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Abstract: A notable difference between the H2 and H∞ smoothing is that the achievable perfor-
mance in the latter problem might “saturate” as the function of the smoothing lag in the sense that
there might exist a finite smoothing lag for which the achievable performance level is the same as
for the infinite smoothing lag. In this paper necessary and sufficient conditions under which such a
saturation takes place are derived. In particular, it is shown that the H∞ performance saturates only
if the H∞ norm of the optimal error system is achieved at the infinite frequency, i.e., if the worst
case disturbance is “infinitely fast” and thus in a sense unpredictable. Copyright c© 2002 IFAC
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1 INTRODUCTION

Let G1(s) and G2(s) be proper transfer matrices with
equal input dimensions. The (continuous-time) H∞

fixed-lag smoothing problem is the problem of the de-
sign of a stable and proper transfer matrix K(s) guar-
anteeing

‖e−shG1(s) − K(s)G2(s)‖∞ < γ (1)

for given positive scalars γ and h. The latter is usu-
ally referred to as the smoothing lag. The fixed-lag
smoothing formulation of a general estimation prob-
lem reflects the situation where some delay or latency
between the measurement and the generation of esti-
mation can be tolerated (e.g., in numerous signal pro-
cessing applications) (Anderson, 1999).

One of the most important issues in the fixed-lag
smoothing is to understand and quantify how the
smoothing lag affects the achievable performance.
In the H2 setting this issue is now well-understood,
see (Anderson and Moore, 1979) and the references
therein. On the other hand, early H∞ solutions (Grim-
ble, 1991; Theodor and Shaked, 1994; Colaneri et al.,
1998) fall short of providing an insight into the effect
of h on the achievable γ. Recently, an alternative so-
lution was proposed in (Mirkin, 2001), where it was
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shown that both the smoother structure and the per-
formance improvement due to h are similar to those
in the H2 case. Yet it was also shown that there
exists a remarkable difference between the H2 and
H∞ solutions: whereas in the former case the per-
formance improves monotonically with h, in the latter
case the achievable γ might “saturate” after some finite
smoothing lag and any further increase of h has no ef-
fect on the achievable H∞ performance1. To illustrate
the point, consider the following simple example from
(Mirkin, 2001):

Example 1. Consider the smoothing problem for

G1 =
[ aq

s−a 0
]

and G2 =
[ aq

s−a 1
]

and a > 0. In this case the optimal achievable H∞

performance, γo(h), is

γo(h) =

{

(1−η)eah/η+(1+η)e−ah/η

2 if h ≤ h∞,

γ∞ =
√

1 − η2 otherwise,

where h∞
.
= 1

2a η ln 1+η

1−η
and η

.
= 1/

√

q2 + 1 < 1. It is
seen that γo(h) saturates after h = h∞ and any further
increase of the smoothing lag does not affect γo(h).
Moreover, one can show that γo(h) is differentiable at
every h, including h∞.

1Similar phenomenon in the context of the preview tracking was
pointed out by Kojima and Ishijima (1999), though by numerical
simulations only.
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The saturation property, however, is not intrinsic as
seen by another example:

Example 2. Let us consider now the smoothing prob-
lem for

G1 = 2a
s+a and G2 = s−a

s+a

and a > 0. Using the standard interpolation arguments
(Francis, 1987) one can show that

γo(h) = e−ah,

which is achievable with the optimal smoother K =
s+a
s−a ( 2a

s+a e−sh − e−ah) ∈ H∞. Thus, in this case
γo(h) → γ∞ = 0 only as h → ∞.

The purpose of this paper is to clarify the satura-
tion phenomenon described above. In particular, the
case of strictly proper G1(s) is studied and necessary
and sufficient conditions under which the optimal H∞

smoothing performance saturates as a function of the
smoothing lag are derived. To this end, the solvabil-
ity conditions of (Mirkin, 2001) are revised. It is
shown that if G1(s) 6≡ 0, then γo(h) does not saturate
iff limh→∞ γo(h) = 0 (this is what happens in Exam-
ple 2). This condition can be interpreted as the impos-
sibility to “predict” the worst-case disturbance, which
in this case becomes arbitrarily fast, using a finite pre-
view.

2 SOLVABILITY CONDITIONS

In this section the solvability conditions derived in
(Mirkin, 2001) for the H∞ fixed-lag smoothing prob-
lem are presented in a slightly more general formula-
tion. We assume that G1 and G2 are as follows:

[

G1(s)
G2(s)

]

=





A B
C1 0
C2 D2



 (2)

and suppose that

(A1): (C2, A) is detectable;

(A2):
[

A − jωI B
C2 D2

]

has full row rank ∀ω ∈ R;

(A3): D2 D′
2 > 0.

