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Abstract: Super Mechano-System is the name of the research project at Tokyo
Institute of Technology sponsored by the Japanese Ministry of Education, Culture,
Sports, Science and Technology. The aim is creating a New Mechanical Systems with
self-organizing capabilities of its structure and functions adapting to the environment
by the fusion of the control and mechanism. The system may have hyper redundant
components with autonomous intelligence or several different functions, some of
which integrate to have the most appropriate system for the objective in the varying
environment by the fusion of control and mechanisms. This paper presents an aspect
of the project relating to the control for the integration and its application to the
control of the pendulum. Copyright c 2002 IFAC
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1. INTRODUCTION

Super Mechano-System(SMS) is, we define, a New
Mechanical Systems with self-organizing capabil-
ities of its structure and functions. The Grand-in
Aid COE research project has started from April
1997 at Tokyo Institute of Technology aiming the
Creation of New Functionality by the Fusion of
Control and Mechanisms supported by Ministry
of Education, Culture, Sports, Science and Tech-
nology (Furuta and Xu, 2001).

For the modeling of SMS which can self-organize
its structure, we have to consider the system con-
sisting of subsystems with variable constraints.
Modeling the components and constraints should
be described individually in this research. The
project consists of several topics like Cybermecha-
nism, Neo-Function, Concurrent Design of Mech-
anism and Controller. The key idea of the SMS
is to design autonomously not only the objective-
configured mechanisms but also the most appro-

priate controller. This concept is completely dif-
ferent from the conventional controlled mechani-
cal systems, where controller is designed for the
given system. Thus conventional approach is the
sequential design of the components such struc-
ture of mechanisms, actuator and controllers.

In SMS, not only the structure of controllers but
also that of systems aims to be designed concur-
rently adapting to the varying environment. These
variable structure system can be treated under
variable constraints. The aim of this project is
thus to seek the fusion of mechanism and control
to attain high performance of systems as a whole.
One of the results about the concurrent design of
the disk head has been developed by T. Iwasaki
(Iwasaki, 1999) and S. Hara (Hara et al., 1999),
which introduce an interesting idea of the inte-
grated system designs.
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2. ROBOTICS OF SMS PROJECT

Since April 2000, Prof. Shigeo Hirose, Tokyo In-
stitute of Technology plays the role of the leader
succeeding the auhtor after his move to Tokyo
Denki University. Under the leadership of the new
leader many interesting robots have been devel-
oped. Many of the results are presented at TITech
COE/SMS Workshops. One of the unique robots
is Hirose’s roller walker which walks on the rough
terrain but roller skates on the flat plane shown
in Figure 1 which adaptively change its structure
and functions (Endo and Hirose, 1999). Similar
type of the idea is used for developing mother
and children type robot called Super Mechano-
Colony where all wheels are independently mov-
able (Hirose et al., 2000). This is shown in Figure
2. The control of the snake like robots (Prautsch
and Mita, 1999)(Matsuno and Mogi, 2000)(Date
et al., 2001) which firstly studied by S. Hirose
has been extensively studied (Figure 3). As an
example to study cooperatively by control and
mechanical researchers, the acrobot type robot
has been designed by S. Hirose and various control
for the motion are studied (Figure 4).

Fig. 1. Roller Walker

Fig. 2. Super Mechano-Colony Rover

The jump is studied by M. Sampei and others
(Miyazaki et al., 2000) and swinging is studied by
M. Yamakita and others (Michitsuji et al., 2001).
The running and jumping are also important
subject in the project and T. Mita (Ikeda et

al., 1999) also present the idea for designing the
running robot (Figure 5). Thus the cooperation
of mechanical and control engineers could develop
many interesting.

