Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

EMBEDDED CODE GENERATION FOR EFFICIENT
REINITIALIZATION

Pieter J. Mosterman and John E. Ciolfi

Simulation and Real-Time Technologies, The MathWorks, Inc., Natick,
MA 01760-2098,
[pi eter j _nmosterman|ciol fi] @uat hwor ks. com

Abstract: Embedded control system design involves continuous time, discrete event mode
switching, and discontinuities in system behavior and requires support for: (i) continuous
behavior, (ii) discrete event behavior, and (iii) re-initialization when discrete events occur. The
graphical block diagram formalism that supports continuous behavior modeling is extended
by logic components that seamlessly integrate. Re-initialization is supportsthteyreset

ports andstate outpuports of the integrator component. In addition, the dynamic semantics
of a formalism is specified by @omputational modeFor MATLAB -SIMULINK this consists

of a number of interface methods that are called at pre-defined points in the model execution.
Automatic generation of efficient embedded code allows the use of high-level modeling
formalisms for design and analysis.

Keywords: Embedded systems, Hybrid systems, Induction motor design, Numerical
simulation, Modeling

1. INTRODUCTION As a result, embedded software is mostly produced by
domain engineers. Model integrated computing (Karsai
et al, 1998) addresses the need for domain engineers
to design embedded systems by generating domain

Embedded computing power, often of a distributed specific modeling formalisms that provide an intuitive
nature, is increasingly becoming available in a wide and highly constrained modeling environment and
variety of engineered systems ranging from consumermodel interpreters that facilitate automatic generation
products to automobile control and aircraft data ac- of executable code. In addition, this paradigm bridges
quisition systems. To exploit the ultimately ubiqui- the gap between physical system modeling and spec-
tous computing power, embedded software has to beification of the information system which facilitates
produced that captures increasingly complex func- holostic design approaches (e.g., mechatronics).
tionality. Advances in software design have shown

that managing the complexity of large software is ex- ited by, e.g., physical systems and PID controllers,

tremely difficult and requires systematic approaches.with discrete event behavior because of, e.g., discrete

For embedded sqﬁware the problem is exacerbat_edevem and sampled data control, leads to systems that
by the harsh requirements on performance and strict

Y ”» : comprise both continuous as well as discrete phenom-
limitations on resources. In addition, requirements for

bedded soft ite diff o f h ; ena. Such systems are referred tchgbrid dynamic
embedded sottware are quite direrent from those o ' systemsand have been the subject of much research re-

e.g., i_nteractive software (Lee, 2000). For ex_ample, for cently (Mosterman, 1997). Because it combines con-
real-time systems, the result of a computation is only tinuous behavior with discrete mode switching, em-

correct if it is available at a given point in time. Also, bedded control is characteristic for hybrid dynamic
instead of guarantees for termination, the embedded

. systems.
software has to be guarantesatto terminate or dead- 4
lock.

Now, the combination of continuous behavior exhib-

To illustrate, considerthe systemin Fig. 1 that rep-
resentsthe control of the headof a CD player The
physical process,or plant, is modeledas a second
order system.lIt is controlledby one of two control
laws: When the headis far away from the desired
track,a coarsecontrollaw quickly movesthe headto

the proximity of the desiredposition.High precision
control then takes over to fine tune the position. A

logic control structureselectsthe appropriatecontrol
law dependingon the systemvariables,i.e., in this
casepositionerror.

precision

¥
o
5

>

setpoint

LEx %
NOT (invert

threshold

n
In1 Outl

¥

o0 arse Scope

=1)

= |

plant

Fig. 1. Multiple-modecontrol.

The generationof efficient embeddedsoftware for
hybrid dynamicsystemsasto beexplicitly concerned
with the natureof thesesystems Efficiency can be
achievzed by separatinghe systeminto threedistinct
parts.

Thecontinuousdehaior is bestdescribedy differen-
tial equationspftenin anexplicit ordinarydifferntial
equation(ODE) form. Numericalintegrationroutines
solvestheseODESsto generatdrajectoriesof contin-
uousbehaior andachiese real-timebehaior because
explicit implementationganbeapplied.

