
EMBEDDED CODE GENERATION FOR EFFICIENT
REINITIALIZATION

Pieter J. Mosterman and John E. Ciolfi

Simulation and Real-Time Technologies, The MathWorks, Inc., Natick,
MA 01760-2098,

[pieter j mosterman|ciolfi]@mathworks.com

Abstract: Embedded control system design involves continuous time, discrete event mode
switching, and discontinuities in system behavior and requires support for: (i) continuous
behavior, (ii) discrete event behavior, and (iii) re-initialization when discrete events occur. The
graphical block diagram formalism that supports continuous behavior modeling is extended
by logic components that seamlessly integrate. Re-initialization is supported bystate reset
ports andstate outputports of the integrator component. In addition, the dynamic semantics
of a formalism is specified by acomputational model. For MATLAB -SIMULINK this consists
of a number of interface methods that are called at pre-defined points in the model execution.
Automatic generation of efficient embedded code allows the use of high-level modeling
formalisms for design and analysis.

Keywords: Embedded systems, Hybrid systems, Induction motor design, Numerical
simulation, Modeling

1. INTRODUCTION

Embedded computing power, often of a distributed
nature, is increasingly becoming available in a wide
variety of engineered systems ranging from consumer
products to automobile control and aircraft data ac-
quisition systems. To exploit the ultimately ubiqui-
tous computing power, embedded software has to be
produced that captures increasingly complex func-
tionality. Advances in software design have shown
that managing the complexity of large software is ex-
tremely difficult and requires systematic approaches.
For embedded software the problem is exacerbated
by the harsh requirements on performance and strict
limitations on resources. In addition, requirements for
embedded software are quite different from those of,
e.g., interactive software (Lee, 2000). For example, for
real-time systems, the result of a computation is only
correct if it is available at a given point in time. Also,
instead of guarantees for termination, the embedded
software has to be guaranteednotto terminate or dead-
lock.

As a result, embedded software is mostly produced by
domain engineers. Model integrated computing (Karsai
et al., 1998) addresses the need for domain engineers
to design embedded systems by generating domain
specific modeling formalisms that provide an intuitive
and highly constrained modeling environment and
model interpreters that facilitate automatic generation
of executable code. In addition, this paradigm bridges
the gap between physical system modeling and spec-
ification of the information system which facilitates
holostic design approaches (e.g., mechatronics).

Now, the combination of continuous behavior exhib-
ited by, e.g., physical systems and PID controllers,
with discrete event behavior because of, e.g., discrete
event and sampled data control, leads to systems that
comprise both continuous as well as discrete phenom-
ena. Such systems are referred to ashybrid dynamic
systemsand have been the subject of much research re-
cently (Mosterman, 1997). Because it combines con-
tinuous behavior with discrete mode switching, em-
bedded control is characteristic for hybrid dynamic
systems.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



To illustrate,considerthe systemin Fig. 1 that rep-
resentsthe control of the headof a CD player. The
physical process,or plant, is modeledas a second
order system.It is controlledby one of two control
laws: When the headis far away from the desired
track,a coarsecontrol law quickly movestheheadto
the proximity of the desiredposition.High precision
control then takes over to fine tune the position. A
logic control structureselectsthe appropriatecontrol
law dependingon the systemvariables,i.e., in this
casepositionerror.

Fig. 1. Multiple-modecontrol.

The generationof efficient embeddedsoftware for
hybriddynamicsystemshasto beexplicitly concerned
with the natureof thesesystems.Efficiency can be
achieved by separatingthe systeminto threedistinct
parts.

Thecontinuousbehavior is bestdescribedby differen-
tial equations,often in anexplicit ordinarydifferntial
equation(ODE) form. Numericalintegrationroutines
solvestheseODEsto generatetrajectoriesof contin-
uousbehavior andachievereal-timebehavior because
explicit implementationscanbeapplied.

Thediscreteeventbehavior is mostefficiently handled
by eventdrivensimulators.Sampleddatabehavior can
beincludedin thispart,in whichcase,however, inter-
action with the continuousbehavior exists that may
complicatesimulation(e.g.,VHDL-AMS simulator).

Upon startup, a set of values has to be available
to initialize the systemstate.Furthermore,whenever
eventsoccur, the continuousmodelmay changeand
new initial valuesmayhave to becomputed.This (re-
)initialization may be arbitrarily complex, not only
in terms of the computationsbut also in their part
of the execution order, and involve extensive logic
conditions.In general,themodelinitializationpartcan
be separatedfrom the model part that specifiesthe
dynamicsof continuousbehavior.