Fig. 3. Snake Robot

Fig. 4. Acrobat Robot jumping to iron bar

Fig. 5. Running studied by T. Mita

3. MODELING OF CONSTRAINT SYSTEMS

This paper is only to describe a part of the project
relating to the pendulum and its applications. The



Fig. 6. Robot changeable its configuration devel-
oped by Omata

author has studied the control of multiple pendu-
lum for swing-up of single and double pendulum
(Mori et al., 1976)(Furuta et al., 1993)(Astrom
and Furuta, 1996)(Yamakita and Furuta, 1999),
stabilization of hinge control pendulum said ac-
robot (Furuta et al., 1984) and spherical pendu-
lum (Hoshino et al., 2000). The some examples of
control of pendulum such as photo of stabilization
of the triple spherical pendulum and the transfer
of a stabilized pendulum between manipulators
are shown in figures.

Fig. 7. Triple Spherical Pendulum

The modeling of the variable constraint system is
considered with the constraint force and the dy-
namics of the individual components individually,
and this internal force should be considered in the
control, which can control the constraint force on
the constraint structures.

One of modeling approaches for the variable con-
strain system is the projection method (Blajer,
1992) and it is demonstrated to model the rotating
type pendulum called Furuta Pendulum (Furuta
et al., 1991)(Furuta et al., 1993)(Yamakita and
Furuta, 1999).

Fig. 8. Transfer of Pendulum

This system with constraints has less number of
actuators than the degrees of freedom, and is
the under-actuated system. The constraint forces
work inside the mechanical structure, but they
have not been paid much attention in the control.

This paper studies the control of pendulum and
walking system taking constraint force into con-
sideration and discusses the following items:

(1) The modeling of the variable constraint sys-
tem by the projection method.

(2) The control of the pendulum by the nonlin-
ear control taking the constraint force into
consideration.

(3) The adaptive control of the biped walking is
discussed.

3.1 Modeling of Furuta Pendulum

In this paper, projection method (Blajer, 1992)
(Arczewski and Blajer, 1996) is applied to obtain
dynamical equations of Furuta Pendulum.

To illustrate the idea of modeling for constrained
systems by projection method, let us consider the
modeling of Furuta pendulum which is shown in
Fig. 9 .
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Fig. 9. Illustration of Variables (Furuta pendu-
lum)



First, the pendulum is assumed to be able to
move freely in space, in other words, Furuta
pendulum is treated as a unconstrained system.
With the help of Euler-Lagrange equation, it is
easy to get the differential equation to describe
the unconstrained augmented system

q̇a = v (1)

Mav̇ = ha (2)

where qa denotes the augmented state

qa = [θ0 x y z θ1]T

Ma =




I0 0 0 0 0
0 m1 0 0 0
0 0 m1 0 0
0 0 0 m1 0
0 0 0 0 I1


 (3)

ha =




τ1 − C0θ̇0
0
0

−m1g

−C1θ̇1


 (4)

The parameters of the model are chosen as

I0 1.75e-2(kgm2) inertia of arm
around shaft

I1 1.98e-4(kgm2) inertia of pendulum
L0 0.215(m) arm length
l1 0.113(m) length from pendulum-

pivot to c.g.
m1 5.38e-2(kg) weight of pendulum
C0 0.118(Nms) friction of arm
C1 8.3e-5(Nms) friction of pendulum
g 9.8(m/s2) acceleration of gravity

Now, consider the pendulum attached to the arm,
then not all coordinates are independent, and
constraints are expressed as

x= L0 sin θ0 + l1 sin θ1 cos θ0
y= L0 cos θ0 − l1 sin θ1 sin θ0
z = l1 cos θ1

The derivative of the above equation gives

ẋ=(L0cos θ0−l1 sin θ1sin θ0)θ̇0+l1cos θ1cos θ0θ̇1
ẏ =(−L0sin θ0−l1sin θ1cos θ0)θ̇0−l1cos θ1sin θ0θ̇1
ż =−l1 sin θ1θ̇1
The above constraint is written as

Cav = 0

with

Ca =


 L0c0 − l1s1s0 −1 0 0 l1c1c0
−L0s0 − l1s1c0 0 −1 0 −l1c1s0

0 0 0 −1 −l1s1


 (5)

where

si = sin θi ci = cos θi i = 0, 1

Da and the reduced state q can be rewritten as

q =
[
θ0
θ1

]

Da =




1 0
L0c0 − l1s1s0 l1c1c0
−L0s0 − l1s1c0 −l1c1s0

0 −l1s1
0 1




Since

v = Daq̇

Ca, Da satisfy

CaDa = 0

Then this Furuta pendulum is described as a
constrained system by using the force λ written
by

Mav̇ = ha + CT
a λa (6)

Multiplying DT from the left, the following equa-
tion is derived.