Thediscreteaventbehavior is mostefficiently handled
by eventdrivensimulators Samplediatabehaior can
beincludedin this part,in which case however, inter-
actionwith the continuousbehaior exists that may
complicatesimulation(e.g.,VHDL-AMS simulator).

Upon startup, a set of values hasto be available
to initialize the systemstate.Furthermorewhenever
eventsoccur, the continuousmodel may changeand
new initial valuesmay have to be computedThis (re-
)initialization may be arbitrarily complex, not only
in terms of the computationsbut also in their part
of the execution order, and involve extensie logic
conditionsIn generalthemodelinitialization partcan
be separatedrom the model part that specifiesthe
dynamicsof continuousbehaior.

This paperevaluateghe model(re-)initialization part
of MATLAB-SIMULINK (SIMULINK, 1997)andhow

it combinesthis with the continuousand discrete
modelpartsbothin termsof agraphicaformalismsas
well asthecomputationamodel(Giraultetal., 1999).
The modeling,simulation,andcodegeneratiorof the

electricalcircuitry of aninductionmotoris described.
This circuitry consistsof a numberof switchescom-
muting diodes,and inductorsthat may be switched
in series,and, therefore,be directly coupled.Conse-
guently this constitutes hybrid dynamicsystemwith
a variablesetof statevariablesand run-time invoca-
tion of algebraicconstraintsbetweenstatevariables,
which correspondso a higherindex systemof differ-
entialandalgebraicequationgDAE) (Gear 1988).

2. PROGRAM SYNTHESIS

Much of thedesignandanalysisf controllawsfor en-
gineeredsystemselieson computersimulationof the
controlledplantsystemIn thesegphasesissuesuchas
stabilityandperformancereassessed.hisrequiresa
controllaw specificationpr model,andtypically this
is availablein theform of block diagramsIn addition,
amodelof the physicalplantis requiredaswell.

Oncethis analysishasresultedin a desirableimple-
mentation,the control is translatedinto embedded
software. This softwareis executedon an embedded
processoandagaintestedsubstitutingheplantmodel
for the actualphysicalprocessij.e., hardware-in-the-
loopsimulation.Thismayresultin changeso thecon-
trol law andanew roundof designchangess initiated
first in simulationandthenagainthe controllerhard-
ware implementationcombinedwith a plant model.
The repeatedanalysisand translationof the control
law is costly, errorprone,andunwieldy.

Recently automaticcode generationfacilities have
becomeavailablethat allow for automatictranslation
from a block diagramthat capturesa control law
specificationor plant model to embeddedreal-time
code(Harel,2001;Halbwachsetal., 1991).Thiscode
generatiorstephasto satisfystringentconstraintsm-
posedon embeddeaodeto fit the harshrequirements
on resourcesn this domain (Lee, 2000). Moreover,
thecodehasto bereadableandtransparanto provide
afirst passof confidence.

A straightforward code generationapproachusesa

library of sourceandcompiledcodefor the primitives
of the modeling formalism. Analysis of the model

topologygenerateshe connectionconstraintsaandal-

lows sortingthe instance®f library componentsised
in the modelto obtainan executionorder This then

forms the basisfor the main procedurethat executes
modelbehaior.

The functionality embodiedby each of the model
componentss typically capturedy anumberof inter-
facemethodghathave to beimplementedFor exam-
ple, the S-Functioninterfaceof MATLAB-SIMULINK
requiresthe functionsin Table 1 to be implemented.
Similar functionality is presentin Ptolemy(Davis, Il
etal., 1999)andDSblocksoftware.!

1 Seehttp://iwwwmodelica.og/dsblockdsblack4.0a.shmtl.

Tablel. S-FunctionRoutines.

