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Abstract: In this paper we consider the problem of safe driving of the Dubins’ car on a straight
road where the steering control is in the fofin- /) s + hv wherev represents a free control
ands is an automatic control preventing the system from undesired behaviors that may result
from the action ofv. We design the safety contrelsteering the car to the center of the road

in minimum time which fact implies to consider discontinuous feedbacks, hence to face the
problem of de£ning a solution to a system with a discontinuous right hand side, and to deal
with the de£nition of regular synthesis used in optimal control. We thus consider generalized
solutions in Krasowskii and Filippov sense and guarantee that these solutions ¢yaae a
behavior, i.e., when onlys is acting ¢ = 0) the generalized solutions coincide with the
optimal synthesis trajectories. Finally, we illustrate our strategy by simulations.
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1. INTRODUCTION de£nition of regular synthesis used in optimal control.
The difEculty of the problem is not bounded to treat
Consider the system: the discontinuities ok. Indeed, even if solutions to

the equation: = s(x) are defned (in Caratheodory
& =F(z)+ (1 - h)Gi(z)s + hGz(x)v (1) sense), the presence of the free controiay provoke
non existence, see Example 1. We then consider gener-

wherez € R", F: R" — R", G;(z) e R™™ = alized solutions in Krasowskii and Filippov sense. As
1,2, h €]0,1], s € R™ andv € R™2. Herev repre- a drawback, we should guarantee that these solutions
sents a free control chosen by some controlleraisd  have agood behavior. More precisely, when only
a safety control that is an automatic control preventing is acting ¢ = 0) the generalized solutions should
the system from undesired behaviors that may resultcoincide with the optimal synthesis trajectories. This
from the action ofv. For example, equation (1) may is not always the case if the feedbackorresponds
model a car with a non expert driver choosing the to a synthesis in Boltyanskii-Brunovskii sense (see
controlv, ateacher or an automatic control choosing  (Boltyanskii 1966, Brunovsky 1980)).
a safety control, andl to be equal td when the driver ~ We propose a general strategy to deal with the above
is driving properly and equal t0 in case of danger.  problems. This consists of three steps. First we give
We choose the model of Dubins’ car with controlled conditions to ensure that the set of generalized solu-
steering (see section 2.2) and tackle the problem oftions for s have agood behavior. These conditions
safe driving of this car on a straight road. Moreover are based on a de£nition of regular stratifed feedback,
we want to design the safety contrelto steer the  modeled on those given by Boltyanskii and Brunovsky
car to the center of the road in minimum time. Thus and reported in the Appendix.
we have to consider discontinuous feedbacks, hencerhe second step consists in studying the set of gen-
to face the problem of de£ning a solution to (1) with eralized solutions to the system obtained putting the
a discontinuous right hand side, and to deal with the



regular stratifed feedbackin equation (1). Finally,

the third step amounts to ensuring that the generalized -0
solutions to this complete system do not enter the set %z
of bad con£gurations. Moreover, checking the strategy | v

