Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

EXPLOITING A REAL-TIME LINUX PLATFORM IN
CONTROLLING ROBOTIC MANIPULATORS

C. Bellini* F. Panepinto * S. Panzieri* G. Ulivi*

* Dipartimento di Informatica e Automazione
Universita di Roma Tre
Via della Vasca Navale 79, 00146 Roma, Italy
{bellini, panepi, panzieri, ulivi} @dia.uniroma3.it

Abstract: Operating systems normally used for office applications are not suitable for
real-time operations. As in all Unix systems, Linux scheduler is preemptive only at
user lever, that means that an high priority user process, when ready to be executed,
can suspend a lower priority user process but not a kernel one. Not-preemptability of
kernel processes is the greater obstacle for the execution of real time tasks. Real Time
Linux uses the Linux Operating Systes as a normal proces executed by a small real
time operating system. The main goal of this work is to exploit a RealTime Linux

platform in controlling a robot arm.

Keywords: Linux, Real-time, Control, Manipulators.

1. INTRODUCTION

To implement a control system on a Personal
Computer there are, now, two main ways: the
former is to resort to the ”old but goldy” DOS
”operating system” and to write anything from
the beginning, including interrupt handlers and,
perhaps, card drivers. This approach requires a
good deal of experience and time but can result
in a reliable, economic, and small footprint sys-
tems. What is most difficult, is to design systems
capable of communicating with other ones, e.g.
using network services.

On the other side, one can resort to a commercial
real-time system that generally has all the provi-
sions required to build a complex, interconnected
control system. This is somehow the dual of the
previous approach: one obtains a huge, expensive
(often per unit royalties are to be paid) system,
whose reliability is, at least, difficult to assess. One
of the drawbacks of this way, often perceived as
quite important, is that the code is masked and
therefore the designer has to rely on it and on the

documentation without being able to ”open the
box” and to look inside at the inner mechanisms.

In the last years a third possibility was opening
up, in connection with the diffusion of open-source
operating system, in particular in connection with
the diffusion of Linux. There are several proposal
to force this system to become or, at least, to
behave as a Real Time one. Some of them are
open source as the original operating system.

The purpose of this work is two-fold. Mainly it is
devoted to the assessment of the feasibility of the
implementation of the control system for a real
5-dof manipulator (Macchelli et al., 2001) using
RTLinux, a patch for kernels newer than 2.0.36.
The other goal is to explore the possibility of using
the parallel printer port to interface the PC with
the external hardware of the manipulator. This
idea is mainly related to research and didactic:
any calculator provides such a port for free.

The paper is concluded by experimental results
on the RT performance and on the control ones.
Moreover a short discussion will show that the

parallel port is convenient only for very small
projects.

2. OVERALL ARCHITECTURE

The control algorithm for the mechanical struc-
ture has been fully implemented on a per-
sonal computer. It has been therefore obtained a
discrete-time control scheme where the sampling
time can be set via software. Hence it is necessary
that the operating system guarantees a careful
process scheduling and that it is able to manage
the timing with high precision.

Operating systems normally used for office appli-
cations are not suitable in this case. Our inter-
est has been concentrated on GNU/Linux oper-
ating system that, compared with Microsoft sys-
tems, has the great advantage of being completely
OpenSource and being based on the Unix system.
As all Unix systems, Linux scheduler is preemp-
tive, that means that an high priority process,
when ready to be executed, can suspend a lower
priority one. Most recent versions of Linux kernel,
introduce the possibility to place side by side
a static priority, definable from the user, and a
dynamic priority, periodically calculated from the
scheduler! . All normal processes have 0 as static
priority therefore a process with a priority greater
than zero will be favorite for the processor utiliza-
tion. Kernel processes remain however excluded
from the normal priority mechanism, they can al-
ways interrupt the other processes and temporary
take the exclusive use of the processor, inhibiting
the possibility to have a context change.

A scheduling algorithm like the one described
gives good results in the management of normal
activities but is not suitable for real time applica-
tions. To be able to guarantee sufficiently precise
sampling times and to assure that the control
related computations take a short time, it is neces-
sary that a process is able to obtain the exclusive
utilization of processor within a well-know time
from the request.