[S-Function Routine

Simulation Stage

mdlinitializeSizes Initialization

mdIGetTmeOfNetVarHit Calculationof next sample
hit (optional)

mdlOutputs Calculationof outputs

mdlUpdate Updatediscretestates

mdIDervatives Calculationof dervatives

mdlTerminate Endof simulationtask

| Initialize model]
Calculate time of next sample hit ‘

—
I

‘ Calculate outputs in major time step ‘

‘ Update discrete states in major time step ‘

‘ Compute the derivatives

‘ Calculate outputs

‘ Compute the derivatives

)
]

‘ Calculate outputs

l
—{ Compute ZTO crossings)

‘ At termination perform any required tasks ‘

V
uoneigoyur

Fig. 2. Executionordet

The generatedcode calls the particular S-function
routinesat the correctpoint in the execution order

This executionorder is depictedin Figure 1. When
simulationstarts theinitialization proceduresrefirst

executed After this, sampleddatasystemsallow com-
putationof the next pointin time at which an event
occurs.Continuoussimulationis theninvoked up till

this time point. To this end,first the entire systemis

evaluatedsoall variablesareknown, andthe discrete
variables,i.e., thosethat only changeat events, are
set. Continuoussimulationthen repeatedlyevaluates
thederivativesandoutputsof the systemto determine
the continuousevolution. A monitoringmodulehalts
continuousintegration when an event occursbefore
the pre-computedventtime point by computingthe
zerocrossingof systemvariables Otherwisejntegra-
tion is performedtill this time point is reachedNext

thediscreteeventmodelpartis evaluatedwhich may
includeiteration,andthe sameprocedurds repeated.

In orderto generateefficient code, the modelsare
separatedh (i) the (re)initializationpartthat pertains
to the computationgequiredbefore continuoussim-
ulation canstart, (ii) the discretemodelpartthat en-
tails the variablesthat are constantduring continuous
simulation, i.e., variablesthat only changeat event
times,and (iii) the continuouspartthatembodieshe
differentialequations.

3. INITIALIZA TION
A characteristicof hybrid dynamic systemsis that

duringsimulationeventsoccut At suchanevent,and
when simulation starts,initial conditionshave to be

computed.For example,in caseof a bouncingball,
whentheball hitsthefloor, themodeldoesnotchange,
but is reinitializedwith new velocity v = —ev®, with
10 thevelocityimmediatelybeforethe collision ande
the coeficient of restitution.

A graphicalmodelingformalismhasto supportmod-
eling there-initialization of statevariableswhich can
be extremely involved, require accessto different
modelvariablesandapply a manifold of initialization

conditions.In the generalcaseof a systemof differ-

ential and algebraicequationsthe generalizedstate
spacgVergheseetal., 1981)is of a higherdimension
thanthespaceof valid or consisteninitial valuesThis

issueis notdiscusseary furtherin this paper

4. GRAPHICAL FORMALISM

Graphicalformalismstailored to the needsand re-
guirementsof a particulardomainare critical to pre-
vent unnecessaryerrors becauseof, e.g., required
work-arounds,non-intuitive semanticsmissing and
easily overlooked constraints.Control law design
is deeply rooted in the block-diagramformalism,
and, therefore, the MATLAB-SIMULINK graphical
model developmenternvironment is well-suited for
suchtasks.In addition,physicalsystemmodelingap-
proacheshasedon deriving a mathematicaformula-
tion (in contrasto enegy basednodelingapproaches,
e.g.,bondgraphs(Karnoppet al., 1990))alsofit the
block-diagranmodelingparadigmvery well.

Block diagramsfacilitate a setof basicmathematical
operationssuch as addition and multiplication, and
more involved functions such as trigonometrics.An
importantplaceis takenby thetime-integrationopera-
tor. Thedifferentialequationdecausef this operator
requiretheuseof numericalksolversto generatdehar-
iors. Combiningit with othermathematicabperations
allows for comple nonlinearsetsof ODEs.

