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Abstract: In this paper we consider the problem of safe driving of the Dubins’ car on a straight
road where the steering control is in the form(1−h)s+hv wherev represents a free control
ands is an automatic control preventing the system from undesired behaviors that may result
from the action ofv. We design the safety controls steering the car to the center of the road
in minimum time which fact implies to consider discontinuous feedbacks, hence to face the
problem of de£ning a solution to a system with a discontinuous right hand side, and to deal
with the de£nition of regular synthesis used in optimal control. We thus consider generalized
solutions in Krasowskii and Filippov sense and guarantee that these solutions have agood
behavior, i.e., when onlys is acting (h = 0) the generalized solutions coincide with the
optimal synthesis trajectories. Finally, we illustrate our strategy by simulations.
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1. INTRODUCTION

Consider the system:

ẋ = F (x) + (1 − h)G1(x)s + hG2(x)v (1)

wherex ∈ IRn, F : IRn → IRn, Gi(x) ∈ IRn×mi , i =
1, 2, h ∈ [0, 1], s ∈ IRm1 andv ∈ IRm2 . Herev repre-
sents a free control chosen by some controller ands is
a safety control that is an automatic control preventing
the system from undesired behaviors that may result
from the action ofv. For example, equation (1) may
model a car with a non expert driver choosing the
controlv, a teacher or an automatic control choosings,
a safety control, andh to be equal to1 when the driver
is driving properly and equal to0 in case of danger.
We choose the model of Dubins’ car with controlled
steering (see section 2.2) and tackle the problem of
safe driving of this car on a straight road. Moreover
we want to design the safety controls to steer the
car to the center of the road in minimum time. Thus
we have to consider discontinuous feedbacks, hence
to face the problem of de£ning a solution to (1) with
a discontinuous right hand side, and to deal with the

de£nition of regular synthesis used in optimal control.
The dif£culty of the problem is not bounded to treat
the discontinuities ofs. Indeed, even if solutions to
the equationẋ = s(x) are de£ned (in Caratheodory
sense), the presence of the free controlv may provoke
non existence, see Example 1. We then consider gener-
alized solutions in Krasowskii and Filippov sense. As
a drawback, we should guarantee that these solutions
have agood behavior. More precisely, when onlys
is acting (h = 0) the generalized solutions should
coincide with the optimal synthesis trajectories. This
is not always the case if the feedbacks corresponds
to a synthesis in Boltyanskii-Brunovskii sense (see
(Boltyanskii 1966, Brunovsky 1980)).
We propose a general strategy to deal with the above
problems. This consists of three steps. First we give
conditions to ensure that the set of generalized solu-
tions for s have agood behavior. These conditions
are based on a de£nition of regular strati£ed feedback,
modeled on those given by Boltyanskii and Brunovsky
and reported in the Appendix.
The second step consists in studying the set of gen-
eralized solutions to the system obtained putting the
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regular strati£ed feedbacks in equation (1). Finally,
the third step amounts to ensuring that the generalized
solutions to this complete system do not enter the set
of bad con£gurations. Moreover, checking the strategy
by simulations is possible if approximate solutions
converge to generalized ones, which is the case be-
cause we consider Krasowskii and Filippov solutions.
Based on this approach we then propose, in sec-
tion 4, two regular strati£ed feedbacks that provide
safety driving for the Dubin’s car. The analysis of
the two dimensional case, developed in (Marigo and
Piccoli 2002), permits to check that generalized solu-
tions remain in the safe zone. The results are tested
also by simulations described in the last section 5.
Our problem is similar to that of air traf£c manage-
ment. considered in (Tomlinet al. 1998, Bicchi et
al. 1998). Another approach would be to considerv
ands in competition, but we want rather to designs
andh as feedbacks that should reject only some dan-
gerous con£guration towards whichv could lead the
system. Indeed, the idea is that in some ”safe” zonev
should act freely either meanwhile learning or because
some risky choice can be convenient, e.g. in problems
from economics. Even more, in case of danger we
would like s to steer the system towards the safe zone
minimizing the time or some more complicate cost
functional.
The paper is organized as follows. In section 2.1 we
state the problem of safety control and highlight the
drawbacks in the concept of solution that one has to
face when treating this kind of control problem. A
description of the safety control problem for the Du-
bins’ car is given in section 2.2. In section 2.3 we give
the de£nitions of Krasowskii and Filippov admissible
solutions for our safety control problem. In section
3.1 we give condition on a feedback, associated to a
synthesis, such that the set of Krasowskii (Filippov)
solutions coincide with the trajectory of the synthesis.
Next in section 3.2 we show that the safety control
system admits solutions in the sense given previously
and give the de£nition of safety and stabilizing feed-
back. Finally in section 3.3 we give further conditions
on h ((H1), (H2)) under which a safety (stabilizing)
feedback actually is safe (stabilizing) for the system.
The problem of convergence for simulations and im-
plementations is also treated. The solution and simula-
tion results for the safety control problem of Dubins’
car are given in section 4 and 5 respectively. The
Appendix contains the de£nition of regular strati£ed
feedback.