2.1 RealTime Linuz

To overcome the limitations due to the use of
the Unix scheduler, more and more techniques
are evolving to make Unix a system suitable to
execute hard real time applications 2 . To improve

1 In less recent versions, the scheduling algorithm, to
optimize processor allocation, calculates only the priority
of active processes with a regular period; in this case we
speak of dynamic priority

2 Two different Real Time applications can be defined:
those that need more accurate sampling times are called
Hard Real Time applications, those that, instead, do not

the support to real time applications, Linux, as
other Unix-based systems, conforms, in part, to
POSIX.1b-1993 standard. This standard intro-
duces a scheduler with user definable static pri-
orities and the possibility to execute more than
one thread in a single process. Usually, only one
program counter is used to execute a block of
instructions in a process; according to the POSIX
standard it is possible to run more than one
block or instructions side by side in the same pro-
cess. Hence it is possible to design a cooperating
threads architecture to optimize process resource
handling.

unfortunately there are still some unsolved prob-
lems, as:

(1) not-preemptability of kernel processes
(2) low clock resolution
(3) high wait-time for IRQ response

Various techniques, based on that standard, have
been developed to solve these problems, permit-
ting to execute hard real time tasks in unix-
like systems. One of these solutions, that has the
characteristic of being completely free and Open-
Source, is called RealTime Linux. The greater
obstacle for the execution of real time tasks is the
first listed point; kernel processes use, to disable
the interrupts, specific processor instructions (e.g.
cli and sti for Intel family processors). In Re-
alTime Linux a software layer has been inserted
between the request to disable interrupts and the
effective call of cli and sti; this layer allows to
prevent the interrupt of selected tasks from other
processes (Barabanov et al., 1997).

Regarding points 2 and 3, it has been possible
to obtain a resolution for the IRQ response of
approximately 15us in the worse case, taking
advantage of the built-in timer on Intel 8354 chip,
present on all IBM compatible PC.

Through these tools, RTLinux provides some
APIs that permit to build real time applications
with performances suitable for our application.

2.1.1. Structure of a RTLinuz control application

A typical control application in RTLinux envi-
ronment is composed from a low level layer and a
high level one.

The former consists of a kernel module where the
real time threads run. These instructions are part
of an infinite cycle; the time spent in order to
execute an iteration of this cycle represents the
sampling time applied to the structure. Among
the several functions of the RTLinux APIs there
are some that allow to regulate with great preci-
sion the iteration time, permitting to the designer

need particularly stringent performances are called Soft
Real Time applications.

User Process

RT-FIFO

XWindow system LINUX KERNEL \

‘ RT-Thread

Display Disk Network Peripheral
Device

Fig. 1. Software architecture for a RTLinux appli-
cation

to choose the sampling time he prefers. It is impor-
tant to remark that, during the wait-time between
two sampling interval, the processor is free and it
can, therefore, be used for other applications.

The high level part, instead, consists of user-
interface applications that send to the low level
part the START and STOP commands and the
references. These applications can provide to the
user with a set of services with different complex-
ity. As all the operating system processes (e.g.
user applications) become active only when real
time threads are in a wait state, the designer has
to consider which percentage of time is used for
these operations and which is available for other
processes. Taking care of this percentage, it is
possible to determine the complexity of high level
applications.

The figure 1 shows an outline of the software
architecture for a typical RTLinux application.

To allow communications between user processes
and real Time threads there are appropriate struc-
tures named RT-FIFO. These are seen from the
kernel level as queues where it is possible to read
or write blocks of characters by the typical oper-
ations pop and push. At the user level, instead,
these are seen as characters devices (/dev/rft*
with major number equal to 150 and minor num-
ber assigned when instantiated) where it is possi-
ble to read or write blocks of text by the standard
library functions write and read. Since a RT-
FIFO structure is monodirectional, in order to
obtain a bidirectional data flow, it is necessary
to instantiate two separate structures.

2.1.2. Scheduler ~ Using OpenSource software,
we have available every part of the system sources.
In RTLinux it is possible to implement a schedul-
ing algorithm, designed for a specific application,
simply loading an appropriate kernel extension
module (Aydin et al., 1999).