The needfor discreteevent behaior in control law
switchingor to modelphysicalswitchingphenomena
is addressedy facilitating a set of logic operators.
Thesesatisfythe samegraphicalsyntaxandtheir exe-
cutionis specifiedn aform thatis compatiblewith the
otherblock diagramelementswhich allows a seam-
lesscombinationof the differenttypesof operators.
For example,embeddinga particularcontrollaw in a
sub-systemallows the enablinganddisablingof these
computationslependingnthemodeof thecontroller
at a higherhierarchicallevel. This is graphicallyde-
pictedby connectinga decisionstructureto anenable
port of the sub-systemas illustrated for the coarse
andfine controlin Fig. 1. The exact semanticof the
activation can now be selected,i.e., on a rising or
falling edge,both or for a particularlevel. In Fig. 1
the different control laws are activatedbasedon the
level of alogical signal.

When mixing continuousand discretebehaior, the
re-initialization takes a prominentplace.In its most
basicform, thisis presenin theintegratorblockasan
additionalinput, the stateresetport, that connectgo

a computationaktructuresolely presentfor this pur-

pose Again,this stateresetporthasto begiventhede-
siredsemanticasto whento updatetheinternalstate
of an integrator To illustrate, considerthe bouncing
ball examplein Fig. 3. Whenthelogic decisionstruc-
turein the collision detectionblock detectshe rising

edgeof azero-crossingi.e., theball hits thefloor, the
integratorvalueis re-initializedto reversethevelocity,

while taking a coeficient of restitutioninto account.
Note that the velocity changeis computedfrom the
velocity immediately before the bounce.As updat-
ing the value storedby the integrator would affect
the computationthe stateoutputport is usedinstead
of the normalintegrator output. This additional port
is specifically includedin the MATLAB-SIMULINK

block diagrammodelingformalismto facilitate such
computations.

. »lel
b F -

gravity

display

collision
detection

restitution

Fig. 3. Bouncingball MATLAB-SIMULINK model.

Re-initializationtakesplacewhenaneventoccursand
thend| Qut put s methodis executed.

voi d Ml Qut puts(int_T tid)
{ if (sslsContinuousTask(rtS, tid)) { /* Sanple: [0.0, 0.0] */
/* Integrator: ' <Root>/position’ */
rtB.position = rtX position_CSTATE;
/* Rel ational Operator: ' <Root>/collision detection’
* incorporates:

* Constant: ' <Root >/floor’ */

rtB.collisiondetection = (rtB.position <= rtP.floor_Val ue);
/* Gain: ' <Root>/restitution

*

* Regarding ' <Root >/restitution:
* Gain value: rtP.restitutionGain */

rtB.restitution = rtX vel ocity.CSTATE * rtP.restitution.Gain;

/* Integrator: ' <Root>/velocity’ */
if (sslsMajorTinmeStep(rtS)) {
ZCEvent Type zcEvent;
/* eval uate zero-crossings */

zcEvent = rt_ZCFcn(Rl SI NGZERO.CROSSI NG
&t PrevZCSigState. vel ocity ZCE, rtB.collisiondetection);
if (zcEvent|| rtDWrk.velocityIWORK | cNeedsLoadi ng) {
rtX. vel oci ty.CSTATE = rtB.restitution;

}
rt DWor k. vel oci ty.| WORK. | cNeedsLoadi ng = 0;

}
rtB.velocity = rtX vel oci t y_CSTATE;
}
}

For example,it may be desirableto conditionallyre-
initialize the entire statevectorof a sub-systemThis
could be the casein the multiple-modecontrol ex-
amplein Fig. 1 whensophisticatedigh-ordermodel
basedcontrollaws areapplied.

5. THE AC INDUCTION MOTOR

Theelectricalcircuitry of aninductionmotorcontains
a numberof cascadednductances];, eachwith par
asitic resistanceR;,, asshown in Fig. 4. To control
theflux in eachof theinductors they areconnectedn
seriesseparatedby a bridge consistingof a switchto
groundanda switch to the sourcevoltage,V.... Each
switchis equippedwith acommutingdiodeto protect
theelectricalcircuit from voltagespikes.

® 1 @ © ®

Fig. 4. Electricalcircuit of aninductionmotor.