2. BASIC DEFINITIONS

2.1 Basic Model for a Safety Control System

In the system (1) we assume that:F,G1, G2 smooth,
∃C̄ > 0 s.t.‖F‖, ‖G1‖, ‖G2‖ ≤ C̄(1 + ‖x‖) ands, v
take values in compact sets.
We wants to bring back the system from a bad region

2x  =0

2x  >0

x  <02

v

Fig. 1. No Caratheodory solution for the system (3).

B to a safe regionS ⊂ IRn in the most ef£cient way
that is minimizing the time or a more complicate cost.
We assume thatS and B are closed,S ∩ B = ∅
and L = IRn \ (S ∪ B) 
= ∅. In order to obtain
this behavior automatically we shall designh to be a
smooth feedback which is equal to0 on the bad region
B, 1 on the safe regionS and taking values in(0, 1) in
the zoneL, which we call “learning” zone because in
this region the not expert controllerv is helped by the
“teacher”s. Moreovers is an optimal feedback that
in general may be not continuous. We thus obtain a
system:

ẋ = F + (1 − h)G1s(x) + hG2v(t) (2)

which is comprised of an ODE with an autonomous
discontinuous term plus a time dependent smooth (in
x) one. Hence whenh is not constantly equal to0
or 1 we immediately face the problem of de£ning a
solution as illustrated by the following example.
Example 1. Let ẋ = (1 − h)s + hv where x =
(x1, x2) ∈ IR2, h(x) = 1/2,

s(x1, x2) =
{

(1, 0) if x2 ≤ 0
(1,−1) if x2 > 0 (3)

andv(t) = (0, 1/2). It is easy to check that there is no
Caratheodory solution if we take the initial data on the
line x2 = 0 (see £gure 1). �

2.2 The Dubins’ Car in the Safety Control Model

We introduce in this section the Dubins’ model of a
car moving on the plane and the safe driving problem.
We consider a car moving only forward on a plane
at constant velocity, that we may assume is equal
to 1, with controlled steering. The position of the
car is given byZ = (x, y, θ) ∈ IR2 × S1, where
(x, y) ∈ IR2 indicates the position of the baricenter
of the car andθ ∈ S1 is the angle formed by the car
axis with the positivex axis. The equation of motions
are:ẋ = cos(θ), ẏ = sin(θ), θ̇ = u, |u| ≤ 1, where
u represents the control. We assume to have a street
described, up to change of coordinates, by the strip
X = {(x, y) : |y| ≤ L} ⊂ IR2, whereL > 1.
The aim is to stay inside the street without hitting the
boundaries. The not expert driver will be modeled by
a random controlv and the safety control is a feedback
again indicated bys, so the complete system becomes:



Ż =


 cos(θ)

sin(θ)
(1 − h(Z))s(Z) + h(Z)v(t)


 ,

whereh, s, v ∈ [0, 1]. We restrict to the case where
θ ∈ [−π/2, π/2] which means that we are not allowed
driving in the negative direction forx. We de£ne the
bad zones as:
B1 = {(x, y, θ) : −1 + cos(θ) ≤ y − L ≤ 0, θ ∈
[0, π/2]}
B2 = {(x, y, θ) : 0 ≤ y + L ≤ 1 − cos(θ), θ ∈
[−π/2, 0]}.
Indeed being in a point ofB1∪B2 implies that the tra-
jectories corresponding to extremal velocities (hence
all trajectories) steer the car to hit the boundary ofX
in time less than or equal to timet = |θ|. Observe that
the symmetric sets
B′