DT
aMa(Daq̈ + Ḋaq̇) = DT

a ha (7)

where the force for the constraint is

λa = (CaM
−1
a CT

a )
−1(Cav̇ − CaM

−1
a ha) (8)

The coefficient matrices of equation (7) are writ-
ten as

DT
aMaDa =

[
I0 +m1(L2

0 + l
2
1s

2
1) m1l1L0c1

m1l1L0c1 I1 +m1l
2
1

]

DT
aMaḊa =


1
2
m1l

2
1 sin 2θ1θ̇1

1
2
m1l

2
1 sin 2θ1θ̇0−m1l1L0 sin θ1θ̇1

1
2
m1l

2
1 sin 2θ1θ̇0 0




DT
a ha =

[
τ1 − C0θ̇0

m1gl1 sin θ1 − C1θ̇1

]

Equation (7) is rewritten as

Mq̈ + h(q, q̇) = τ (9)

where

τ =
[
τ1
0

]



4. CONTROL OF PENDULUM

4.1 Artificial Gravity Approach

The pendulum is modeled by the equation. The
control to swing up of the pendulum has been
studied by several researchers after (Mori et al.,
1976). Several approaches have been studied. K.
J. Astrom (Astrom and Furuta, 1996)(Wiklund et
al., 1993) and others (Chung and Hauser, 1995)
proposed to use the energy for the design of the
control. The approach is to make the total energy
is equal to the potential energy at the upright
position. Some modification of the approach has
been studied (Acosta et al., 2001)(Fantoni and
Lozano, 2001). M. Saeki (Saeki, 1993) used the
feedback linearization and the saturating control
at the singular state. The approach is still effective
in practice. The other approaches is to use the
idea of the artificial gravity. The term of “virtual
gravity” was used by M. W. Spong (Spong, 1999)
for the biped walking. The author used a similar
idea of artificial gravity for the swing up the
pendulum. In this approach, the control law is
designed so that the controlled system is matched
to the one replacing the acceleration of the gravity
g by −g. This means that the potential energy is
minimized at the up-right position. The shaping
of the potential function equivalent to potential
energy approach was proposed by M. Takegaki
and S. Arimoto (Takegaki and Arimoto, 1981).
The similar approach has been used in (Chung
and Hauser, 1995). In order to control the arm
position by the artificial gravity approach, we have
to tilt the motor base around the y axis about γ,
then h of (4) is replaced by

hγ =




τ − C0θ̇0
m1g sin γ

0
−m1g cos γ
−C1θ̇1


 (10)

and DThγ is written by

DThγ =
[
τ − C0θ̇0 +m1g sin γ(L0c0 − l1s1s0)
l1c1c0m1g sin γ + l1s1m1g cos γ − C1θ̇1

]

(11)

The above operation is corresponding the direc-
tion of the gravity not to the upward but to given
direction tilted the angle to γ around y axis. The
control law is designed that the acceleration of the
arm is firstly chosen so that the model is matched
to the one replacing the acceleration of the gravity
g by −g in the tilted model given above and
choosing the damping coefficient appropriately.