This paperevaluatesthemodel(re-)initializationpart
of MATLAB-SIMULINK (SIMULINK, 1997)andhow
it combinesthis with the continuousand discrete
modelpartsbothin termsof agraphicalformalismsas
well asthecomputationalmodel(Giraultetal., 1999).
Themodeling,simulation,andcodegenerationof the

electricalcircuitry of aninductionmotoris described.
This circuitry consistsof a numberof switches,com-
muting diodes,and inductorsthat may be switched
in series,and,therefore,be directly coupled.Conse-
quently, thisconstitutesahybriddynamicsystemwith
a variablesetof statevariablesandrun-timeinvoca-
tion of algebraicconstraintsbetweenstatevariables,
which correspondsto a higherindex systemof differ-
entialandalgebraicequations(DAE) (Gear, 1988).

2. PROGRAM SYNTHESIS

Muchof thedesignandanalysisof controllawsfor en-
gineeredsystemsreliesoncomputersimulationof the
controlledplantsystem.In thesephases,issuessuchas
stabilityandperformanceareassessed.Thisrequiresa
control law specification,or model,andtypically this
is availablein theform of blockdiagrams.In addition,
a modelof thephysicalplantis requiredaswell.

Oncethis analysishasresultedin a desirableimple-
mentation,the control is translatedinto embedded
software.This software is executedon an embedded
processorandagaintestedsubstitutingtheplantmodel
for the actualphysicalprocess,i.e., hardware-in-the-
loopsimulation.Thismayresultin changesto thecon-
trol law andanew roundof designchangesis initiated
first in simulationandthenagainthe controllerhard-
ware implementationcombinedwith a plant model.
The repeatedanalysisand translationof the control
law is costly, error-prone,andunwieldy.

Recently, automaticcode generationfacilities have
becomeavailablethatallow for automatictranslation
from a block diagram that capturesa control law
specificationor plant model to embeddedreal-time
code(Harel,2001;Halbwachsetal., 1991).Thiscode
generationstephasto satisfystringentconstraintsim-
posedon embeddedcodeto fit theharshrequirements
on resourcesin this domain(Lee, 2000). Moreover,
thecodehasto bereadableandtransparantto provide
a first passof confidence.

A straightforward code generationapproachusesa
library of sourceandcompiledcodefor theprimitives
of the modeling formalism. Analysis of the model
topologygeneratestheconnectionconstraintsandal-
lows sortingtheinstancesof library componentsused
in the model to obtainan executionorder. This then
forms the basisfor the main procedurethat executes
modelbehavior.

The functionality embodiedby each of the model
componentsis typically capturedby anumberof inter-
facemethodsthathave to beimplemented.For exam-
ple, the S-Functioninterfaceof MATLAB-SIMULINK

requiresthe functionsin Table1 to be implemented.
Similar functionality is presentin Ptolemy(Davis, II
et al., 1999)andDSblocksoftware.

�

�
Seehttp://www.modelica.org/dsblock/dsblock4.0a.shmtl.



Table1. S-FunctionRoutines.

S-Function Routine Simulation Stage

mdlInitializeSizes Initialization
mdlGetTimeOfNextVarHit Calculationof next sample

hit (optional)
mdlOutputs Calculationof outputs
mdlUpdate Updatediscretestates
mdlDerivatives Calculationof derivatives
mdlTerminate Endof simulationtask

Fig. 2. Executionorder.

The generatedcode calls the particular S-function
routinesat the correctpoint in the executionorder.
This executionorder is depictedin Figure 1. When
simulationstarts,theinitializationproceduresarefirst
executed.After this,sampleddatasystemsallow com-
putationof the next point in time at which an event
occurs.Continuoussimulationis theninvokedup till
this time point. To this end,first the entiresystemis
evaluatedsoall variablesareknown, andthediscrete
variables,i.e., thosethat only changeat events,are
set.Continuoussimulationthen repeatedlyevaluates
thederivativesandoutputsof thesystemto determine
the continuousevolution. A monitoringmodulehalts
continuousintegration when an event occursbefore
the pre-computedevent time point by computingthe
zerocrossingof systemvariables.Otherwise,integra-
tion is performedtill this time point is reached.Next
thediscreteeventmodelpart is evaluated,which may
includeiteration,andthesameprocedureis repeated.