Themotoris drivenby changingheflux in theinduc-
tors, dependingon the angleof the rotor. To achieve
thedesiredlux valuesgachinductorcanbeconnected
to the sourcevoltageandgroundin two differentdi-
rections,causinga voltagedrop V. or —V,.. A com-
plex schemeclosesand openseachof the switches.
When a switch opens,the correspondinggcommuting
diode may becomeactive until thetwo connectedn-
ductorsdraw thesamecurrentandthey canbecoupled
without inducinga spike. If a bridge closesa current
pathto V. it operatesn its high (H) state|f it closes
acurrentpathto ground,t operatesn its low (L) state,
andif neithercurrentpathis closed,it isinitstri (7°)
state seeFig. 4.

In casea bridgeis in its tri state,the two connected
inductors are coupled and their fluxes, p;, are al-
gebraically related. This meansthe state spacere-
ducesby onedimensionanda redistritution, i.e., re-
initialization, is requiredbasedon the fluxesimme-
diately before switchingto the tri state,p?. This re-
initialization is governedby conserationof flux prin-
ciple and canbe computedusingthe inductanceval-
ues, L;, of the inductorsinvolved. Becausejn gen-

This implies that the re-initialization equations(for
the bouncingball, this is thert B. resti tuti on
assignmentaremixedwith continuoushehaior, and,
therefore evaluatedduring continuousintegration as
well. Thisincursanefficiency penaltythatcanbecome
significantwhen extensve re-initialization computa-
tionsarerequired.

eral, multiple bridgesmay bein their tri stateseveral
inductorsmay be directly connectedTo computethe
new flux valuein eachinductor, the generaformula

2, P
Ej Lj,

pi = L; (Vi) (pj € O) 1)

Notethatthere-initializationbecomesnore complex
asmorecomplex modelstructuresreto befacilitated.

canbeapplied(Mostermaretal., 2000).HereC isthe
setof all stategp; thatarecoupled,i.e., algebraically

related,with p;. Basedon this computation,the re-

initialization for each componentonly requiresnu-

mericalknowledgeof thetotal valueof the combined
statesp;, thatarecollapsednto one, p;, andthe pa-
rameterghatdetermingheweighting,L;. This infor-

mationis additionallysuppliedto eachmodelcompo-
nent.No algebraidknowledgeof amodelcomponens
internal structureandalgebraicmanipulationsarere-

quiredto executethere-initialization.

The systemis modeledin MATLAB-SIMULINK by a
ring of inductor/resistorcomponentsThe block di-
agramof the constituentequationsof thesecompo-
nentsare shawvn in Fig. 5. The crucial elementin
the modelis the integrator (in the right-handpath).
The stateresetport of this integratoris connectedo
the block diagramstructurein the left-hand part of
the model that computesthe new flux valuesbased
on the inductancesand flux valuesof the connected
inductor/resistocomponentsNote that this includes
the flux value,i.e., value of the integrator block, of
theinductor/resistoitself. If noprovisionsweretaken,
thiswould leadto circulardependeng Thereforethe
state output port of the integrator block is usedin-
stead.This portsuppliesthe valueof theinternalstate
updatedat anotherpoint in the computationabrder,
therebybreakingthe dependencies.

L(k-1) iL(k-1) From [Lk1]
5 4ot [&

V‘

+

Lk-1)

Goto2 |1 oy

RN

Lk+1)

Math *
Funcnorﬁu'"
.L Product .

In(egra(or —

X [Product

‘

From3

Sum4

MUX1

L(k+|),iL(k+1)

[k

—»

<

v

1 ath

unction
-«

oz E
‘

reinitialize' continuous

EE R
From2 um? (Goto3 it ouy

=
5
£
z
H

Lik-1)iL(k-1) @

Fig. 5. Model of resistor/inductocomponent.