As argued in (Mirkin, 2001), the solvability of (1) can
be accounted for by the inverse of the H2 and H∞

filtering Riccati solutions. The main reason is that
the solution to the Riccati equation associated with
the smoothing problem is typically discontinuous as
a function of both γ and h, while its kernel is inde-
pendent of both of these variables. Moreover, the non-
invertible part can be excluded from the analysis. To
this end, let

[

Â B̂
] .
=

[

A B
]

− BD′
2(D2 D′

2)
−1[ C2 D2

]

and

[

Ĉ2 D̂2

] .
= (D2 D′

2)
−1/2[ C2 D2

]

.

Then the stabilizing solutions to both H2 and H∞ fil-
tering Riccati equations are invertible iff ( Â, B̂) has no
stable uncontrollable modes (which, in turn, is equiv-
alent to the absence of stable invariant zeros of G2 in
realization (2)). If this condition does not hold, then
there exists a unitary matrix U =

[

U1 U2
]

such that

U ′ ÂU =

[

Âc ?
0 Âs

]

, U ′ B̂ =

[

B̂c

0

]

,

Âs is Hurwitz, and the pair ( Ā, B̄) has no uncontrol-
lable modes in the left half-plane (here “?” stands for
an irrelevant block). Then the solvability of smoothing
problems for (2) and for

[

G̃1(s)
G̃2(s)

]

=







Ã B̃

C̃1 0
C̃2 D̃2







.
=





Âc B̂c

C1U1 0
Ĉ2U1 D̂2



 (2′)

are equivalent. The transformation of the problem data
from (2) to (2′) simplifies the further analysis con-
siderably. Besides guaranteeing the solvability of the
inverse Riccati equations, it also normalizes D̃2 and
makes B̃ and D̃2 orthogonal.

Now, define two inverse filtering Riccati equations as-
sociated with (2′): the H2 (Kalman filtering) equation

−Ỹκ Ã − Ã′Ỹκ − Ỹκ B̃ B̃′Ỹκ + C̃′
2C̃2 = 0 (3)

and the H∞ equation:

−Ỹγ Ã − Ã′Ỹγ − Ỹγ B̃B̃′Ỹγ + C̃′
2C̃2 = 1

γ2 C̃′
1C̃1. (4)

The solutions to (3) and (4) are said to be stabiliz-
ing if the matrices Ãκ

.
= −( Ã + B̃ B̃′Ỹκ) and Ãγ

.
=

−( Ã + B̃ B̃′Ỹγ ), respectively, are Hurwitz. Define also
the quantity

γ∞
.
= ‖C̃1(sI − Ãκ)

−1 B̃‖∞,

which is the achievable H∞ performance for the case
of h → ∞. Alternatively, γ∞ is the largest γ for
which the Hamiltonian matrix associated with (4) has
imaginary-axis eigenvalues. Finally, we need also the
solution Wc ≥ 0 to the Lyapunov equation

ÃκWc + Wc Ã′
κ + B̃B̃′ = 0. (5)

We are now in the position to formulate the following
result, which is essentially from (Mirkin, 2001, Theo-
rem 2):

Lemma 1. Let γ > γ∞. Then the Riccati equations (3)
and (4) have stabilizing solutions Ỹκ > 0 and Ỹγ ≤ Ỹκ,
the matrices

Q̃κ
.
= Ỹ−1

κ − Wc ≥ 0

and

Q̃γ
.
=

(

I − (Ỹκ − Ỹγ )Wc
)

−1(Ỹκ − Ỹγ ) ≥ 0



exist, and for a given h the H∞ fixed-lag smoothing
problem is solvable iff

‖C̃γeÃκh B̃κ‖ < 1 (6)

for any matrices B̃κ and C̃γ satisfying B̃κ B̃′
κ = Q̃κ and

C̃′
γC̃γ = Q̃γ , respectively.

Remark 2.1. One can easily show that ‖C̃γ B̃κ‖ < 1
iff Ỹγ > 0, so the latter is the necessary and sufficient
condition for the solvability of the H∞ filtering (h = 0)
problem.

3 LIMITING PERFORMANCE

Denote by γo(h) the maximal γ for which condition
(6) fails for a given h. In other words, γo(h) is the
optimal achievable H∞ smoothing performance for a
given smoothing lag. Obviously, γo(h) is monoton-
ically non-increasing and also limh→∞ γo(h) = γ∞.
Our purpose is to characterize all cases when γo(h)

reaches γ∞ for a finite smoothing lag h.

