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Abstract: In this paper the problem of least-squares (LS) identification of ARMAX
models is investigated from a new point of view. An efficient scheme for estimating
the noise-induced bias in the LS parameter is introduced by exploiting the unique
structure of the ARMAX model and utilizing extra dela yedoutputs. Then a new
type of LS based method is developed in combination with the bias correction
technique. The proposed method makes no use of a prefilter and deals directly
with the underlying ARMAX model. The important characteristics of the proposed
method includes desired computational efficiency and superior estimation accuracy.
The behavior of the proposed LS based method is also substantiated using simulation
data while in comparison with other identification methods.
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1. INTRODUCTION

Systems identification has been an active research
topic for more than tw odecades in such areas
as control, signal processing and communications
(Ljung, 1987; S™ oderstr“om arfkoica, 1989). Pa-
rameter estimation via the least-squares (LS) cri-
terion has become perhaps the most studied and
implemented means of model iden tification for
stochastic systems. The popularity of the stan-
dard LS method are usually attributed to the
simple concept and the easy implementation. The

major drawback, ho w ever, is that the LS param-

eter estimates are un biased only in the special
(and probably less practically meaningful) situ-
ation when the equation error of the underlying
system model is white noise. As a result, many
varian tsof the standard LS method ha vebeen
dev eloped to consistettly identify system models
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frequently encountered in real-world applications.

Among them, there are the prediction error (PE)

methods (Ljung, 1987), the instrumental v ariable
(TV) methods (S6derstr“om and Stoica, 1989), and
the bias correction methods (James, et al., 1972;

Sagara and Wada, 1977; Stoica and Soéderstr om,
1982), to just mention a few. The PE methods

are perhaps the most accurate and statistically

efficient parametric algorithms, but they are in-

volv edwith modelling the process noise and are

highly computationally demanding. On the other

hand, the IV methods can be implemented at a re-

duced numerical cost, with their consistency being

irrespective of the noise dynamics. However, the

choice of instruments may affect ultimaiden  ti-

fication results substantially in certain situations,

whereas simple and efficient methods for selecting

appropriate instruments to attain some optimal

properties are expected to be developed yet for

the IV methods.

The bias correction methods are motivated by
the intuition that once the noise-induced bias



in the LS parameter estimate is obtainable, an
unbiased parameter estimate will result straight-
forwardly from eliminating the bias from the LS
estimate. So how to estimate the noise-induced
bias is the kernel of the bias correction meth-
ods. The prefiltering based bias-eliminated least-
squares (PBELS) method (Feng and Zheng, 1991)
is featured by the use of a prefilter to prepro-
cess the system input to enable estimation of
the noise-induced bias. It is equipped with the
ability to cope with a wide range of noise mod-
els. The bias-compensating least-squares (BCLS)
method (Zhang, et al., 1997) makes use of a com-
posite signal to estimate the noise-induced bias.
The direct bias-eliminated least-squares (DBELS)
method (Zheng, 1998) is aimed at improving the
computational efficiency of the identification algo-
rithm and maintaining desirable estimation accu-
racy but without employing a prefilter. The BELS
based methods are also shown to be closely related
to the weighted IV methods (Stoica, et al., 1995;
Zhang, et al., 1997). In particular, the DBELS
method is identical to the simple instrumental
variable (SIV) method which uses delayed inputs
as instruments (Soderstrom, et al., 1999).