Controllogic switchingis modeledby a statetransi-
tion table and comparatoranodel the internal event
diode switching.A simulationrun of six diodescon-
nectedas a ring, with three bridge state changess
shavnin Fig. 6. Thesolid curve shovshow thecurrent
from one inductor changesover time to achieve de-
siredflux values.The dashecdcurvesrepresenneigh-
boring currentsthat may be coupledwith the current
of the solid or dashedcurves.In Fig. 6(a), the gray
intervals shav periodsof time when the diodesbe-

Scope3

come active, the commutingphase,resultingin C°

hybrid behaior, i.e., trajectoriesare continuous.In

Fig. 6(b)thecontinuougdransientbecausef thecom-
mutingdiodesareabstractedway, i.e., thediodesare
removed from the model,to obtainfastersimulation.
As aresult,thesystemincludesdiscontinuitiesn state
variablesthat are handledbasedon consenration of

flux.

1 = T o 1 = o
ool \ \ ool i !
DI,—-j\/f—-‘ e NIPEEE P — o
ol i P 1l ol 4
! | v I
a | | i .
ol [\ A ol \
r ! "7 \:’_] ')]
0. l\ 5 . ‘\ "\
B (AN B [N
0 5 10 15 20 time — 30 0 5 10 15 20 time —
() (b)

Fig. 6. Inductionmotor simulationwith (a) andwith-
out (b) commutingdiodes.

The automaticallygenerate@mbeddedodecontains
two methodsthat pertainto the re-initialization. The
method

voi d Ml Qut puts(int_T tid)
{
/* local block i/o variables */
real _T rtb._Product 3;
real T rtb.tenpls;
real T rtb.tenpl6;
if (sslsSanpleHit(rtS, 1, tid)) { /* Sanple:
/* Menory: ' <S1>/Menory’ */
rtB. Menory = rtDWork. Menory_Previousl nput ;

[0.2, 0.0] */

-

if (sslsContinuousTask(rtS, tid)) { /* Sanple:
/* Product: ' <S1>/Product3’ incorporates:
* Constant: ' <S1>/L" */

rtb_Product3 = rtP.LValue * rtX Integrator _CSTATE;

[0.0, 0.0] */

-

if (sslsSanpleHit(rtS, 1, tid)) { /* Sanple: [0.2, 0.0] */
/* Math: ' <S1>/Math Function’ incorporates:

* Sum ’ <S1>/ Sum#d’

* Constant: ' <S1>/L" */

rtB. Math_Function = 1.0/((0.0 + rtP.L.Value + 0.0));

}

if (sslsContinuousTask(rtS, tid)) { /* Sanple:
/* Product: ' <S1>/Product’ incorporates:
* Product: ' <S1>/Product2’
* Sum ' <S1>/Sunv’
* Constant: ' <S1>/R */

[0.0, 0.0] */

rtB. Product = ((0.0 + rtb_Product3 + 0.0) * rtB. Math_Function) * rtP.RVal u

/* Integrator: ' <Sl1>/Integrator’ */
if (sslsMajorTimeStep(rtS)) {
ZCEvent Type zcEvent;
/* eval uate zero-crossings */
zcEvent = rt_ZCFcn(Rl SI NGZERO.CROSSI NG
&t PrevZCSi gState. I ntegrator ZCE, rtB. Menory);
if (zcEvent|| rtDWrk.Integrator_| WORK. | cNeedsLoadi ng)
rt X. I ntegrat or CSTATE = rtB. Product;

}
rt DWork. I nt egrat or | WORK. | cNeedsLoadi ng = 0;

}
rtB.Integrator = rtX Integrator _CSTATE;

-

if (sslsSanpleHit(rtS, 1, tid)) { /* Sanple:
/* Sum ' <S1>/L(k+1)' incorporates:

* Constant: ' <S1>/L" */

rtbtenpl5 = rtP.LValue + 0.0;

/* Sum ’ <S1>/L(k-1)’ incorporates:

* Constant: ' <S1>/L" */

rtbtenpl5 = 0.0 + rtP.L.Val ue;

[0.2, 0.0] */

/* Sum ' <S1>/L(k-1)1" incorporates:

* Constant: ' <S1>/L1" */

rtB.Lk1.1 = rtP.L1.Value - rtB. Menory;

/* Math: ' <S1>/Math Functionl’ incorporates:
* Constant: ' <S1>/L" */

rtB. Mat h_.Functionl = 1.0/ (rtP.L.Val ue);