In the released RTLinux version a very simple pri-
ority preemptive scheduler is provided: a priority
is statically assigned to every process, when more
then one task is ready, the one with the greatest
priority is executed; if a task with a greater pri-

Command on End of Trajectory

Init Module RT-FIFO

TRAJECTORY

i referencies

¥
CONTROLLER

HANDLER
INIT FIFO

Fig. 2. Low level architecture

ority becomes ready it immediately interrupts the
task in execution; moreover each task releases the
CPU when the critical real time block is termi-
nated.

This scheduler supports periodic applications, and
is possible to execute isolated task defining an
interrupt handler. Linux is, for this scheduler, the
Real Time process with lower priority; working in
this way the system is ready for other applications
only when no Real Time thread is in execution.

2.2 Threads architecture

As reported in 2.1.1, our application is composed
from a low level and a high level layers, where
the position controller and the user interface are
respectively implemented; the second one is used
to display on the screen the state of controlled
system.

Figure 2 shows the architecture of the kernel
module where the position controller runs. RT-
FIFO manager operates creation and destruction
of Real Time threads receiving commands from
the higher level. In this example a one joint posi-
tion controller is implemented. There are two Real
Time threads running simultaneously with two
different, tasks. The first one reads position data
and runs the control algorithm, the other one pro-
vides references to controller, planning trajectory
with trapezoidal joints speed profile. Obviously
the controller priority is higher than trajectory
planner one. On the contrary, the controller sam-
pling time is shorter than planner one; due to this
the trajectory reference is a sequence of steps.

A global architecture for the manipulator can be
obtained from the one previously considered for
one joint. The sequence of operation described
below is executed in each control cycle:

(1) Encoder read

(2) Output of voltage values computed in the
previous step

(3) Computation of control action

Position references are updated in real time from
separated threads, one for each joint, running
with an higher sampling time. Up to now, we

wvolid * codice_cntr (void *arg)
{
unsigned short int w;
unsigned short int Vref;

pthread_suspend_np (pthread_s=1£{)};
while {1} {

pthread wait_np();

coutbh (inb (COUTTROL) & 251, COUITROL) ;

ocutb (1, ADDRESS); /* Addres
v = inb (DATA) ; /* Data R
checlk_status (BASE) ;

Vref = P_PI_indipendente (v); /* contro.
outhb (inb (COUITROL) | 4,COUTROL) ;

outh (1, ADDRESS) ; /* Addres
ocutbh (Vref, DATA); /* Data W

i
}

Fig. 3. C code for the critical part of the control
thread

execute only a simple trajectory planner version
that could receive data from a more complex al-
gorithm running at an higher level. In the com-
plete version, the control module is split in six
Real Time threads running at the same time: five
threads produce trajectories and one implement
the position controller; the last one runs with
greater priority and higher sampling frequency
than all the others. We observed that, working in
this way, sometimes all threads are recalled at the
same time, and the sampling time obtained for
position controller thread is afflicted by a small
delay because the scheduler has to handle this
situation. Starting any thread at a different times
improves sampling accuracy.

2.2.1. Motor control and Trajectory generation
A great advantage, obtained by reading encoder
measures and closing the feedback loop directly on
the computer, is the possibility to easily modify
the control algorithm.

In figure 3 the C code implementing the critical
part of the control thread is reported. The control
routine is invoked after parallel port input com-
mands. Hence it is possible to test new control
algorithms just modifying this routine with no
needs to modify the critical part of the code.

We decided to implement a very simple joint
independent control algorithm with speed and
position feedback loop. A proportional controller
is used in the position loop, whereas in the speed
loop a controller with proportional and integral
actions is used. Simulating the global system we
obtained a first choice for control parameters, then
tuned on the real system (Biiskens et al., 2000).

2.2.2. Publishing The only values of interest
for high level processes are the angular positions
of the joints. The utilization of the RT-FIFO
structures to buffer position values could be a
good choice to keep the kernel module separated
from user applications but, unfortunately, due to
delay times for file access, this is not possible.