This paper is concerned with unbiased identifica-
tion of autoregressive moving average models with
an exogenous signal (termed as ARMAX model).
ARMAX models are one type of dynamic models
commonly used in representation of stochastic lin-
ear systems found in practice. The unique struc-
ture of ARMAX models presents an interesting
and yet important feature. That is, the model
noise (or equation error) is indeed colored but
is finitely auto-correlated. This in turn implies
that the system output can be made orthogonal
to some subspace spanned by stochastic distur-
bances. It is shown in this paper that the men-
tioned important feature of ARMAX models may
be manoeuvred to construct an efficient scheme
of using extra delayed output values to estimate
the noise-induced bias. This innovative estimation
scheme is illustrated in the following. Firstly, an
LS parameter estimate of the underlying ARMAX
model is evaluated which is known to be biased.
Secondly, an auxiliary linear regression model,
which is equivalent to the underlying ARMAX
model, is introduced. An estimate of the noise
covariance vector, which specifies the source of
the noise-induced bias in the LS estimate, is then
derived from this auxiliary model in an innova-
tive way of making use of extra delayed outputs.
Thirdly, the unbiased parameter estimate is ob-
tained via the bias-correction principle. The pro-
posed method retains the merits of the previous
BELS based methods. More importantly, it can
achieve almost the same estimation accuracy as
the PBELS method with a significantly reduced
computational load; and it performs better than

the DBELS method in terms of much low vari-
ance, particularly in the presence of high noise.
This new BELS based method is also linked to the
IV methods in certain way, and this connection
largely assists the comprehension and investiga-
tion of the proposed method.

2. DESCRIPTION OF ARMAX MODELS

Let ¢~! be the unit backward shift operator, and

define the three polynomials in ¢~! as

Al =1-aqg ' — ... —ag " (1a)
Bl =big " 4+ ...+ bpg™™ (1b)
Clg)=coteigt+.+enqg ™, co=1(lc)

Then the output y(¢) of a linear time-invariant
discrete-time system in relation to its input u(t)
can be described by the following ARMAX model

Algy(t) = Blg™ u(t) + Clg~Hw(t) (2)

where

e(t) = Clg Hu(®) = Y cpult—i) ()

denotes the stochastic disturbance acting on the
system, and w(t) stands for the source of the
disturbance.

Introduce the system parameter vector 8 and the
data regression vector ¢, respectively as

0" = [aT; bT] =[ay ... ap; b1 ... by] (4)

& =[y; u/]=[yt—1) .. y(t —n);
w(t—1) - ut—m)] (5)

The ARMAX model (2) can be further put in the
following linear regression form

y(t) = ¢ 0 +e(t) (6)

Several standard assumptions are made as fol-
lows:

(A1) The polynomial A(g!) is a Hurwitz poly-
nomial, i.e. A(.) has all zeros strictly out-
side the unit disc.

(A2) The input u(t) is stationary and persis-
tently exciting of a sufficient order.

(A3) The disturbance source w(t) is white noise,
and statistically uncorrelated with u(t).

(A4) The models (n,m) are known.

By assumption (A3), the input u(t) and the
stochastic disturbance e(t) are orthogonal to each
other, which implies that the system under con-
sideration operates in open loop. Moreover, an-
other important feature of the ARMAX model
(2) is that the output y(t) is orthogonal to the
subspace spanned by the stochastic disturbances
e(t+n+1),e(t+n+2),.... This property is stated
in Theorem 1.



Theorem 1. Define the cross-covariance function
rye(—k) = Ely(t)e(t + k)]. Then

rye(=k) =0, k=n+1n+2,.. (7)

Proof: First, let 1y, (—k) = E[y(t)w(t + k)]. The
assumption that w(t) is a white noise sequence
immediately leads to

ryw(—k) =0,

Equation (8) bears a clear physical interpretation
in that the current plant output signal y(t) is sta-
tistically uncorrelated with any future disturbance
source w(k), where k > ¢. Using (3), we have

k=1,2,3,.. (8)

rye(=k)=E[y(t))_cjw(t—j+Fk)]
j=0

=Y ¢ Eytw(t—j+k)] =Y ciryw(i—k). (9)
i=0 =0

By (8), it is easy to see that

ryw(j —k) =0 (10)
forj =0,1,...nand k =n+1,n+ 2,.... Thus,
(7) follows easily from (9) and (10). ]

3. LEAST-SQUARES ESTIMATOR

Systems identification is aimed at estimating the
system parameter vector 6 from the sampled
input-output data {u(t),y(t)}. In particular, it
is desired to obtain an unbiased estimate of 6.
However, the popular LS method produces biased
parameter estimates for ARMAX models, as will
be illustrated below.