In order to generateefficient code, the modelsare
separatedin (i) the (re)initializationpart thatpertains
to the computationsrequiredbeforecontinuoussim-
ulation canstart,(ii) the discretemodelpart that en-
tails thevariablesthatareconstantduringcontinuous
simulation, i.e., variablesthat only changeat event
times,and(iii) the continuouspart thatembodiesthe
differentialequations.

3. INITIALIZA TION

A characteristicof hybrid dynamic systemsis that
duringsimulationeventsoccur. At suchanevent,and
when simulationstarts,initial conditionshave to be

computed.For example,in caseof a bouncingball,
whentheball hitsthefloor, themodeldoesnotchange,
but is reinitializedwith new velocity �������	� 
 , with
� 
 thevelocity immediatelybeforethecollision and �
thecoefficientof restitution.

A graphicalmodelingformalismhasto supportmod-
eling the re-initializationof statevariableswhich can
be extremely involved, require accessto different
modelvariablesandapplya manifoldof initialization
conditions.In the generalcaseof a systemof differ-
ential and algebraicequations,the generalizedstate
space(Vergheseet al., 1981)is of a higherdimension
thanthespaceof valid or consistentinitial values.This
issueis not discussedany furtherin this paper.

4. GRAPHICAL FORMALISM

Graphical formalisms tailored to the needsand re-
quirementsof a particulardomainarecritical to pre-
vent unnecessaryerrors becauseof, e.g., required
work-arounds,non-intuitive semantics,missing and
easily overlooked constraints.Control law design
is deeply rooted in the block-diagramformalism,
and, therefore, the MATLAB-SIMULINK graphical
model developmentenvironment is well-suited for
suchtasks.In addition,physicalsystemmodelingap-
proachesbasedon deriving a mathematicalformula-
tion (in contrastto energybasedmodelingapproaches,
e.g.,bondgraphs(Karnoppet al., 1990))alsofit the
block-diagrammodelingparadigmverywell.

Block diagramsfacilitatea setof basicmathematical
operationssuch as addition and multiplication, and
more involved functionssuchas trigonometrics.An
importantplaceis takenby thetime-integrationopera-
tor. Thedifferentialequationsbecauseof thisoperator
requiretheuseof numericalsolversto generatebehav-
iors.Combiningit with othermathematicaloperations
allows for complex nonlinearsetsof ODEs.

The needfor discreteevent behavior in control law
switchingor to modelphysicalswitchingphenomena
is addressedby facilitating a set of logic operators.
Thesesatisfythesamegraphicalsyntaxandtheir exe-
cutionis specifiedin aform thatis compatiblewith the
otherblock diagramelements,which allows a seam-
lesscombinationof the different typesof operators.
For example,embeddinga particularcontrol law in a
sub-systemallows theenablinganddisablingof these
computationsdependingonthemodeof thecontroller
at a higherhierarchicallevel. This is graphicallyde-
pictedby connectinga decisionstructureto anenable
port of the sub-systemas illustrated for the coarse
andfine control in Fig. 1. Theexactsemanticsof the
activation can now be selected,i.e., on a rising or
falling edge,both or for a particularlevel. In Fig. 1
the different control laws are activatedbasedon the
level of a logical signal.



When mixing continuousand discretebehavior, the
re-initialization takes a prominentplace.In its most
basicform, this is presentin theintegratorblockasan
additionalinput, the stateresetport, that connectsto
a computationalstructuresolely presentfor this pur-
pose.Again,thisstateresetporthasto begiventhede-
siredsemanticsasto whento updatetheinternalstate
of an integrator. To illustrate,considerthe bouncing
ball examplein Fig. 3. Whenthelogic decisionstruc-
ture in thecollision detectionblock detectsthe rising
edgeof a zero-crossing,i.e., theball hits thefloor, the
integratorvalueis re-initializedto reversethevelocity,
while taking a coefficient of restitutioninto account.
Note that the velocity changeis computedfrom the
velocity immediatelybefore the bounce.As updat-
ing the value storedby the integrator would affect
the computation,the stateoutputport is usedinstead
of the normal integratoroutput.This additionalport
is specifically included in the MATLAB-SIMULINK

block diagrammodelingformalismto facilitatesuch
computations.

Fig. 3. Bouncingball MATLAB-SIMULINK model.