4.2 Nonlinear Control

In this section, more direct way to it presents the
optimal nonlinear control minimizing the criterion
function

J =

∞∫
0

(xTQ(x)x+ 2xTS(x)τ + τTR(x)τ)dt (12)

where

xT = [qT , q̇T ]

and the mathematical model should be written as

d

dt
x = A(x)x+B(x)τ (13)

The optimal control law is given by

τ = −R(x)−1(B(x)TP (x) + S(x)T )x (14)

where P (x) is the positive definite solution of

AT (x)P + PA(x) +Q(x)− (PB(x) + S(x))
×R(x)−1(B(x)TP + S(x)T ) = 0

satisfying (Lu and Doyle, 1993)

xT ∂pi

∂xj
(x) = xT ∂pj

∂xi
(x)

for all x, i, j = 1, 2, · · · , n and
P (x) = [p1(x), p2(x), · · · , pn(x)]

Controlling the system with the constraint force
we have not paid attention on the constraint force.
But many situations, we have to pay attention
also on the constraint force. So in the previous
example the constraint force of λ should be taken
into account in the criterion function also in the
design of the control system. Since

Cav̇ + Ċav = 0

The λ can be written as

λ= (CaM
−1
a CT

a )
−1(−Ċav − CaM

−1
a ha)

= (CaM
−1
a CT

a )
−1(−ĊaDaq̇ − CaM

−1
a ha)(15)

where

Ċa =


 (−L0s0 − l1c0s1)θ̇0 − l1s0c1θ̇1 0 0 0
(−L0c0 + l1s0s1)θ̇0 − l1c0c1θ̇1 0 0 0

0 0 0 0

−l1(s0c1θ̇0 + c0s1θ̇1)
−l1(c0c1θ̇0 − s0s1θ̇1)

−l1c1θ̇1






CaM
−1
a CT

a =
 I−1

0 (L0c0−l1s0s1)2+I−1
1 l21c

2
0c

2
1+m

−1
1

I−1
0 (L0c0−l1s0s1)(−L0s0−l1c0s1)−I−1

1 l21s0c0c
2
1

−I−1
1 l21c0s1c1

I−1
0 (L0c0−l1s0s1)(−L0s0−l1c0s1)−I−1

1 l21s0c0c
2
1

I−1
0 (−L0s0−l1c0s1)2+I−1

1 l21s
2
0c

2
1+m

−1
1

I−1
1 l21s0s1c1

−I−1
1 l21c0s1c1

I−1
1 l21s0s1c1
I−1
1 l21s

2
1 +m

−1
1




ĊaDa =
(−L0s0−l1c0s1)θ̇0−l1s0c1θ̇1 −l1(s0c1θ̇0+c0s1θ̇1)
(−L0c0+l1s0s1)θ̇0−l1c0c1θ̇1 −l1(c0c1θ̇0−s0s1θ̇1)

0 −l1c1θ̇1




Taking account of the constraint force λ, the
criterion function shall be written as

J =

∞∫
0

(xTQx(x)x+ λ̄TQλλ̄+ τT τ)dt (16)

where λ̄ is considered the constraint force after
eliminating the effect of the gravity, then the
above equation is rewritten as

J =

∞∫
0

(xTQ(x)x+ 2xTS(x)τ + τTR(x)τ)dt(17)

where

Q(x) =Qx + (CaM
−1
a W1 + ĊaDaW2)T

×Qλ(CaM
−1
a W1 + ĊaDaW2)

S(x) =

(−(CaM
−1
a CT

a )
−1(CaM

−1
a W1+ĊaDaW2))TQλa

R(x) = aTQλa+ 1

a=−(CaM
−1
a CT

a )
−1CaM

−1
a [1 0 0 0 0]T

W1 =



0 0 −C0 0
0 0 0 0
0 0 0 0
0 0 0 0




W2 =
[
0 0 1 0
0 0 0 1

]

The Riccati equation may not give the optimal
control law in the neighbourhood of the singu-
larity, i.e., uncontrollable state. But as we shall
see in the next section, the control law is giv-
ing the swing up under the saturating control.
The approach tells that if the computational

power is available, the receding horizon control
and the time-optimal control may be used (Xu
et al., 2001). The variable structure control with
sliding sector for a linear systems (Furuta and
Pan, 2000) can also be extended to the nonlin-
ear control. The receding horizon approach for a
discrete-time nonlinear system can be developed
from that of linear systems (Furuta and Wong-
saisuw, 1995).