by simulations is possible if approximate solutions X =0 -
converge to generalized ones, which is the case be-
cause we consider Krasowskii and Filippov solutions.
Based on this approach we then propose, in sec-
tion 4, two regular stratifed feedbacks that provide
safety driving for the Dubin’s car. The analysis of
the two dimensional case, developed in (Marigo and B to a safe regiols C R"™ in the most efEcient way
Piccoli 2002), permits to check that generalized solu- that is minimizing the time or a more complicate cost.
tions remain in the safe zone. The results are testedVe assume thaS and B are closedS N B = {
also by simulations described in the last section5. and £ = R™ \ (S U B) # 0. In order to obtain
Our problem is similar to that of air trafEc manage- this behavior automatically we shall desigrio be a
ment. considered in (Tomlimt al. 1998, Bicchiet smooth feedback which is equal@mn the bad region
al. 1998). Another approach would be to consider 13, 1 on the safe regio& and taking values if0, 1) in
ands in competition, but we want rather to design  the zoneZ, which we call “learning” zone because in
andh as feedbacks that should reject only some dan-this region the not expert controlleris helped by the
gerous con£guration towards whichcould lead the  “teacher”s. Moreovers is an optimal feedback that
system. Indeed, the idea is that in some "safe” zone in general may be not continuous. We thus obtain a
should act freely either meanwhile learning or becausesystem:
some risky choice can be convenient, e.g. in problems
from economics. Even more, in case of danger we &=F+(1-h)Gs(@)+hGu(t) (2)
would like s to steer the system towards the safe zone
minimizing the time or some more complicate cost Which is comprised of an ODE with an autonomous
functional. discontinuous term plus a time dependent smooth (in
The paper is organized as follows. In section 2.1 we z) one. Hence wherk is not constantly equal t0
state the problem of safety control and highlight the or 1 we immediately face the problem of defning a
drawbacks in the concept of solution that one has tosolution as illustrated by the following example.
face when treating this kind of control problem. A Example 1. Let & = (1 — h)s + hv wherez =
description of the safety control problem for the Du- (z1,72) € R?, h(z) = 1/2,
bins’ car is given in section 2.2. In section 2.3 we give
the de£nitions of Krasowskii and Filippov admissible s(x1,20) = {
solutions for our safety control problem. In section
3.1 we give condition on a feedback, associated to a
synthesis, such that the set of Krasowskii (Filippov) andu(t) = (0,1/2). Itis easy to check that there is no
solutions coincide with the trajectory of the synthesis. Caratheodory solution if we take the initial data on the
Next in section 3.2 we show that the safety control line zo = 0 (see £gure 1). <
system admits solutions in the sense given previously
and give the de£nition of safety and stabilizing feed-
back. Finally in section 3.3 we give further conditions 2.2 The Dubins Car in the Safety Control Model
on h ((H1), (H2)) under which a safety (stabilizing)
feedback actually is safe (stabilizing) for the system. \we introduce in this section the Dubins’ model of a
The problem of convergence for simulations and im- car moving on the plane and the safe driving problem.
plementations is also treated. The solution and simula-we consider a car moving only forward on a plane
tion results for the Safety control prOblem of Dubins’ at constant Ve|ocity, that we may assume is equa|
car are given in section 4 and 5 respectively. The tg 1, with controlled steering. The position of the
Appendix contains the de£nition of regular stratifed car is given byZ = (z,y,0) € R* x S!, where
feedback. (z,y) € R? indicates the position of the baricenter
of the car and) € S* is the angle formed by the car
axis with the positiver axis. The equation of motions

X,<0

Fig. 1. No Caratheodory solution for the system (3).

(1,0) ifas <0
1) ifme0 O

2. BASIC DEFINITIONS are:i = cos(0), § = sin(d), 6 = u, |u| < 1, where
u represents the control. We assume to have a street
2.1 Basic Modél for a Safety Control System described, up to change of coordinates, by the strip

X = {(z,y) : |y| < L} c R* whereL > 1.
In the system (1) we assume that.G,, Go smooth, The aim is to stay inside the street without hitting the
3C > 0st|F|, |G1, |G2| < C(1 + ||=]|) ands, v boundaries. The not expert driver will be modeled by
take values in compact sets. a random contrad and the safety control is a feedback
We wants to bring back the system from a bad region again indicated by, so the complete system becomes:



cos(0)
sin(0)
(1= n(2))s(Z) + h(Z)v(t)

whereh, s,v € [0,1]. We restrict to the case where
0 € [—m/2, /2] which means that we are not allowed
driving in the negative direction far. We de£ne the
bad zones as:

Z:

By = {(z,y,0) : —1+cos(d) <y—L<0,0c¢
[0,7/2]}

By = {(x,y,0) : 0 <y+L <1-—cos(d), 6 €
[=m/2,01}.

