for
the complete cluster.

6.6 Fault Tolerance

In a TT-system all communication activities are
synchronized globally by the global time. Non-
deterministic decisions can be avoided and replica

determinism can be maintained without addi-
tional inter-replica coordination. In a replica-
deterministic TT system fault-tolerance can be
implemented by standard techniques (e.g., by
triple modular redundancy, TMR) within an au-
tonomous fault-tolerance layer that provides the
same CNI, both in time and value, then the
non-fault-tolerant system. An example of such a
transparent implementation of fault-tolerance is
described in (Bauer and Kopetz, 2000).

7. CONCLUSION

Distributed real-time computing architectures are
moving into the mainstream for the design and
implementation real-time applications in the aero-
space and automotive markets. It is now widely
accepted (Rushby, 2001), that in these safety
critical applications time-triggered architectures
are the preferred alternatives. In this paper we
have discussed the requirements of distributed
real-time systems and shown how it is possible to
satisfy these requirements within a time-triggered
architecture. We consider the precise specification
of the temporal properties of the linking interfaces
as the main contribution of the time-triggered
paradigm. These precise interface specifications
form the basis for the composable integration and
the reuse of components.

ACKNOWLEDGEMENTS

This work has been supported in part by the IST
Project “DSoS” and the IST Project “Next TTA”.

REFERENCES

Avizienis, A. (1982). The four-universe informa-
tion system model for the study of fault
tolerance. In: IS Fault-Tolerant Computing
(12thFTCS). IEEE Press.

Bauer, G. and H. Kopetz (2000). Transparent
redundancy in the time-triggered architec-
ture. In: IC Dependable Systems and Net-
works (DSN2000). IEEE Press. New York.
pp. 5–13.

Boyer, R. S. and J. S. Moore (1981). The Correct-
ness Problem in Computer Science. Academic
Press. London. ISBN: 0-12-122920-3.

Constantinescu, C. (2002). Impact of deep submi-
cron technology on the dependability of VLSI
circuits. In: IC Dependable System and Net-
works (DSN 2002). IEEE Press.

Fetzer, C. (2001). Enforcing perfect failure detec-
tion. In: IC Distributed Computing Systems.
Meza, Arizona, USA.



Fischer, M., N. Lynch and M. Paterson (1985).
Impossibility of distributed consensus with
one faulty process. ACM 32(2), 374–382.

Jones, C., H. Kopetz, M. Paulitsch, M.-O. Kil-
lijian, E. Marsden, N. Moffat, D. Powell,
B. Randell, A. Romanovsky and R. Stroud
(2001). Revised version of dsos conceptual
model. Project Deliverable for DSoS (De-
pendable Systems of Systems), Research Re-
port 35/2001. Technische Universität Wien,
Institut für Technische Informatik. Treitlstr.
1-3/182-1, 1040 Vienna, Austria.

Kopetz, H. (1992). Sparse time versus dense
time in distributed real-time systems. In: IC
Distributed Computing Systems (DCS 1992).
pp. 460–467.

Kopetz, H. (1997). Real-Time Systems, Design
Principles for Distributed Embedded Applica-
tions. 1999 3rd ed.. Kluwer Academic Pub-
lisheres. Boston. ISBN: 0-7923-9894-7.

Kopetz, H. (1998). The time-triggered model of
computation. In: Real-Time Systems Sympo-
sium (RTSS98). IEEE Press. Madrid, Spain.
pp. 168–177.

Kopetz, H. (1999). Elementary versus compos-
ite interfaces in distributed real-time sys-
tems. In: IS Autonomous Decentralized Sys-
tems (ISADS99). IEEE Press. Tokyo, Japan.
pp. 26–33.

Kopetz, H. (2001). The temporal specification of
interfaces in distributed real-time systems.
In: EMSOFT. Vol. 2211 of Lecture Notes
in Computer Science. Springer. pp. 223–236.
ISBN: 3-540-42673-6.

Kopetz, H. and G. Bauer (2001). The time-
triggered architecture. Technical Report
22/2001. Technische Universität Wien, Insti-
tut für Technische Informatik. Treitlstr. 1-
3/182-1, 1040 Vienna, Austria. submitted to
Proceedings of the IEEE special issue: Mod-
eling and Design of Embedded Software.

Kopetz, H. and G. Grünsteidl (1993). Ttp —
a time-triggered protocol for fault-tolerant
real-time systems. In: IS Fault-Tolerant Com-
puting (23thFTCS). IEEE Press. Toulouse,
France.

Kopetz, H. and K. Kim (1990). Temporal uncer-
tainties in interactions among real-time ob-
jects. In: 9th Symposium on Reliable Dis-
tributed Systems. IEEE Computer Society
Press. Huntsville, AL, USA.

Lamport, L., R. Shostak and M. Pease (1982).
The byzantine generals problem. ACM Trans-
actions on Programming Languages and Sys-
tems 4(3), 382–401.

Lawson, H.W. (1992). Cyclone - an approach
ot the engineering of resource adequate
cyclic real-time systems. Real-Time Systems
4(1), 55–84.

Leveson, N.G. (2000). Intent specifications: An
approach to building human-centered speci-
fications. Software Engineering 26(1), 15–35.

Poledna, S. (1994). Replica Determinism in Fault-
Tolerant Real-Time Systems. PhD thesis.
Technical University of Vienna.

Ran, A. and J. Xu (1997). Architecting software
with interface objects. In: 8th Israeli Confer-
ence on Computer Systems and Software En-
gineering. IEEE Press.

Rao, S., L. Alvisi and H.Vin (2000). The cost of
recovery in message logging protocols. IEEE
Transactions on Knowledge and Data Engi-
neering 12(2), 160–173.

Reason, J. (1990). Human Error. Cambridge Uni-
versity Press.

Rushby, J. (2000). Formal verification of group
membership for the time-triggered architec-
ture. Technical report. SRI International.
Menlo Park California.

Rushby, J. (2001). A comparison of bus architec-
tures for safety critical embedded systems.
Technical report. SRI International. Menlo
Park California.

Schütz, W. (1991). On the testability of dis-
tributed real-time systems. In: IS Relieable
Distributed Systems. IEEE Press. Pisa, Italy.
pp. 52–61.

Tisato, F. and F. DePaoli (1995). On the du-
ality between event-driven and time-driven
models. In: 13th IFAC DCCS 1995. Toulouse,
France.

Vicente, K.J. and J. Rasmussen (1992). Ecologi-
cal interface design: Theoretical foundations.
IEEE Transactions on Systems, Man, and
Cybernetics 22(4), 589–606.