Theorem 1. Let γo(0) > γ∞ (i.e., smoothing outper-
forms filtering). Then

i) there exists a finite smoothing lag h∞ such that
γo(h) = γ∞ for all h > h∞ iff γ∞ 6= 0; in this
case C̃∞

.
= limγ→γ∞

C̃γ exists and h∞ is the max-

imal solution to ‖C̃∞eÃκh B̃κ‖ = 1;

ii) if γ∞ = 0, then γo(h) > 0 for every finite h unless
C̃1 = 0.

The results of Theorem 1 have an interesting interpre-
tation. Indeed, any H∞ estimation problem can be
roughly thought of as a “prediction” of the worst-case
disturbance. At the same time, the case γ∞ = 0 is ac-
tually the only possibility when the optimal H∞ norm
is achieved at the infinite frequency, i.e., the worst case
disturbance in this case might be arbitrarily fast. Thus,
any finite preview (smoothing lag) does not suffice to
“predict” infinitely fast worst-case disturbance. On the
other hand, nonzero γ∞ implies that the worst-case
disturbance is band limited and therefore can be “pre-
dicted” with a finite preview.

The rest of this section is devoted to the proof of The-
orem 1.

3.1 Preliminary: Riccati equation for Q̃γ

Since the only term in (6) which depends on γ is C̃γ ,
we start the proof with studying Q̃γ = C̃′

γC̃γ . To this
end, define the Hamiltonian matrix

H̄γ
.
=

[

Ã′
κ + 1

γ2 C̃′
1C̃1Wc − 1

γ2 C̃′
1C̃1

1
γ2 WcC̃′

1C̃1Wc − Ãκ − 1
γ2 WcC̃′

1C̃1

]

.

We have:

Proposition 1. The matrix Q̃γ satisfies the following
Riccati equation:

[

I Q̃γ

]

H̄γ = Āγ

[

I Q̃γ

]

(7)

for Āγ = (I − (Ỹκ − Ỹγ )Wc)
−1 Ãγ(I − (Ỹκ − Ỹγ )Wc).

Moreover, if γ∞ 6= 0, then limh→h∞
Q̃γ exists and is

positive semi-definite.

Proof. It is a standard result from the Riccati theory
(Lancaster and Rodman, 1995) that equation (4) can
equivalently be written as

[

I Ỹγ

]

H̃γ = Ãγ

[

I Ỹγ

]

,

where

H̃γ
.
=

[

− Ã′ 1
γ2 C̃′

1C̃1 − C̃′
2C̃2

−B̃B̃′ Ã

]

is the Hamiltonian matrix. Introduce the matrix

T
.
=

[

I Ỹκ

Wc WcỸκ − I

]

=

[

I 0
Wc I

][

I Ỹκ

0 −I

]

.

Since

[

I Ỹγ

]

T−1 =
[

I − (Ỹκ − Ỹγ )Wc Ỹκ − Ỹγ

]

,

Q̃γ (when exists) is given by Q̃γ = M−1
1 M2 for any M1

and M2 satisfying

[

M1 M2
]

T H̃γT−1 = Āγ

[

M1 M2
]

,

where Āγ is Hurwitz. Now, detectability of the pair
( Ã′

κ + 1
γ2 C̃′

1C̃1Wc,
1
γ

C̃1Wc) implies that M1 is nonsin-
gular for all γ > γ∞. Hence, the first claim follows by
noticing that T H̃γT−1 = H̄γ .

Finally, the second claim follows by applying the ar-
guments of Scherer (1990) to eq. (7).

The second claim of Proposition 1 proves actually the
existence of the matrix C̃∞ in Theorem 1.

3.2 γ∞ 6= 0

Assume first that γ∞ 6= 0. Our goal in this subsection
is to prove that in this case h∞ is finite. To this end,
the following technical result is required:

Proposition 2. ‖C̃γeÃκh B̃κ‖ is monotonically non-in-
creasing function of γ.

Proof. To prove the Proposition it is sufficient to show
that Q̃γ is monotonically non-increasing function of γ

in the sense that Q̃γ1 ≥ Q̃γ2 whenever γ1 < γ2. To this
end, let Qα

.
= d

dα
Q̃γ , where α

.
= 1

γ2 . Differentiating the
Riccati equation associated with (7) one gets:

Āγ Qα + Qα Ā′
γ

+ (I + Q̃γWc)C
′
1C1(I + Wc Q̃γ ) = 0,

which, together with the stability of Āγ , yields that
Qα ≥ 0. Thus, Q̃γ is non-decreasing function of α

and, hence, non-increasing function of γ.