Consider the LS criterion J(0) = E[e(t)?]. As
shown in Davis and Vinter (1985), minimization of
J(0) with respect to 8 gives rise to the LS estimate
0.5 as

Ors = R;;le (11)

where R4 = E[¢, ¢/ | and Ry, = E[,y(1)].

Following assumptions (A1)-(A4), it can be shown
that @15 has the asymptotic expression

Ors =0+ R Ry =0+ R ;DR (12)
The second equality in (12) is due to

R= E[gye(t)]) = [gzz ]: m R,.=DR,. (13)

Ry, = [rye(=1) .. rye(—n)] (14)

where DT = [I, 0] € R*™(+™) and I,, denotes
an n X n identity matrix. Since the n x 1 noise
covariance vector R, is not a zero vector, (12)
indicates that the LS estimate @rs is bound
to be biased, with Ry, specifying the source
of the noise-induced bias R;;DRW. Thus, in
general the standard LS method is not workable
for unbiased identification of ARMAX models.

4. NEW BIAS CORRECTION SCHEME

In this section, we will develop a new bias correc-
tion scheme so as to arrive at an unbiased param-
eter estimate of 8. By means of the well-known
bias correction principle (James, et al., 1972), a
bias-eliminated least-squares (BELS) estimate of
the system parameter vector @ may be acquired
from (12) as

OELsS :0L5—R;;DRye (15)

on the condition that an estimate of the noise
covariance vector Ry, is attainable in some man-
ner. In order to make the bias correction scheme
(15) practically implementable, our focus is now
on estimation of R..

For this purpose, we introduce a (2n + m) x 1
auxiliary parameter vector ® and a (2n+m) x 1
auxiliary regression vector ®; as follows:

o-[t] ala] o

where p/ =[y(t —n—1) ... y(t — 2n)] and a' =
[0 ... 0] € R™. With this, it is easy to verify that
<I>tT® = ¢:0. Thus the underlying linear regres-
sion model (6) can be equivalently represented by
an auxiliary linear regression model

y(t) = B © +e(t) (17)

By a similar procedure to (11), the LS estimate of
the auxiliary parameter vector ® is found to be

Ors = RggRay (18)
where Ree = E[®:®,] and Rs, = E[®.y(t)].

Moreover, using assumptions (A1)-(A4), O is
expressible asymptotically as

Or5 =0 + Ry3Rae (19)
where
R¢e] {DRW]
Ro. = E[®:e(t)] = = 20
o= Blee] = | R | = || 20

R), =[rye(-n—1) .. rye(=2n)]  (21)

Note that (19) is analogous to (12), while it follows
from (7) that every element of R, is zero, yielding
R,. = 0. So the (2n + m) x 1 noise covariance
vector Rg. may be simply expressed as

I,
Rge = |:D](E){ye:| =] 0|Ry.=DRy (22)
0

where DT = [I,, 0] € R**(27+m) Tt is seen from
(19) and (22) that, similarly to (12), the same
n x 1 noise covariance vector Ry. also specifies
the source of the noise-induced bias in O 5.

As mentioned above, our aim is to acquire an
estimate of the noise covariance vector Ry.. The
following theorem shows that this can now be
achieved by finding the LS estimate of the inter-
mediate parameter vector a out of @y g.