Hence, a kernel module has been developed and
added to RTLinux to instantiate memory areas
accessible both from kernel module and user pro-
cesses. This could be dangerous for data corrup-
tion and it is very important to be careful during
data access, but it is very handy and can be used
for a monitor process. At the kernel level, the area
of memory used to store position values must be
shared, so user processes could read those data
and display the angular position values reached
from each joint. In this way the measurement does
not introduce errors on the values, in fact position
value is updated from real time module but it
is read and displayed from user process that run
slower.

This structure introduces remarkable advantages
if compared with the trivial solution of printing
on video at kernel level, using for example the
function rtl printf. The great difference is that,
in this last way, the real Time process holds the
processor during all the duration of the print,
in the other one, instead, the printing process
is a normal user process that can be anytime
interrupted from real Time processes.

Hence, using shared memory, it is possible to re-
alize a complex graphical man-machine interface;
for example it is possible to create a graphical
representation of the manipulator position in the
work space or a client-server network: when a
PC on the network asks to know the position of
the manipulator, the control computer reads data
on the shared memory and sends them on the
network. It has to be remarked that the publishing
process, as all user processes, does not hinder the
control system that can interrupt whichever other
process and can take CPU anytime it is necessary.

2.3 Parallel port access

A bidirectional communication between the PC
and the external interface is provided through a
parallel port: the PC outputs voltage references
and receives encoders readings as inputs. We per-
formed bidirectional communication using EPP
mode as defined in the IEEE 1284 standard. In
this standard, the introduction of an handshake,
permits to perform a safe and efficient bidirec-
tional data exchange, using control signals.

In Linux, the access to the memory area where the
parallel port is mapped, is implemented by means
of the macro outb and inb. These macro operate
an efficient data transfer from one memory loca-
tion to another one. Obviously, in order to operate
data transfer, it is necessary that the process owns
the rights for memory access on those areas. This
fact does not represent a problem because the
access to the parallel port map is made directly

from the real Time control thread, which is a
kernel process and has full access to all the system
resources.

3. EXTERNAL HARDWARE
3.1 Parallel port interface

The lines of the parallel port are mapped on three
memory registers: Base, Status and Control. In
the Base register, the 8-bits used for data are
stored, the read only register Status is used for
external signals received from the hardware, while
the Control register is used to output control
data.

In order to operate a valid data transfer in EPP
mode, it is necessary to implement a simple hand-
shake cycle. If the PC BIOS is properly set, such
cycle is correctly managed from the motherboard
hardware and is activated when a read or write
operation is executed on the memory area where
the parallel port is mapped. To realize external
hardware EPP compatibility we have designed
two finite state machines to set and reset control
signals when demanded. If the handshake cycle
does not receive an acknowledgement from the
external hardware within a time of approximately
10ps the cycle is terminated and a timeout is set
on the Status registry.

3.2 Ezxternal interface design

External interface board has to perform three
task:

(1) Analog voltage references generation.

(2) Absolute position measure by processing en-
coder signals

(3) Parallel port comunication handling

The figure 4 shows the external interface block di-
agram. Five independent blocks called SENC1. .5
count the encoder signal hedges. Data exchange
is provided by a bidirectional bus that is directly
connected with the parallel port Base register.
Logic components of the boards are connected to
the bus through a 3-state buffer that permits to
temporary isolate some components.

In the logic scheme it is possible to see two Finite
State Machine (FSM); those receive as input 4 bit
of the parallel port Control register and output
control signals for 3-state buffer, DAC control sig-
nals and parallel port acknowledgement. A FSM
handles input section and the other one manages
output section; when a FSM is running the other
one is waiting in the initial state. State transitions
are determined by control register values; hence
software access to parallel port has to accomplish

L AS
= SENC1 E ~+—0DS

= [=e] | |
ol E
= [=a] @
@)
—

SENC4

3
3

Fig. 4. External Interface Logic Scheme

CONTROL
‘ ‘ ‘ ‘ READING

| l:l REGISTER
A e "o

| MAX7000S

_ LTR

=7

= Qsc

WRITING
REGISTER

Fig. 5. External interface global architecture

A0000

DACL.5

a precise sequence of operation established during
FSM design. Both FSMs are implemented on a
programmable component, as an FPGA (Field
Programmable Gate Array), hence it has been
possible to modify theirs structure more times
to obtain the right behaviour. For this reason,
writing a C code for interface a device driver was
not difficult thanks to the possibility to modify
both hardware and software at the same time.