Indeed being in a point df; U B2 implies that the tra-

jectories corresponding to extremal velocities (hence

all trajectories) steer the car to hit the boundaryof
in time less than or equal to time= |0|. Observe that
the symmetric sets

P ={(zx,y,0) : =1+cos(d) <y—L <0,0¢
[—7/2,0]}
By = {(z,y,0) : 0 <y+L <1-—cos(d),f €
[0,7/2]},

Proposition 1. If sis bounded, then for evety € R™
and everyl" > 0, the set of Krasowskii (Filippov)
solutions de£ned of), T'] starting atz is a nonempty,
connected, compact subset®f0, 7], R™).

We want to use the concept of Krasowskii (Filippov)
solutions to de£ne a solution to our problem (2) with a
discontinuous boundedand measurable bounded

Def£nition 3. Given a bounded measurable control
a Krasowskii admissible solution to equation (2) is a
solution to the differential inclusion

t € F+4+(1—-h)GiSk(z) +hGov(t) (4)
GivenT,C > 0, the set of Krasowskii admissible
solutions for controls i1 ([0, T], CB,,) is the set of
solutions de£ned ift), T for the differential inclusion

are not accessible indeed the system could be in one

of these regions only if, some time before, its con£g-
uration was outsider. Hence we can de£ne the set

We de£ne Filippov admissible solutions in the same
way by replacingSx with S in equations (4) and

B to be the union of both the bad zones and the not\-/-

accessible zone# = B, U B} U By U BS. Finally we
de£ne the safe zone as

S={(z,y,0): L'+ 1—cos(f) <y<L —1+
cos(0)}

where L’ < L. The learning zoneC is given by
L=XX[-nm/2,7/2]\ (BUS).

2.3 Good Detnition of Solution for a Safety Control
System

To solve the problem of de£ning a solution we will use
the concept of Krasowskii and Filippov solutions, see
(Filippov 1988).

Defnition 1. Given a functiors : R” — R™ we asso-
ciate two multifunctionsSx and Sy in the following
way:

Sk(x) = ﬂ €0 s(x + dBy,)
>0

Sp(z) = ﬂ m

>0 meas(N)=0

@ s((x+6Bp)\ N)

whereco indicates the closed convex huBB,, is the
unit ball of R*, N ¢ R" andmeas is the Lebesgue
measure on R

Degnition 2. A Krasowskii (resp. Filippov) solution
to & = s(x) is a solution to the differential inclusion
& € Sk(x) (resp.@ € Sp(x)).

If s is bounded, the multifunction§x and Sr are
upper semicontinuous, with compact convex values. It
follows (see (Aubin and Cellina 1984)) the following:

3. GENERAL STRATEGY

To construct a safety feedback we use the deg£nition
of admissible Krasowskii (Filippov) solutions. Our
strategy is explained by the following scheme.

Step 1. Introduce a de£nition of feedback such that
the corresponding Krasowskii (Filippov) solutions
steer the system to a prescribed set possibly with
minimal cost.

Step 2. Construct a safety controd satisfying the
assumptions ofstep 1 and steering the system to
the safe zon& possibly with minimal cost. Prove
that for every bounded controlthere is a solution
to (4).

Step 3. Chooseh and useStep 2. to prove that so-
lutions do not enter the dangerous zone and tend
to S. Moreover prove that approximate solutions
converge to generalized solutions.

3.1 Sep 1: Regular Strati£cations

Now we give sufEcient conditions fayood behavior

of solutions, based on concepts of regular stratifed
feedback and stratifed solutions which are given in
the Appendix and are modeled on the de£nitions given
by Boltyanskii and Brunovsky, see (Boltyanskii 1966,
Brunovsky 1980).