1 = {(x, y, θ) : −1 + cos(θ) ≤ y − L ≤ 0, θ ∈
[−π/2, 0]}
B′

2 = {(x, y, θ) : 0 ≤ y + L ≤ 1 − cos(θ), θ ∈
[0, π/2]},
are not accessible indeed the system could be in one
of these regions only if, some time before, its con£g-
uration was outsideX . Hence we can de£ne the set
B to be the union of both the bad zones and the not
accessible zones:B = B1 ∪ B′

1 ∪ B2 ∪ B′
2. Finally we

de£ne the safe zone as
S = {(x, y, θ) : −L′ + 1 − cos(θ) ≤ y ≤ L′ − 1 +
cos(θ)}
where L′ < L. The learning zoneL is given by
L = X × [−π/2, π/2] \ (B ∪ S).

2.3 Good De£nition of Solution for a Safety Control
System

To solve the problem of de£ning a solution we will use
the concept of Krasowskii and Filippov solutions, see
(Filippov 1988).

De£nition 1. Given a functions : IRn → IRn we asso-
ciate two multifunctionsSK andSF in the following
way:

SK(x) =
⋂
δ>0

co s(x + δBn)

SF (x) =
⋂
δ>0

⋂
meas(N)=0

co s((x + δBn) \ N)

whereco indicates the closed convex hull,Bn is the
unit ball of IRn, N ⊂ IRn andmeas is the Lebesgue
measure on IRn.

De£nition 2. A Krasowskii (resp. Filippov) solution
to ẋ = s(x) is a solution to the differential inclusion
ẋ ∈ SK(x) (resp.ẋ ∈ SF (x)).

If s is bounded, the multifunctionsSK and SF are
upper semicontinuous, with compact convex values. It
follows (see (Aubin and Cellina 1984)) the following:

Proposition 1. If s is bounded, then for everyx ∈ IRn

and everyT > 0, the set of Krasowskii (Filippov)
solutions de£ned on[0, T ] starting atx is a nonempty,
connected, compact subset ofC([0, T ], IRn).

We want to use the concept of Krasowskii (Filippov)
solutions to de£ne a solution to our problem (2) with a
discontinuous boundeds and measurable boundedv.

De£nition 3. Given a bounded measurable controlv,
a Krasowskii admissible solution to equation (2) is a
solution to the differential inclusion

ẋ ∈ F + (1 − h)G1SK(x) + hG2v(t) (4)

Given T,C > 0, the set of Krasowskii admissible
solutions for controls inL1([0, T ], CBn) is the set of
solutions de£ned in[0, T ] for the differential inclusion

ẋ ∈ F + (1 − h)G1SK(x) + ChG2Bn. (5)

We de£ne Filippov admissible solutions in the same
way by replacingSK with SF in equations (4) and
(5).

3. GENERAL STRATEGY

To construct a safety feedback we use the de£nition
of admissible Krasowskii (Filippov) solutions. Our
strategy is explained by the following scheme.

Step 1. Introduce a de£nition of feedback such that
the corresponding Krasowskii (Filippov) solutions
steer the system to a prescribed set possibly with
minimal cost.

Step 2. Construct a safety controls satisfying the
assumptions ofStep 1 and steering the system to
the safe zoneS possibly with minimal cost. Prove
that for every bounded controlv there is a solution
to (4).

Step 3. Chooseh and useStep 2. to prove that so-
lutions do not enter the dangerous zone and tend
to S. Moreover prove that approximate solutions
converge to generalized solutions.

3.1 Step 1: Regular Strati£cations

Now we give suf£cient conditions forgood behavior
of solutions, based on concepts of regular strati£ed
feedback and strati£ed solutions which are given in
the Appendix and are modeled on the de£nitions given
by Boltyanskii and Brunovsky, see (Boltyanskii 1966,
Brunovsky 1980).