Theorem 2. Let Ry, = E[¢.p; |, R,, = E[p,y(t)].
We have the following matrix-vector equation
with regard to the noise covariance vector Ry.:

R;FPR;;DRW = R;—paLS ~R,y (23

Proof: By virtue of Ry, and R,,, the covariance
matrix Ree and the covariance vector R, are
expressible as
Ry Rdm} {Raﬁ
Roo=| . Ray=| 1| (@)
Rgp Ry, Y[Ry
where R,, = E[p,p;]. Applying the matrix in-
version formula (see e.g. Davis and Vinter, 1994)
to Reg gives rise to
_ Ry R, Ry,A7"
1 6o TVop
R<I><I> [—A R R— Afl (25)
where Rin = R} + R, JRs,A”'R] R, and
A=R,, — RTde);RW Let the last n elements
in ®15 be denoted by ays. Using (24) and (25)
n (18), we get
ars = —A'R}, R /Ry, + A'R,, (26)
Combining (19), (22) and (25) together and notic-
ing that a = 0, we have
ars =—-AT'Rj,R;IDR,, (27)
Finally, (23) follows immediately from equating
(26) and (27) with ars and premultiplying the
resulting equation with A. [ |

By Theorem 2, an unbiased estimate of the noise
covariance vector Ry, may be obtained from (23)
as

R, = (R},R;,D) (R}, 0.5 —R,,) (28)
Hence, for unbiased identification of ARMAX
models, the following new bias correction scheme

can be implemented, which is called the BELSX
method for short.

The BELSX Method

Step 1. From the sampled input-output data
{u(t),y(t),1 < t < N}, calculate the
estimates of the covariance matrices and

vectors:

. 1 X .
Roo(N)=2D_ 161, Rop(N)
t=1

1 N
:NZ ¢tptT(29)
1 x
N)==:D_ py()(30
t=1

Step 2. Evaluate the LS estimate of the system
parameter vector @:

Ors(N) =R,

. 1 .
RWJ(N)ZNZ ¢ty(t)a pr(
t=1

(NM)Rgy(N) (31)

Step 3. Compute the estimate of the noise co-
variance Rye:

R,.(N)=(R],(N)R;}(N)D)~!
(R,,(N)BLs(N)-R,,(N)) (32)

Step 4. Calculate the BELS estimate of the sys-
tem parameter vector 6:

O5ELs(N)=015(N)-R,,DR,.(N) (33)

5. FURTHER ANALYSIS

First of all, the estimation consistency of the
proposed BELSX method is studied.

Theorem 3. Consider the BELSX method applied
to the ARMAX model (2) and subject to assump-
tions (A1)-(A4). We may conclude parameter con-
sistent, convergence for Ose 1s(N), namely

lim Opprs(N)=6 w.p.l (34)
N—o00

Proof: Premultiplying (6) with p, and taking the
mathematical expectation gives

R,, =R;,0+R,. (35)
Since by Theorem 1 R,.=0, (35

v R,, =R, 0 (36)
Letting N — oo in (32) and noticing that the
sample covariance estimates given by (29) and
(30) converge to its respective true covariances,
we have

lim R, (N)=

N —o00

) further reduces

! (R¢p0LS pr)

D)"

D)~ 1(R¢00L5 Rdme)

D)"'R (9Ls 0)

D) 'R}, R,,;DR,.
W.p.l (37)

where (12) and (36) are utilized in deriving (37).

Finally, letting N — oo in (33) and using (12), we
obtain

(R},
(R},
(R},
(R},
—Rye

A}iinooéBELS(N) =0.5—R,, DR,
(0+R sDR,.)—R_ DR,
w.p.1 (38)
which completes the proof. [ ]

The proposed BELSX method may also be im-
plemented recursively in on-line identification of
ARMAX models. This is because the LS estimate
01,s5(N) can be readily calculated in a recursive
manner (Davis and Vinter, 1985).

In comparison with other identification methods,
the BELSX method retains the desirable features
of the existing BELS methods (Feng and Zheng,
1991; Zheng, 1998), such as good estimation accu-
racy, implementation convenience with low com-
putational complexity, desired robustness against
noise, and so on.