Proposition 2 is intuitively clear. In fact, it estab-
lishes that the smaller is γ, the larger smoothing lag
might be required to satisfy (6). Taking into account
the existence of C̃∞, one can see that ‖C̃∞eÃκh B̃κ‖ ≥

‖C̃γeÃκh B̃κ‖ for all h ≥ 0 and γ ≥ γ∞. On the other
hand, since ‖C̃∞ B̃κ‖ > 1 (by the assumption of Theo-
rem 1) and limh→∞‖C̃∞eÃκh B̃κ‖ = 0, the continuity of
‖C̃∞eÃκh B̃κ‖ as a function of h implies that there must
exist a finite h for which ‖C̃∞eÃκh B̃κ‖ < 1. This leads
to the “if” claim of statement i).

3.3 γ∞ = 0

In this case all terms of the Hamiltonian matrix
H̄γ become unbounded. Hence, the boundedness of
limγ→∞ C̃γ can no longer be guaranteed (in fact, it is
generically unbounded). Fortunately, the analysis can
be simplified by noticing that γ∞ = 0 ⇐⇒ Gγ(s)

.
=

C̃1(sI − Ãκ)
−1 B̃ ≡ 0. Since Wc is the controllabil-

ity Gramian of Gγ , the latter equality is equivalent to
C̃1Wc = 0. Hence, (7) can be rewritten as

[

I Q̃γ

]

[

Ã′
κ − 1

γ2 C̃′
1C̃1

0 − Ãκ

]

= Āγ

[

I Q̃γ

]

,

which, in turn, yields that Q̃γ = 1
γ2 Q̃1, where Q̃1 ≥ 0

satisfies the Lyapunov equation

Q̃1 Ãκ + Ã′
κ Q̃1 + C̃′

1C̃1 = 0

(it is seen now that unless C̃1 = 0, Q̃γ is indeed un-
bounded).

Thus, if γ∞ = 0, then

‖C̃γeÃκh B̃κ‖ = 1
γ
‖C̃0eÃκh B̃κ‖,

where C̃0 is any matrix satisfying C̃′
0C̃0 = Q̃1, and

there exists a finite h for which γ∞ = 0 is achievable
iff C̃0eÃκh B̃κ ≡ 0. The latter implies that γo(0) = 0 as
well, which contradicts the assumption of Theorem 1
and therefore proves the “only if” claim of statement
i).

To analyze when C̃0eÃκh B̃κ ≡ 0, let us introduce the
system

Gα(s)
.
=

[

Ã′
κ C̃′

1

C̃2Ỹ−1
κ 0

]

.

It is seen that Q̃1 is its controllability Gramian. Below,
we show that Q̃κ is the observability Gramian of Gα.
To see this, note that (3) can be rewritten as

Ỹκ Ãκ + Ã′
κỸκ + Ỹκ B̃B̃′Ỹκ + C̃′

2C̃2 = 0

or, since Ỹκ is invertible, as

ÃκỸ−1
κ + Ỹ−1

κ Ã′
κ + B̃ B̃′ + Ỹ−1

κ C̃′
2C̃2Ỹ−1

κ = 0.

Extracting (5) from this equation one gets:

Ãκ Q̃κ + Q̃κ Ã′
κ + Ỹ−1

κ C̃′
2C̃2Ỹ−1

κ = 0,

from which it follows that Q̃κ is the controllabil-
ity Gramian of Gα. The latter, in turn, implies that
C̃0eÃκh B̃κ ≡ 0 iff Gα(s) ≡ 0 which, in turn, is equiv-
alent to C̃1 Q̃κ = C̃1(Ỹ−1

κ − Wc) = 0. Yet C̃1Wc = 0
since γ∞ = 0. Therefore,

C̃0eÃκh B̃κ ≡ 0 ⇐⇒ C̃1 = 0.

This completes the proof of statement ii) of Thm. 1.

4 CONCLUDING REMARKS

In this paper the saturation of the achievable H∞

smoothing performance as a function of the smooth-
ing lag has been studied. By “saturation” we mean the
existence of a finite smoothing lag with which γ∞ can
be achieved (here γ∞ stands for the H∞ performance
achievable with the infinite smoothing lag) and no fur-
ther increase of the smoothing lag affects the H∞ per-
formance. It has been shown that the saturation phe-
nomenon takes place iff γ∞ 6= 0. This condition can
be interpreted as a “predictability” of the (band lim-
ited) worst-case disturbance using a finite preview.
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