De£nition 4. The regular strati£ed feedbackΞ =
(P,P1, P2,Π,Σ, s) is Krasowskii admissible if the
following holds:

1. If P is a cell of type I then



Iα) If M is a cell such that∂M ⊃ P thenM is a
cell of type I.

Iβ) For everyx ∈ P , SK(x) ∩ TxP = s(x).
Iγ) For each cellM such that∂M ⊃ P (hence

M is of type I) the vector £elds on M can be
prolonged continuously toP and we callXM the
obtained vector £eld onP . For eachx ∈ P let
N(x) be the space normal toTxP , then there
existsv ∈ N(x) such that for every sequence
{yn} in M with yn → x, if ω = limn

x−yn

‖x−yn‖
thenXM (x) · v > 0 andω · v ≥ 0.

2. If P is of type II then
IIα) For eachx ∈ P let N(x) be the space normal

to TxP , then there existvx ∈ N(x) andεx > 0
such that for everyu ∈ SK(x), u · vx ≥ εx.
Moreovervx andεx are continuous with respect
to x, inf{εx : x ∈ P} > 0 and vx can be
continuously prolonged to∂P .

IIβ) For everyx ∈ P , SK(x) ∩ TxP = ∅.
IIγ) For each cellM of type I such that∂M ⊃ P

andM 
∈ Σ(P ) the assumption Iγ) holds.

The same de£nition applies to Filippov admissible
regular strati£ed feedback.

Theorem 1. (Marigo and Piccoli 2002) LetΞ =
(P,P1,P2,Π,Σ, s) be a Krasowskii admissible reg-
ular strati£ed feedback then Krasowskii solutions to
s (not passing through the origin) coincide with strati-
£ed solutions. The same conclusion holds for Filippov
solutions.

3.2 Step 2: Krasowskii and Filippov Solutions

Using standard tools of theory of differential inclu-
sions, it is easy to prove that for every £xed bounded
measurable controlv, we have a solution to (4). More
precisely we have following:

Proposition 2. If s is bounded andv is measurable
and bounded then the set of Krasowskii (Filippov)
solutions to equation (4) is not empty.

UsingStep 1 we give also the de£nition of safety and
stabilizing feedback for equation (2).

De£nition 5. We say thatΞ is a safety feedback, ifΞ
is a Krasowskii (Filippov) admissible regular strati£ed
feedback, all trajectories oḟx ∈ F (x) + G1(x)SK(x)
(for Filippov ẋ ∈ F (x) + G1(x)SF (x)) starting
outsideB, do not enterB. If, moreover, the solutions
reachS (possibly with minimal cost) we say thatΞ is
a stabilizing feedback toS.

3.3 Step 3: Safe Evolution

Given a safety feedback, we can chooseh in the
following way

(H1) There existsU(B), open neighborhood ofB,
such thath(x) = 0 for everyx ∈ U(B).

We are now ready to prove that the set of Krasowskii
(Filippov) admissible solutions do not enter the bad
zoneB.

Proposition 3. Assume thatΞ is a safety feedback and
h is chosen as in (H1). Then every solution to (5) with
initial statex 
∈ B does not enter the setB.

Proof. Assume by contradiction thatx(·) is a solution
to (5) with x(0) 
∈ B and there existst > 0 such that
x(t) ∈ B. Let t̄ be the £rst time such thatx(t̄) ∈ B.
From (H1) there existsδ > 0 such that andh(x(t)) =
0 for everyt ∈ [t̄− δ, t̄]. But then, on the set[t̄− δ, t̄],
x is a solution toẋ ∈ F (x) + G1(x)SK(x), hence it
does not reachB at timet̄. �

Given a stabilizing feedback toS, we can chooseh in
the following way

(H2) There existsU , open neighborhood ofcl(IRn\S),
such thath(x) = 0 for everyx ∈ U .

With arguments similar to those used in the proof of
the previous proposition we immediately get:

Proposition 4. Assume thatΞ is a stabilizing feed-
back toS and h is chosen as in (H2). Then every
solution to (5) with initial statex 
∈ B does not enter
the setB and reachS (possibly with minimal cost).