Similarly to the DBELS method, the proposed
BELSX method is superior to the PBELS method
computationally due to its attractive algorithmic
structure. Unlike the PBELS method, the BELSX



method does not involve design of a prefilter or
prefiltering of the sampled input-output data in
its implementation. Instead, the sampled data are
utilized directly in parameter estimation by the
BELSX method. Moreover, no parameter extrac-
tion is needed for the BELSX method as the
original system parameter vector 8 is estimated
in a direct manner. These algorithmic advantages
make the BELSX method very appealing in im-
plementation in terms of computational load in-
volved.

It is interesting to note that like the DBELS
method, the proposed BELSX method can also be
interpreted as a kind of the IV methods. Hence, it
will inherit attractive properties of the IV meth-
ods as described in S6derstrém and Stoica (1989).
In particular, an unbiased estimate with the min-
imum asymptotic covariance matrix can be at-
tained with the proposed method. The relation of
the BELSX method to the IV methods is studied
in the following.

Theorem 4. Introduce ¢; = [p/; u/]. Then
(i) rank(R¢g) = n 4 m, where Ry = E[¢, b/ ].
(i) Ree = E[Ce(t)] = 0.

Proof: The proof is rather straightforward. First,
rank(R¢y) = n + m is assured by assumptions
(A1)-(A2). Second, R¢. = 0 follows easily from
assumption (A3) and Theorem 1. [

By Theorem 4, ¢, is a qualified instrumental
variable (Soderstrom and Stoica, 1989). So an IV
estimate of the system parameter vector @ may be
obtained by

Orv(N) =R, (N)Rey(N) (39)
where Rep(N) = 235N ¢,/ and Rey(N) =
N
%21:1 Cty(t)-
Theorem 5. The BELS parameter estimate

Opers(N) given by (33) is equal to the IV pa-
rameter estimate @7y (N) given by (39), namely

Opprs(N) =01y (N) (40)
Proof: Let
R, (N)RZ(N)=F =[F, F] (41)
where F; € R™*™ and F, € R"*™. Using (31)
and (41), (32) may be rewritten as
Ryo(N) = F1 (FRyy (N)~ Ry (N) - (42)

where it is assumed that F; is of full rank.
Substitution of (31) and (42) into (33) yields

N A Ry, (N)

6 N) =R} (N)M | % 43

prus() = Rpim | 00 |
where M=[I, 1, —DF;'F DF,']. But

I, I, F/'F,

DFle:{O ]F;l[F1 FQ]:[O 0 } (44)

So M is expressible as

—1
_[F, Fy 00 I,
N A
00 I, .
Let H_[O 1, 0 }.Slnce
I, O
| FQ] {0 0 In} " [In+m]
= 0 I,|=H (47)
{0 I.| (0L,0 F, F, F
M may be further written as
—1
M:(H I”*’“D H (48)
F
It is easy to verify that
Ryy(N)] _p
H[J’y ]:R (N) (49)
R, (N) ]~

e {ﬁgﬁﬁﬁﬂzﬂmm (50)

Substituting (48), (49) and (50) into (43) imme-
diately gives rise to
Oprrs(N) =R, (N)Rey(N)=8rv(N)  (51)

Thus, the proof is complete. [ ]

6. SIMULATION ILLUSTRATIONS

Stochastic simulation results are now presented
to validate the theoretical analysis made about
the proposed BELSX method. Consider a second-
order ARMAX model described by (2) and with

Alg) =1—-1.5¢7" +0.7¢72 (52a)
B(g™') =1.0g7" + 0.5¢2 (52b)
Clg)=1-1.0¢""1+0.2¢? (52c)

The input «(t) is taken as white noise with unit
variance. The system has a signal-to-noise ratio
(SNR) of around 2dB at its output, which implies
the presence of very high noise.