4.3 Simulation of Swing-up by Nonlinear Control

In this section, the simulation result of the swing-
up by the nonlinear control is presented. For this
system control the criterion is chosen as

Q(x) = diag(1 + 5000/(1 + e(10(θ1−π/9)), 3000(2

− cos θ1), 1, 1 + 1000/(1 + e(10(θ1−π/6)))

Based on the approach presented by the previous
section, the swing-up of the single pendulum is
achieved with and without considering the con-
straint force in the criterion function, where the
angles of the arm and pendulum are shown in the
Figure 10 and 11. The constrained force λ at the
center of the gravity is shown, and this can be also
taken into consideration into the criterion func-
tion. The constraint force λ is shown in Figure
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Fig. 11. Arm Angle (Furuta pendulum)
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Fig. 12. Constraint Force (Furuta pendulum)
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Fig. 13. Control Input (Furuta pendulum)

12. The solid lines in the figures shows the results
due to the criterion taking the constraint into the
consideration and the dotted line shows one given
without considering the constraint forces in the
criterion function.

4.4 Simulation of Swing-up of Double Pendulum

The similar approach can be applied for the swing-
up of the double pendulum (Suzuki et al., In
preparation), which may be the first effective way
to design the swing-up control of double pendu-
lum. The results show that a discrete-time control
law is determined from a single criterion function
different from switching several control strategies
used before (Yamakita and Furuta, 1999). The
discrete-time nonlinear quadratic criterion consid-
ered is

Q(x) = diag(1, 104(2− 0.9 cos θ1), 104f(θ1), 1
, 103(2− cos θ1) + 104/(1 + e10(|θ1|−π/6)), 102f(θ1))

f(θ1) =
{
(1 + sin |θ1|) |θ1| > π/2

2 |θ1| ≤ π/2
R= 2(1 + cos θ1)

S(x) = diag(0.1, 0.1, 0, 0.1, 0.1, 0)

x=
[
θ0 θ1 θ2 θ̇0 θ̇1 θ̇2

]T

The simulation results from the pendant to up-
right position are shown in Fig. 14.
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5. MODELING AND CONTROL OF
WALKING SYSTEM

5.1 Modeling of Walking System

The modeling of the walking system used by Ya-
makita and Asano shown in Figure 15 is modeled
by using the same idea of the previous section:
projection approach. By choosing the augmented
state variables as

qa = [θ1, x1, z1, xH , zH , θ2, x2.z2.θ3, x3, z3]T

where [x1, z1]T , [xH , zH ]T , [x2, z2]T , [x3, z3]T are
coordinates of the centers of gravity at the stance
leg, the hip, the thigh and shank. The masses
at these places are m1,mH ,m2,m3 and θ1, θ2, θ3
are angles of stance leg, thigh, shank leg with
respect to the vertical line. It is related to the
state q = [θ1, θ2, θ3]T as

q̇a = Daq̇



where

Da =




1 0 0
a1c1 0 0
−a1s1 0 0
l1c1 0 0
−l1s1 0 0
0 1 0
l1c1 −b2c2 0
−l1s1 b2s2
0 0 1
l1c1 −l2c2 −b3c3
−l1s1 l2s2 b3s3




(18)

where l1, l2, l3 are stance leg, thigh and shank
lengths, a1, a2, a3 and b1, b2, b3 are lower and up-
per parts of stance leg, thigh, and shank from the
tips to the center of gravities. In this subsection
the gravity is considered as usual working in “z”
direction, then we can write

Ma=diag(I1,m1,m1,mH ,mH , I2,m2,m2, I3,m3,m3)

ha=[τ1, 0,−m1g, 0,−mHg, τ2, 0,−m2g, τ3, 0,−m3g]T

where τ1, τ2, τ3 are equivalent torque applied at
the center of gravities of the stance leg, thigh and
shank. The constraint of the system is described
by

Caq̇a = 0

and the system is described by

Maq̈ = ha + CT
a λa

where

CaDa = 0

The constraint force λ might be taken into con-
sideration in the design of the walking systems in
the future. The dynamic model of the system is
given by

DT
aMa(Daq̈ + Ḋaq̇) = DT

a ha

This dynamic model just shows the case while
stance leg and swing leg are keeping their roles.