In both FSMs we can find a data buffer and
an address buffer; during a write operation, the
address, stored in the address buffer, indicates
which DAC has to work, while, during a read
operation, it indicates which encoder data we need
to read.

Figure 5 shows the external interface global archi-
tecture; its logic scheme is represented in figure
4. Counters and FSMs have been designed in
VHDL (Very high speed integrated circuit Har-
ware Description Language) and implemented in
the FPGA. Data buffers, used to improve signal
synchronization on the circuit, are separated in-
tegrated circuit, while address buffers are imple-
mented in the FPGA with 3-bit registers.

Absolute position is provided counting rising and
falling hedges of both A and B channel of each
incremental encoder. A synchronous circuit is

implemented on the FPGA to determine direction
every time an hedge is detected on a channel.

3.3 Digital to Analog conversion

Typical sampling time for this application are
about some milliseconds so we did not need to use
high performance DAC. We choice the low cost
and easy to find 7254, that has current outputs
and is easy to connect to a microprocessor. Using
two operational amplifiers it provides an output
range between -5 and +5 volts.

4. CONCLUSIONS AND RESULT REPORT
4.1 Hardware

Thanks to several tests, we determined that a
parallel port read or write access takes about
1.5us, so it is possible to make a great number
of accesses to this port in a sampling time that
is usually of some milliseconds in control appli-
cations. Moreover, using EPP mode, we obtained
safe bidirectional communications, designing the
external interface to accomplish EPP mode. The
prototypal EPP interface board, was used to con-
trol one joint of a manipulator, with good results.

The cost of an experimental 5 axes card, as es-
timated after its design, would be comparable
to that of a commercial card, with, possibly a
worse reliability. We concluded that, for simple
applications (one or maximum two axes) the EPP
parallel port is a viable and interesting opportu-
nity, whilst in more complex cases, the external
hardware became too cumbersome and expensive.

4.2 Software

When using a Real Time Operating System, it is
very important to measure the accuracy of timing.
We decided to make these measures via software
building an assembler macro to read clock cycles
every time an interruption is called. Hence, it
was possible to obtain high accuracy measures
for sampling time and thread length, without
introducing disturbances in the system.

Fig. 6 reports sampling time distribution obtained
in two different conditions; in the first one, only
the control threads are running on the computer,
in the second one there are two programs perform-
ing complex mathematical tasks. As we can see,
accurancy on sampling time is very high in both
situations; as expected, covariance in the second
one in higher than in the first one. Note that the
introduction of a relative offset in the starting
times of the different tasks is of paramount im-
portance to obtain good results.

------- Busy Processor
Free Processor

Occurencies

AN

L
Sampling Time

Fig. 6. Sampling time distribution with free and
busy processor (properly scaled)

Angu;;r APositio:;

' Time
Fig. 7. Position error with trapezoidal velocity
reference

4.3 Control algorithm

The control algorithm has been tested on one joint
using the structure of figure 3. The errors have
been measured using the same encoder used for
control. The maximum dynamic error is about 0.2
degrees(fig.7).

The ripple on the error is mainly due to the
stepped shape of the reference trajectory. Cur-
rently we are working on a low level micro-
interpolator to get rid of it.

5. REFERENCES

H. Aydin, R. Melhem, D. Mossé, P. Mejia Al-
varez(1999). Optimal reward-based schedul-
ing for periodic real-time tasks. Real-Time
Systems Symposium (RTSS’99),

C. Biiskens, H. Maurer(2000). Nonlinear program-
ming methods for real-time control of an in-
dustrial robot. Jurnal of optimizations theory
and applications, Vol. 107, no. 3, pp. 505-527.

A. Macchelli, C. Melchiorri, D. Pescoller(2001).
An experimental set-up for robotics and con-
strol system research using Real-Time Linux
and Comau SMART 3-S robot. Real-Time
Linux workshop 2001,

M. Barabanov(1997). A Linux-Based Real-Time
operating system. Master thesis , New Mexico
Inst. of Mining and Technologies, Socorro,
New Mexico