The six methods, namely, the standard LS method,
the PE (ARMAX) method, the optimal IV (OIV)
method, the standard IV (SIV) method, the
PBELS method and the BELSX method, are
employed to identify this ARMAX model from
N = 2000 sampled input-output data. In partic-
ular, delayed inputs are used as instruments with
the SIV method; the MATLAB codes armax and
iv4 are used to implement the PE (ARMAX)
method and the OIV method, respectively; and
a prefilter designed as F(¢~!) =1/(1 - 1.7¢ * +
0.72¢~2) is used with the PBELS method. A total
of M = 1000 stochastic trials have been conducted
to compute the arithmetic means and standard
deviations of the various estimates, which are dis-
played in Table 1. Further, the overall behavior
of these methods is measured in terms of the



Table 1. Comparative Identification Results
(N=2000, SNR = 2dB, 1000 stochastic trials, NFPT = Number of flops per trial)

method al as b1 bs Gain RE RMSE NFPT

LS 0.8242 | —0.1370 0.9997 1.1758 6.9594 | 55.53% | 55.78% 56300
+0.0252 +0.0222 +0.0745 +0.0693 +0.3650

PE(ARMAX) 1.4990 —0.6995 0.9990 0.5039 7.4989 0.21% 5.23% 3251138
+0.0167 | £0.0142 +0.0646 +0.0790 +0.2137

oIV 1.4973 —0.6979 0.9980 0.5082 7.5103 0.45% 5.59% 720205
+0.0211 | £0.0179 | £0.0656 | £0.0857 | £0.2316

SIvV 1.5163 | —0.7245 0.9979 0.4835 8.3956 1.69% | 17.81% 88311
+0.1549 +0.2178 +0.0925 +0.2130 +6.6335

PBELS 1.5002 | —0.7001 0.9971 0.4997 7.4936 0.14% 7.36% 121706
+0.0333 +0.0278 +0.0891 +0.1087 +0.3630

BELSX 1.5015 —0.7011 0.9974 0.4989 7.6963 0.17% 8.78% 96455
+0.0814 | £0.0472 | £0.0894 | £0.1182 | £1.3018

true value 1.5000 | —0.7000 1.0000 0.5000 7.5000

MATLAB code flops, the relative error (RE) and
the normalized root mean squared error (RMSE).
The RE and RMSE are defined respectively as

~ M ~
|m(6) -6 1~ 110: -0
RE="—"—"——, —y
2 el
where m(8) = ﬁzi\il 05, and 6) denotes a

161
parameter estimator in the kth stochastic trial
over a total of M trials.

RMSE=

It is observed from Table 1 that in spite of their
favorable estimation accuracy, the PE (ARMAX)
method and the OIV method involve the high-
est numerical cost among the six methods. On
the contrary, the two BELS based methods both
demonstrate the superior performance, including
their low computational complexity and estima-
tion unbiasedness for ARMAX models. In agree-
ment with the preceding analysis, while achieving
the almost same estimation accuracy, the pro-
posed BELSX method exhibits obvious compu-
tational advantages over the PBELS method be-
cause of no use of a prefilter. It is interesting to
note that with considerably smaller values of the
RE and the RMSE, the BELSX method is much
more accurate than the SIV method although the
latter requires fewer computations (about 8% less)
than the former.

7. CONCLUSIONS

The novelty of the present work in comparison
with the previous work is in that it has shown how
the noise-induced bias can be estimated by taking
advantage of the ARMAX structure and making
use of extra delayed outputs. On the basis of this,
the BELSX method has been established to per-
form unbiased identification of ARMAX models.
Computer simulations have indicated that if one
wants to achieve a high estimation accuracy at
a moderate numerical cost, the proposed BELSX
method will be a much preferable algorithm for
use because its accuracy is very close to that of the
PE (ARMAX) method while its computational
load is only slightly more than that of the SIV
method. Finally, we note that the invertibility of

the matrix R} (N)R; (N)D in (32) is yet to be
proven. Another interesting issue is to analyze
the impact of the bias on the results stemmed
from the Monte-Carlo experimentations via the
frequency study. These are the topics of further
investigations.
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