Re-initializationtakesplacewhenaneventoccursand
themdlOutputs methodis executed.
void MdlOutputs(int T tid)�

if (ssIsContinuousTask(rtS, tid))
�
/* Sample: [0.0, 0.0] */

/* Integrator: ’ � Root  /position’ */
rtB.position = rtX.position CSTATE;
/* RelationalOperator: ’ � Root  /collision detection’
* incorporates:
* Constant: ’ � Root  /floor’ */
rtB.collision detection = (rtB.position ��� rtP.floor Value);
/* Gain: ’ � Root  /restitution’
*
* Regarding ’ � Root  /restitution’:
* Gain value: rtP.restitution Gain */
rtB.restitution = rtX.velocity CSTATE * rtP.restitution Gain;
/* Integrator: ’ � Root  /velocity’ */
if (ssIsMajorTimeStep(rtS))

�
ZCEventType zcEvent;
/* evaluate zero-crossings */
zcEvent = rt ZCFcn(RISING ZERO CROSSING,

&rtPrevZCSigState.velocity ZCE, rtB.collision detection);
if (zcEvent|| rtDWork.velocity IWORK.IcNeedsLoading)

�
rtX.velocity CSTATE = rtB.restitution;�

rtDWork.velocity IWORK.IcNeedsLoading = 0;�
rtB.velocity = rtX.velocity CSTATE;��

This implies that the re-initialization equations(for
the bouncingball, this is the rtB.restitution
assignment)aremixedwith continuousbehavior, and,
therefore,evaluatedduring continuousintegrationas
well. Thisincursanefficiency penaltythatcanbecome
significantwhen extensive re-initialization computa-
tionsarerequired.

Note that there-initializationbecomesmorecomplex
asmorecomplex modelstructuresareto befacilitated.

For example,it may be desirableto conditionallyre-
initialize theentirestatevectorof a sub-system.This
could be the casein the multiple-modecontrol ex-
amplein Fig. 1 whensophisticatedhigh-ordermodel
basedcontrollawsareapplied.

5. THE AC INDUCTION MOTOR

Theelectricalcircuitry of aninductionmotorcontains
a numberof cascadedinductances,��� , eachwith par-
asitic resistance,��� ,, asshown in Fig. 4. To control
theflux in eachof theinductors,they areconnectedin
seriesseparatedby a bridge consistingof a switch to
groundanda switch to the sourcevoltage, ����� . Each
switchis equippedwith a commutingdiodeto protect
theelectricalcircuit from voltagespikes.

I� 1R� 1

V
�

cc

R� 2 I� 2 R� 3 I� 3

H T L H

Fig. 4. Electricalcircuit of aninductionmotor.

Themotoris drivenby changingtheflux in theinduc-
tors, dependingon the angleof the rotor. To achieve
thedesiredflux values,eachinductorcanbeconnected
to the sourcevoltageandgroundin two differentdi-
rections,causinga voltagedrop ����� or ������� . A com-
plex schemeclosesand openseachof the switches.
Whena switch opens,the correspondingcommuting
diodemaybecomeactive until the two connectedin-
ductorsdraw thesamecurrentandthey canbecoupled
without inducinga spike. If a bridgeclosesa current
pathto � ��� it operatesin its high ( � ) state,if it closes
acurrentpathto ground,it operatesin its low (  ) state,
andif neithercurrentpathis closed,it is in its tri ( ! )
state,seeFig. 4.

In casea bridge is in its tri state,the two connected
inductors are coupled and their fluxes, " � , are al-
gebraically related.This meansthe state spacere-
ducesby onedimensionanda redistribution, i.e., re-
initialization, is requiredbasedon the fluxes imme-
diately beforeswitching to the tri state," 
 � . This re-
initialization is governedby conservationof flux prin-
ciple andcanbe computedusingthe inductanceval-
ues,  #� , of the inductorsinvolved. Because,in gen-
eral,multiple bridgesmaybe in their tri stateseveral
inductorsmaybedirectly connected.To computethe
new flux valuein eachinductor, thegeneralformula

"��$�% &�
')( " 
(' (  ($*,+.-�/102+ "

(4365 0 (1)

canbeapplied(Mostermanetal., 2000).Here
5

is the
setof all states" ( thatarecoupled,i.e., algebraically



related,with " � . Basedon this computation,the re-
initialization for eachcomponentonly requiresnu-
mericalknowledgeof thetotal valueof thecombined
states," ( , that arecollapsedinto one, "�� , andthe pa-
rametersthatdeterminetheweighting,  ( . This infor-
mationis additionallysuppliedto eachmodelcompo-
nent.No algebraicknowledgeof amodelcomponent’s
internalstructureandalgebraicmanipulationsarere-
quiredto executethere-initialization.