Defnition 4. The regular stratifed feedback =
(P, Py, P2, 11, %, s) is Krasowskii admissible if the
following holds:

1. If Pisacell of type | then



la) If M is acell such thabM O PthenMisa  (H1) There existsU(B), open neighborhood of,
cell of type I. such thati(z) = 0 for everyz € U(B).

|5) Foreveryx € P, Sk(z) N T, P = s(z).

Iv) For each cellM such thatoM > P (hence
M is of type 1) the vector £eld on M can be
prolonged continuously t& and we callX,, the

obtained vector £eld o®. For eachr € P let - .
N(z) be the space normal t8, P, then there Proposition 3. Assume thaE is a safety feedback and

existsv € N(z) such that for every sequence f; !?;Z?Zfen asgél;é;. Jc;eennfgfgesg;uon to (5) with
{yn} in M with y,, — =z, if w = lim,, 7= i v ¢

thenX/(z) - v > 0andw - v > 0. ezl
2. If Pis of type Il then Proof. Assume by contradiction that-) is a solution
Ile) Foreach: € P let N(z) be the space normal  to (5) withz(0) ¢ B and there exists > 0 such that
to T, P, then there exist, € N(z) ande, > 0 z(t) € B. Lett be the £rst time such that(t) € B.
such that for everyu € Sk (), u - vy > €. From (H1) there exist§ > 0 such that and(z(t)) =
Moreoveru, ande, are continuous with respect 0 for everyt € [t — 4, ]. But then, on the set — 0, 1],
to z, inf{e, : = € P} > 0 andv, can be zisasolutiontar € F(z) + G1(z)Sk(x), hence it

We are now ready to prove that the set of Krasowskii
(Filippov) admissible solutions do not enter the bad
zoneB.

continuously prolonged toP. does not reacl at timet. O
113) Foreveryx € P, Sk (z) NT,P = (. Given a stabilizing feedback t8, we can chooseg in
I1~) For each cellM of type | such thabM > P the following way
andM ¢ Y:(P) the assumptiom)) holds. (H2) There exist$#/, open neighborhood ef(R"\S),
The same de£nition applies to Filippov admissible such thatu(z) = 0 for everyz € U.

regular stratifed feedback. With arguments similar to those used in the proof of

the previous proposition we immediately get:
Theorem1. (Marigo and Piccoli 2002) Letz = P prop yd

(P, P1, P, 11,3, 5) be a Krasowskii admissible reg-  pgoqition 4. Assume thatE is a stabilizing feed-
ular stratifed feedback then Krasowskii solutions to back toS and h is chosen as in (H2). Then every
s (not passing through the origin) coincide with strati-
£ed solutions. The same conclusion holds for Filippov
solutions.

solution to (5) with initial stater ¢ B does not enter
the set3 and reachs (possibly with minimal cost).

When implementing or simulating the feedbagk
3.2 Sep 2: Krasowskii and Filippov Solutions we have to consider approximations ©fIndeed in

the £rst case we have to use some sampling strategy,
Using standard tools of theory of differential inclu- While in the second we should consider some numer-
sions, it is easy to prove that for every £xed bounded ical methods. In both cases we have convergence to

measurable contral, we have a solution to (4). More  Krasowskii solutions as guaranteed by the following
precisely we have following: theorem (see Theorem 1 of Chapter 1.4 of (Aubin and

Cellina 1984)).

Proposition 2. If s is bounded and is measurable

and bounded then the set of Krasowskii (Filippov) Theorem2. LetS : R" — R™ be an upper semicon-

solutions to equation (4) is not empty. tinuous multifunction with compact convex values.
Let 2x,yr : [a,0] — R™ be measurable bounded

) ) » such that for a.et € [a,b] and everyd > 0, there

Usm.g.S.tep 1 we give also the Qe£n|t|on of safety and o isisi — k(t,8) such that for everye > k, there

stabilizing feedback for equation (2). existsz, § satisfyingj € S(&), |ax(t) — #| < 6 and

Defnition 5. We say thaE is a safety feedback, & ly (1) = 91 < 9. ;