When implementing or simulating the feedbacks,
we have to consider approximations ofs. Indeed in
the £rst case we have to use some sampling strategy,
while in the second we should consider some numer-
ical methods. In both cases we have convergence to
Krasowskii solutions as guaranteed by the following
theorem (see Theorem 1 of Chapter 1.4 of (Aubin and
Cellina 1984)).

Theorem 2. Let S : IRn → IRn be an upper semicon-
tinuous multifunction with compact convex values.
Let xk, yk : [a, b] → IRn be measurable bounded
such that for a.e.t ∈ [a, b] and everyδ > 0, there
exists k̄ = k̄(t, δ) such that for everyk ≥ k̄, there
existsx̂, ŷ satisfyingŷ ∈ S(x̂), |xk(t) − x̂| < δ and
|yk(t) − ŷ| < δ.
If xk converges a.e. tox andyk converges weakly in
L1([a, b], IRn) to y, then for a.e.t, y(t) ∈ S(x(t)).

To simulate the whole system (2) we have to guarantee
that whenh is small the solutions are close to Kra-
sowskii solutions toẋ = F (x) + G1(x)s(x). From
Theorem 2 we get:

Proposition 5. If s is bounded, as theL1–norm of
v tends to zero, Krasowskii solutions to (4) tend to
solutions ofẋ ∈ F (x)+ (1−h(x))G1(x)SK(x). The
same conclusion holds for Filippov solutions.



4. SAFETY CONTROL FOR THE DUBINS’ CAR

We takeh : X × [−π/2, π/2] → [0, 1] smooth such
that

h(Z) =




1 if Z ∈ S
0 if Z ∈ U(B)
δ(Z) if Z ∈ L \ U(B)

whereδ(Z) ∈ (0, 1), U(B) is a neighborhood ofB
andcl(U(B)) ∩ S = ∅.
We propose two choices fors. The £rst one comes
from an optimal synthesis, while the second one is
designed from the £rst one.
Consider the space(θ, y). Since the safe zoneS surely
contains the origin, we can consider the time optimal
feedback to the origin. This feedback was described in
(Bicchi et al. 2000) and the corresponding trajectories
are represented in £gure 2. The optimal trajectories
reach the origin with bang-bang controls, that is±1,
and only one switching unless they reach the value
|θ| = π/2. In the latter case we have to use control
0, following a singular trajectory called turnpike, and
then reach the origin with control±1. Two trajectories
separate the zone where the feedback is+1 from the
zone where it is−1, these are precisely the curves
y = 1 − cos(θ), θ ∈ [−π/2, 0] and y = −1 +
cos(θ), θ ∈ [0, π/2]. Analyzing the one dimensional
and zero dimensional singularities, according to the
classi£cation of (Marigo and Piccoli 2002), we have
the following

Proposition 6. The time optimal control to the origin
is a stabilizing toS feedback.

Notice that if we are in the zone where|θ| ≥ π/4 and
sign(θ)y < −1+cos(θ), then we could lets = 0. This
results in a minor cost of the safe control. Thus we
propose a second strategysA whose trajectories are
depicted in £gure 3. This strategy has the advantage
of not leading the car to the line|θ| = π/2 and thus
being more robust for disturbances. Also in this case
we have:

Proposition 7. The controlsA is a stabilizing toS
feedback.

5. SIMULATION RESULTS

In this section we present some simulation results ob-
tained for the suboptimal safety controlsA.
A £rst simulation tests thegood behavior of the sta-
bilizing feedback both in absence and in presence of
disturbance (the random controlv). In the £rst picture
(£g.4) we depict two trajectories on the(θ, y) plane:
one, labeled “Teacher”, for the case of only the safe
control acting (h ≡ 0) and one, labeled “Driver”,
when both the safe control and the free control are
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Fig. 2. The classical time optimal synthesis for the
Dubins’ Car
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Fig. 4. Trajectory fors (h ≡ 0 “Teacher”) ands + v
(h ≡ 1/2 “Driver”)

acting (h ≡ 1/2). Then we check that the controlsA

is a safe control or stabilizing toS control, depending
on the feedbackh. For simplicity we choose the safe
zoneS (whereh ≡ 1) to beB(0, 0.3) the ball centered
at the origin and radius0.3 and the learning zoneL to
beB(0, 1) \ B(0, 0.3), soh ≡ 0 outsideB(0, 1). In
case of stabilizing controlh ≡ 0 outsideB(0, 0.3).
In pictures 5 we show the behaviour, on the(y, θ)–
plane of the whole system under safe control (withh
satisfying condition (H1)) starting from point(0, 1),
which is on the boundary of the bad regionB.
Other simulations, not reported for space and £le
length constraints, con£rm the theoretical results.
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Fig. 5. (θ, y)–trajectory for safety control and initial
conditions(0, 1)