The systemis modeledin MATLAB-SIMULINK by a
ring of inductor/resistorcomponents.The block di-
agramof the constituentequationsof thesecompo-
nents are shown in Fig. 5. The crucial elementin
the model is the integrator (in the right-handpath).
The stateresetport of this integrator is connectedto
the block diagramstructurein the left-handpart of
the model that computesthe new flux valuesbased
on the inductancesand flux valuesof the connected
inductor/resistorcomponents.Note that this includes
the flux value, i.e., value of the integrator block, of
theinductor/resistoritself. If noprovisionsweretaken,
this would leadto circulardependency. Therefore,the
stateoutput port of the integrator block is usedin-
stead.This port suppliesthevalueof theinternalstate
updatedat anotherpoint in the computationalorder,
therebybreakingthedependencies.

Fig. 5. Model of resistor/inductorcomponent.

Control logic switchingis modeledby a statetransi-
tion table and comparatorsmodel the internal event
diodeswitching.A simulationrun of six diodescon-
nectedas a ring, with three bridge statechangesis
shown in Fig.6.Thesolidcurveshowshow thecurrent
from one inductor changesover time to achieve de-
siredflux values.The dashedcurvesrepresentneigh-
boring currentsthat may be coupledwith the current
of the solid or dashedcurves. In Fig. 6(a), the gray
intervals show periodsof time when the diodesbe-

come active, the commutingphase,resulting in
5 


hybrid behavior, i.e., trajectoriesare continuous.In
Fig.6(b)thecontinuoustransientsbecauseof thecom-
mutingdiodesareabstractedaway, i.e., thediodesare
removedfrom the model,to obtainfastersimulation.
As aresult,thesystemincludesdiscontinuitiesin state
variablesthat are handledbasedon conservation of
flux.

Fig. 6. Inductionmotorsimulationwith (a) andwith-
out (b) commutingdiodes.

Theautomaticallygeneratedembeddedcodecontains
two methodsthat pertainto the re-initialization.The
method
void MdlOutputs(int T tid)�

/* local block i/o variables */
real T rtb Product3;
real T rtb temp15;
real T rtb temp16;
if (ssIsSampleHit(rtS, 1, tid))

�
/* Sample: [0.2, 0.0] */

/* Memory: ’ � S1  /Memory’ */
rtB.Memory = rtDWork.Memory PreviousInput;�

if (ssIsContinuousTask(rtS, tid))
�
/* Sample: [0.0, 0.0] */

/* Product: ’ � S1  /Product3’ incorporates:
* Constant: ’ � S1  /L’ */
rtb Product3 = rtP.L Value * rtX.Integrator CSTATE;�

if (ssIsSampleHit(rtS, 1, tid))
�
/* Sample: [0.2, 0.0] */

/* Math: ’ � S1  /Math Function’ incorporates:
* Sum: ’ � S1  /Sum4’
* Constant: ’ � S1  /L’ */
rtB.Math Function = 1.0/((0.0 + rtP.L Value + 0.0));�

if (ssIsContinuousTask(rtS, tid))
�
/* Sample: [0.0, 0.0] */

/* Product: ’ � S1  /Product’ incorporates:
* Product: ’ � S1  /Product2’
* Sum: ’ � S1  /Sum7’
* Constant: ’ � S1  /R’ */
rtB.Product = ((0.0 + rtb Product3 + 0.0) * rtB.Math Function) * rtP.R Value;
/* Integrator: ’ � S1  /Integrator’ */
if (ssIsMajorTimeStep(rtS))

�
ZCEventType zcEvent;
/* evaluate zero-crossings */
zcEvent = rt ZCFcn(RISING ZERO CROSSING,
&rtPrevZCSigState.Integrator ZCE, rtB.Memory);
if (zcEvent|| rtDWork.Integrator IWORK.IcNeedsLoading)