; - Ve Sa e B If 2, converges a.e. to andy;, converges weakly in

is a Krasowskii (FI|IprV) gdm|53|ble regular stratifed L'([a,b], R™) toy, then for a.et, y(t) € S(x(t)).

feedback, all trajectories df € F/(z) + G1(x)Sk (x)

(for Filippov ¢ € F(x) + Gi(z)Sr(x)) starting

outsideB3, do not ente3. If, moreover, the solutions ~ To simulate the whole system (2) we have to guarantee

reachS (possibly with minimal cost) we say thatis that whenh is small the solutions are close to Kra-

a stabilizing feedback t6§. sowskii solutions tox = F(z) + G1(x)s(z). From
Theorem 2 we get:

3.3 Sep 3: Safe Evolution Proposition 5. If s is bounded, as thé'-norm of
v tends to zero, Krasowskii solutions to (4) tend to

Given a safety feedback, we can chodsdn the  solutions ofi € F(z)+ (1 —h(z))G1(z)Sk(z). The
following way same conclusion holds for Filippov solutions.



4. SAFETY CONTROL FOR THE DUBINS’ CAR -2 4 0 4 ni2

L L

We takeh : X' x [-m/2,7/2] — [0,1] smooth such ~ “™*
that A
MzZ)y={0 if ZeU(B) . /\
e X//
whered(Z) € (0,1), U(B) is a neighborhood of3 v

andcl(U(B)) NS = 0.
We propose two choices for. The £rst one comes - _— . _ _
from an optimal synthesis, while the second one is

desgned from the £rst one. Fig. 2. The classical time optimal synthesis for the
Consider the spadd, ). Since the safe zongsurely Dubins’ Car

contains the origin, we can consider the time optimal

feedback to the origin. This feedback was described in

(Bicchi et al. 2000) and the corresponding trajectories Lr s L
are represented in £gure 2. The optimal trajectories

reach the origin with bang-bang controls, thatis,

and only one switching unless they reach the value \ \

|0] = /2. In the latter case we have to use control

0, following a singular trajectory called turnpike, and \Q
then reach the origin with contret1. Two trajectories ° (/\ 0
separate the zone where the feedbackisfrom the \/

zone where it is—1, these are precisely the curves \/ ‘ ‘

y = 1—cos(), 8 € [-n/2,0) andy = —1 +
cos(#), 6 € [0,7/2]. Analyzing the one dimensional
and zero dimensional singularities, according to the -

turnpike

-L

-m/2 /4 0 /4 /2
classiEcation of (Marigo and Piccoli 2002), we have
the following Fig. 3. The suboptimal synthesis for the Dubins’ Car
Proposition 6. The time optimal control to the origin
is a stabilizing taS feedback.
e
Notice that if we are in the zone whej# > =/4 and P E

results in a minor cost of the safe control. Thus we
propose a second strategy whose trajectories are
depicted in £gure 3. This strategy has the advantage
of not leading the car to the lin@| = =/2 and thus
being more robust for disturbances. Also in this case
we have:

sign(f)y < —1+cos(#), then we could let = 0. This 5 oo
S

B TI06 S0 A RO vl e B 0.2

Fig. 4. Trajectory fors (h = 0 “Teacher”) ands + v

Proposition 7. The control is a stabilizing toS .
P oA g (h = 1/2 “Driver”)

feedback.