-

i Sanple: [0.0, 0.0] */

i ncor porat es:

(sslsContinuousTask(rts, tid)) { /*
/* Product: ' <S1>/Productl’
* Sum ' <S1>/Sum */

rtB. Productl = rtB. Mat h_Functionl * (0.0 -
/* Sum ' <S1>/il(k+1)' */

rtbtenpl6 = rtb_Product3 + 0.0;

/* Sum ' <S1>/il(k-1)" */

rtb.tenpl6 = 0.0 + rtb_Product3;

rtB. Product);

{

}
}

is calledat eachsystemevaluationfor computingthe

continuousbehaior. However, mostof the codeper

tainsto the re-initialization of the integratorelement
I nt egrat or. How to adjustthe code generation
facilitiesof MATLAB-SIMULINK to optimizethegen-
eratedcodefor handling external blocks, producing
compactand readablecodeis subjectof currentre-

search.

6. CONCLUSIONS

Control law designrequiressupportfor: (i) contin-
uous behavior, (ii) discreteevent behavior, and (iii)

re-initialization when discrete events occur In the
graphicablock diagramformalismthatsupportsmod-
eling of continuousbehaior logic componentsfor
discretebehaior are seamlesslyintegrated. The re-
initializationis supportedy stateresetportsandstate
outputportsof theintegratorcomponent.

The dynamic semanticsof a graphicalformalismis
specifiedby a computationalmodel For MATLAB-
SIMULINK this consistsof interfacemethodshatare
called at pre-definedpoints in the model execution.
Efficientreal-timecodegeneratioreliminategheneed
for manuakoftwaredesignandallowstheuseof high-
level modelingformalismsin the designandanalysis
stagego improve understandingf systembehaior.
Moreover, it closelyfits modelingof physicalsystems
andmorequickly or evenautomaticallyexperimenting
with differentimplementations.

7. REFERENCES

Davis, Il, J.,etal. (1999).Ptolemyll —heterogeneous
concurrenimodelinganddesignin java. Dept. of
EECS,UC Berkeley.

Gear C. W. (1988). Differential-algebraicequation
index transformationsSIAM J. on Scientificand
StatisticalComputingd(1), 39-47.

Girault,A., B. LeeandE. A. Lee(1999).Hierarchical
Finite StateMachineswith Multiple Concurreng
Models.IEEE Trans.on ComputerAidedDesign
of Integrated Circuits and Systemdl8(6), 742—
760.

HalbwachsN., P. RaymondandC. Ratel(1991).Gen-
erating efficient code from data-flav programs.
In: Third Intl. Symp.on ProgrammingLanguage
ImplementatiomndLogic Programming Passau,
Germayy.

Harel, D. (2001). From play-in scenariosto code.
Computer34(1), 53-60.

Karnopp,D.C., D.L. Margolis and R.C. Rosenbay
(1990). System®ynamics:A Unified Approach.
2 ed..JohnWiley. New York.

Karsai, G., J. Sztipanwits and H. Franle (1998).
Towards Specificationof ProgramSynthesisin
Model-Integrated Computing. In: Proc. of the
ECBS-98Jerusalemisrael.pp.226-233.

Lee,E. A. (2000).What's Aheadfor Embeddedsoft-
ware.Computer33(9), 18-26.

Mosterman,P. J. (1997). Hybrid Dynamic Systems:
A hybrid bondgraphmodelingparadigmandits
applicationin diagnosis.PhD dissertationVan-
derbilt University.

Mosterman, P. J., P Neumannand C. Preusche
(2000). Modeling SystemsWwith Variable Alge-
braic Contraintsfor Explicit Integration Meth-
ods.In: ADPM. pp.251-256.

SIMULINK (1997). Dynamic SystemSimulation for
Matlab. The MathWorks.

VergheseG. C., B. C. Lévy and T. Kailath (1981).
A generalizedstate-spacédor singular systems.
IEEE Trans. on Automatic Control 26(4), 811-
831.