�
rtX.Integrator CSTATE = rtB.Product;�

rtDWork.Integrator IWORK.IcNeedsLoading = 0;�
rtB.Integrator = rtX.Integrator CSTATE;�

if (ssIsSampleHit(rtS, 1, tid))
�
/* Sample: [0.2, 0.0] */

/* Sum: ’ � S1  /L(k+1)’ incorporates:
* Constant: ’ � S1  /L’ */
rtb temp15 = rtP.L Value + 0.0;
/* Sum: ’ � S1  /L(k-1)’ incorporates:
* Constant: ’ � S1  /L’ */
rtb temp15 = 0.0 + rtP.L Value;
/* Sum: ’ � S1  /L(k-1)1’ incorporates:
* Constant: ’ � S1  /L1’ */
rtB.L k 1 1 = rtP.L1 Value - rtB.Memory;
/* Math: ’ � S1  /Math Function1’ incorporates:
* Constant: ’ � S1  /L’ */
rtB.Math Function1 = 1.0/(rtP.L Value);�

if (ssIsContinuousTask(rtS, tid))
�
/* Sample: [0.0, 0.0] */

/* Product: ’ � S1  /Product1’ incorporates:
* Sum: ’ � S1  /Sum’ */
rtB.Product1 = rtB.Math Function1 * (0.0 - rtB.Product);
/* Sum: ’ � S1  /il(k+1)’ */
rtb temp16 = rtb Product3 + 0.0;
/* Sum: ’ � S1  /il(k-1)’ */
rtb temp16 = 0.0 + rtb Product3;



��

is calledat eachsystemevaluationfor computingthe
continuousbehavior. However, mostof the codeper-
tains to the re-initializationof the integratorelement
Integrator. How to adjust the code generation
facilitiesof MATLAB-SIMULINK to optimizethegen-
eratedcodefor handlingexternal blocks, producing
compactand readablecodeis subjectof current re-
search.

6. CONCLUSIONS

Control law designrequiressupportfor: (i) contin-
uousbehavior, (ii) discreteevent behavior, and (iii)
re-initialization when discreteevents occur. In the
graphicalblockdiagramformalismthatsupportsmod-
eling of continuousbehavior logic componentsfor
discretebehavior are seamlesslyintegrated.The re-
initializationis supportedby stateresetportsandstate
outputportsof theintegratorcomponent.

The dynamicsemanticsof a graphicalformalism is
specifiedby a computationalmodel. For MATLAB-
SIMULINK this consistsof interfacemethodsthatare
called at pre-definedpoints in the model execution.
Efficientreal-timecodegenerationeliminatestheneed
for manualsoftwaredesignandallowstheuseof high-
level modelingformalismsin the designandanalysis
stagesto improve understandingof systembehavior.
Moreover, it closelyfits modelingof physicalsystems
andmorequicklyorevenautomaticallyexperimenting
with differentimplementations.

7. REFERENCES

Davis, II, J.,et al. (1999).PtolemyII – heterogeneous
concurrentmodelinganddesignin java.Dept.of
EECS,UC Berkeley.

Gear, C. W. (1988). Differential-algebraicequation
index transformations.SIAMJ. on Scientificand
StatisticalComputing9(1), 39–47.

Girault,A., B. LeeandE. A. Lee(1999).Hierarchical
FiniteStateMachineswith Multiple Concurrency
Models.IEEETrans.onComputer-AidedDesign
of Integrated Circuits and Systems18(6), 742–
760.

Halbwachs,N., P. RaymondandC.Ratel(1991).Gen-
eratingefficient codefrom data-flow programs.
In: Third Intl. Symp.on ProgrammingLanguage
ImplementationandLogic Programming.Passau,
Germany.

Harel, D. (2001). From play-in scenariosto code.
Computer34(1), 53–60.

Karnopp,D.C., D.L. Margolis and R.C. Rosenberg
(1990).SystemsDynamics:A UnifiedApproach.
2 ed..JohnWiley. New York.

Karsai, G., J. Sztipanovits and H. Franke (1998).
TowardsSpecificationof ProgramSynthesisin
Model-Integrated Computing. In: Proc. of the
ECBS-98. Jerusalem,Israel.pp.226–233.

Lee,E. A. (2000).What’s Aheadfor EmbeddedSoft-
ware.Computer33(9), 18–26.

Mosterman,P. J. (1997). Hybrid Dynamic Systems:
A hybrid bondgraphmodelingparadigmandits
applicationin diagnosis.PhD dissertation.Van-
derbilt University.

Mosterman, P. J., P. Neumann and C. Preusche
(2000).Modeling SystemsWith VariableAlge-
braic Contraintsfor Explicit Integration Meth-
ods.In: ADPM. pp.251–256.

SIMULINK (1997). Dynamic SystemSimulation for
Matlab. TheMathWorks.

Verghese,G. C., B. C. Lévy and T. Kailath (1981).
A generalizedstate-spacefor singularsystems.
IEEE Trans. on AutomaticControl 26(4), 811–
831.