APPENDIX

To de£ne a regular strati£ed feedback, for a system
ẋ = f(x, u), we £rst need to recall the de£nition of
Withney strati£ed set.

De£nition 6. Let M be a subset of IRn and assume
M = ∪j∈JMj , whereJ ⊂ IN and Mj are disjoint
nonemtpy connected embeddedC1 submanifolds of
IRn. ThenM is a Withney strati£ed set if the collec-
tion P := {Mj}j∈J , called the strati£cation ofM , is
locally £nite and the following holds.

• If Mk ∩ cl(Mj) 
= ∅ (j 
= k) thenMk ⊂ ∂Mj

anddim(Mk) < dim(Mj).
• Let xn, yn ∈ Mj , n ∈ IN, xn, yn → x̄ ∈ Mk ⊂

cl(Mj) and denote by
n the straight line in IRn

containing the segment joiningxn with yn. If
Txn

Mj → T (in the Grassmannian) and
n → 
,
then
 ⊂ T andTx̄Mk ⊂ T .

The dimension ofM is dim(M) = maxj dim(Mj).

We restrict to the case of point target assumed to be
the origin. For our system we can choose anyx̄ ∈ S
as target.

De£nition 7. Let Ω be an open set containing the
origin. A regular strati£ed feedback onΩ is a 6–tuple
Ξ = (P,P1,P2,Π,Σ, s) such that

(RSF.1) Ω is a Withney strati£ed set with strati£ca-
tion P. {0} ∈ P. The elements ofP are called
“cells”.

(RSF.2) P\{{0}} is the disjoint union ofP1 (the set
of “type I cells”) andP2 (the set of “type II cells”),

(RSF.3) the feedbacks : {x : x ∈ P1 ∈ P1} → U
andΠ : P1 → P are maps,Σ : P2 → P1 is a
multifunction, with non empty values, such that the
following properties are satis£ed:

(RSF3.A) The functions is of classC1 on each cell.
(RSF3.B) If P1 ∈ P1 then f(x, s(x)) ∈ TxP1

(the tangent space toP1 at x) for everyx ∈ P1.
In addition, for eachx ∈ P1, if we let ξx be
the maximally de£ned solution of the initial value
problem

ξ̇ = f(ξ, s(ξ)) , ξ(0) = x , ξ ∈ P1 , (6)

and de£netx = sup Dom(ξx), then the limit

ξx(tx−) def= limt↑tx
ξx(t) exists and belongs to

Π(P1).
(RSF3.C) If P2 ∈ P2, then for eachP ∈ Σ(P2) and

x ∈ P2 there exists a unique curveξP
x : [0, tPx [→

Ω such that the restriction ofξP
x to ] 0, tPx [ is a

maximally de£ned integral curve of the vector £eld
f(·, s(·)) onP , andξP

x (0) = x.
(RSF3.D) On every cellP ∈ P1, x → tx is a

continuously differentiable function, and(t, x) →
ξx(t), (t, x) → ux(t) def= s(ξx(t)) are continuously
differentiable maps on the set

E(P ) def= {(t, x) : x ∈ P , t ∈ [0, tx]}
in the sense that they can be prolonged to maps of
classC1 on some open subset of IR× P containing
E(P ). If P2 ∈ P2 the same holds for everytPx , ξP

x ,
uP

x , with P ∈ Σ(P2).
(RSF3.E) For everyx ∈ Ω\{0}, if we let ξ̃x denote

a curve, starting atx, obtained by piecing together
the trajectories on every single cell, thenξ̃x ends at
the origin in £nite time.

The trajectories̃ξx of (RSF3.E) are called strati£ed
solutions toΞ.
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