5.2 Control of Walking System based on Artificial
Gravity

The control of a biped robot has received the
attention again for applying control theory. Lin-
earization is applied by M. W. Spong (Spong et
al., 2000) and stabilization of a and stabilization of
zero dynamics of appropriately chosen controlled
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Fig. 15. Parameters of Walking Machine (Ya-
makita and Asano)

variables is studied by J. W. Grizzle (Grizzle et
al., 2001)(Grizzle, 2001)(Cambrini et al., 2000).
This section is entirely due to the work presented
by H. Ohta (Ohta et al., 2001), M. Yamakita
and F. Asano(Asano and Yamakita, 2001). The
main objective of the session is to use the gait of
the passive walking (McGeer, 1990)(Goswami et
al., 1996) on the descending slope for the walking
on the flat plane. The walking model is firstly de-
rived by using the idea of the constraint including
the collision phase. The walking model considered
is the quadrupeds model shown in the following
Figure 16.

Fig. 16. Walking Machine

The inner two legs are connected and move to-
gether, and the other two legs also move simul-
taneously. The walking is thus restricted in the
sagittal plane. Legs are connected to the hip. Knee
joints are free for foward swing and the hip has
the actuator. In the walking cycle, the stance leg
is kept straight in the swinging phase and at the
collision phase the heel strikes. From the dynamic
model of the previous section, the dynamic model
for the reduced state on the flat ground is given
by



M(q)q̈ + h(q, q̇, 0) = τ + τc + τIδ(t− tI)
Jcq̇ = 0

JI q̇ = 0, t ∈ (tI−, tI+)
where τc is the generalized force due to the con-
straint for the relation of shank and tigh, τI is
the constraint force tI denotes the time moments
of collision. In the swinging phase the system is
described by

M(q)q̈ + Z(q)h(q, q̇, 0) = Z(q)τ − JT
c X(q)

−1J̇cq̇

Z(q) = I − JT
c X(q)

−1JcM(q)−1

X(q) = JcM(q)−1JT
c

This dynamic model is quite similar to the triple
inverted pendulum. At the collision phase, the
velocity after the collision q+is related to one
before the collision q− as

q̇+={I−M(q)−1(I−JT
c X

−1JcM(q)−1)JT
I Y

−1JI}q̇−
Y (q) = JI(I − JT

c X(q)
−1JcM(q)−1)M(q)−1JT

I

X(q) = JcM(q)−1JT
c

The walking on the ground level can be controlled
by imitating the passive walking. During the walk-
ing phase, the dynamic model is written as

M(q)q̈ + E(q, q̇, 0) = Z(q)τ (19)

where

E(q, q̇, 0) = Z(q)h(q, q̇, 0)− JT
c X(q)Jcq̇ (20)

If the walking robot is placed in the environment
with the artificial gravity (g tanφ,−g) in the
direction of (x, z), then

ha = [τ1,m1g tanφ,−m1g,mHg tanφ,−mHg tanφ,

−τ2,m2g tanφ,−m2g, τ3,m3g tanφ,−m3g]T

is used for autonomous walking of the dynamic
model. The dynamic model is controlled by the
input v

M(q)q̈ + E(q, q̇, φ) = Z(q)v (21)

So if we choose the input torque τ for the ground
level walking robot as

τ = v + Z(q)−1(E(q, q̇, 0)− E(q, q̇, φ)) (22)

then the dynamic model on the level ground be-
haves samilar to one in the artificial gravity filed.
So by choosing input v appropriately for stabi-
lization, the walking model on the level ground is
same as one on the slope with the angle γ. For the
biped case, M. W. Spong named the approach as
the virtual gravity compensation.

6. CONCLUSION

A basic idea to approach Super Mechano-System
is presented from the viewpoint of the control of
pendulum. Several researches on SMS are now
under going at Tokyo Institute of Technology,
such as running, swimming, and swinging robots.
Besides them, the cyber mechanism for demining
is now under development. As the purpose of this
project, new discipline is expected to be founded.
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