acting ¢ = 1/2). Then we check that the contrel
is a safe control or stabilizing 6 control, depending
5. SIMULATION RESULTS on the feedback. For simplicity we choose the safe

zoneS (whereh = 1) to beB(0, 0.3) the ball centered
In this section we present some simulation results ob-at the origin and radiug.3 and the learning zong to
tained for the suboptimal safety contro. be B(0,1) \ B(0,0.3), soh = 0 outsideB(0, 1). In
A £rst simulation tests thgood behavior of the sta-  case of stabilizing contrdl = 0 outsideB(0, 0.3).
bilizing feedback both in absence and in presence ofln pictures 5 we show the behaviour, on the 6)—
disturbance (the random contrgl. In the £rst picture  plane of the whole system under safe control (with
(Eg.4) we depict two trajectories on tfie, y) plane: satisfying condition (H1)) starting from poird, 1),
one, labeled “Teacher”, for the case of only the safe which is on the boundary of the bad regiBn
control acting & = 0) and one, labeled “Driver”,  Other simulations, not reported for space and £le
when both the safe control and the free control are length constraints, con£rm the theoretical results.



and defnet, = sup Dom(&;), then the limit

e o Ex(te—) d:ef limy 4, &,(t) exists and belongs to

3 (P,

! (RSF3.C) If P, € P,, then for eachP € ¥(P») and

T x € P, there exists a unique cunég” : [0t [—

) such that the restriction of? to ]0,tI[ is a

maximally deEned integral curve of the vector £eld

f(,s(-)) on P, and¢r’ (0) = .

Fig. 5. (0, y)—trajectory for safety control and initial (RSF3.D) On every cellP € P, z — t, is a
conditions(0, 1) continuously differentiable function, and, z) —

Ex(t), (t, ) — ug(t) dffs(gw(t)) are continuously
differentiable maps on the set

EP)C (1a):we P, e L]

in the sense that they can be prolonged to maps of

classC! on some open subset of R P containing

E(P). If P, € P, the same holds for evety, ¢Z,
(RSF3.E) For everyz € Q\{0}, if we let¢, denote

a curve, starting at, obtained by piecing together

the trajectories on every single cell, thenends at

the origin in £nite time.

APPENDIX

To def£ne a regular stratifed feedback, for a system
z = f(xz,u), we £rst need to recall the de£nition of
Withney stratifed set.

Defnition 6. Let M be a subset of R and assume
M = UjecsM;, whereJ C N and M; are disjoint
nonemtpy connected embeddéd submanifolds of
R"™. ThenM is a Withney stratifed set if the collec-
tion P := {M;} ¢, called the stratifcation a¥/, is R
locally £nite and the following holds. The trajectorieg, of (RSF3.E) are called stratifed

o If My ncl(M,) # 0 ( # k) thenM, c opr;  SoMioNS to=.
anddim(My) < dim(M;).
o letx,,y, € Mj,neN, 2,y =T € M C
cl(M;) and denote by, the straight line in R
containing the segment joining,, with y,,. If Aubin, J.P. and A. Cellina (1984pifferential Inclu-
T, M; — T(in the Grassmannian) arfg — ¢, sions. Springer-Verlag.
then{ C T andT; M C T. Bicchi, A., A. Ballucchi, B. Piccoli and P. Soueres
(2000). Stability and robustness of optimal syn-
thesis for route tracking by dubins’ vehicles. In:
Proc. IEEE Int. Conf. on Decision and Control.
We restrict to the case of point target assumed to beBicchi, A., A. Marigo, G. Pappas, M. Pardini, G. Par-
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(RSF.1) Q is a Withney stratifed set with stratiEca-
tion P. {0} € P. The elements of° are called
“cells”.

(RSF.2) P\{{0}} is the disjoint union ofP; (the set
of “type | cells”) andP, (the set of “type Il cells”),

(RSF.3) the feedbaclk : {x : z € P, € P1} - U
andIl : P, — P aremapsy : P, — Py isa
multifunction, with non empty values, such that the
following properties are satisfed:

(RSF3.A) The functions is of classC! on each cell.

(RSF3B) If P, € P, then f(x,s(z)) € T.P
(the tangent space tB;, at z) for everyz € P;.

In addition, for eache € P, if we let &, be
the maximally de£ned solution of the initial value
problem

fzf(&,s(f)),f(O)::E,§€P1, (6)



