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Abstract: In this paper, the modularized adaptive backstepping designs are incorporated into
the recently proposed adaptive robust control framework to synthesize indirect adaptive
robust controllers that achieve not only good output tracking performance but also better
parameter estimation processes to obtain accurate parameter estimates for secondary pur-
poses such as machine health monitoring and prognostics. Departing from the modularized
adaptive backstepping designs, the proposed indirect adaptive robust control (IARC) uses
available a priori knowledge on the physical bounds of unknown parameters, along with
preset adaptation rate limits, to construct projection type parameter estimation algorithms
with rate limits for a controlled estimation process. By doing so, regardless of the estimation
algorithm to be used, a guaranteed transient performance and final tracking accuracy can
be achieved even in the presence of disturbances and uncertain nonlinearities, a desirable
feature in applications. In addition, the theoretical performance of the adaptive designs,
asymptotic output tracking in the presence of parametric uncertainties only, is also preserved.
The precision motion control of a linear motor drive system is used as an application example.
Experimental results are obtained to show the improved parameter estimation process of the
proposed IARC design.
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1. INTRODUCTION

With the increasing demand for better control perfor-
mance, it becomes necessary to explicitly consider the
effect of nonlinearities and uncertainties associated with
physical systems. As such, robust control of uncer-
tain nonlinear systems has received significant atten-
tions during the past twenty years. Two approaches
have been popular: adaptive control (AC) (Krstic et
al., 1995; Landau, 1998) and deterministic robust con-
trol (DRC) (Utkin, 1992; Corless and Leitmann, 1981).

In (Yao and Tomizuka, 1994; Yao and Tomizuka,
2001; Yao, 1997), an adaptive robust control (ARC)
approach is presented to systematically construct per-
formance oriented control laws for nonlinear systems
transformable to semi-strict feedback forms. The result-
ing ARC controllers enjoy the benefits of both AC and
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DRC methods while overcoming the practical perfor-
mance limitations associated with AC and DRC. The
approach has been applied to several applications and
comparative experimental results have demonstrated the
substantially improved performance of the ARC ap-
proach in implementation (Yao et al., 1997; Yao et
al., 2000; Xu and Yao, 2000; Xu and Yao, 2001).

The underline parameter adaptation law in ARC con-
trollers in (Yao, 1997) are based on the direct adap-
tive control designs including the tuning function based
adaptive backstepping (Krstic et al., 1995), in which the
adaptive control law and parameter adaptation law are
synthesized simultaneously to meet the sole objective
of reducing the output tracking error. Such a design
normally leads to a controller whose dynamic order is as
low as the number of unknown parameters to be adapted
while achieving excellent output tracking performance.
However, the direct approach also has the drawback
that the design of control law and the parameter esti-
mation law cannot be separated and the choice of the
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parameter estimation law is limited to the gradient type
with certain actual tracking errors as driving signals. It
is well known that the gradient type of estimation law
may not have as good parameter convergence properties
as other types of parameter estimation laws (e.g., the
least square method). Furthermore, for a well designed
direct adaptive control law, the actual tracking errors
in implementation are normally very small, and thus
more prone to be corrupted by other factors such as the
sampling delay and noise that have been neglected when
synthesizing the parameter adaptation law. As a result,
in implementation, the parameter estimates in the direct
adaptive control are normally not accurate enough to be
used for secondary purposes such as prognostics and
machine component health monitoring, even when the
desired trajectory is persistently exciting enough.

This paper concerns with applications that need accu-
rate parameter estimates for other secondary purposes
in addition to the good output tracking performance. An
indirect adaptive robust control design will be presented
to overcome the poor parameter estimates problem of
the direct ARC designs (Yao and Tomizuka, 2001; Yao,
1997). Such an objective is achieved by separating the
construction of parameter estimation law from the de-
sign of underline robust control law as in the indirect
adaptive control designs (Krstic et al., 1995; Landau,
1998). Two types of indirect adaptive robust controllers
(IARC) are constructed and compared. The two meth-
ods are based on the modularized adaptive backstepping
designs in (Krstic et al., 1995) with z-swapping and x-
swapping estimation algorithms respectively, but have
a fundamental different view of the problem and the
use of parameter adaptation. Specifically, the modular-
ized adaptive backstepping designs (Krstic et al., 1995)
assume the system free of disturbances and uncertain
nonlinearities. As a result, the theoretical boundedness
of the parameter estimates and their derivatives can be
achieved through the use of estimation algorithms with
normalization and/or certain nonlinear damping, which
may not be valid in applications due to the unavoidable
disturbances and uncertain nonlinearities. The proposed
methods, in contrast, use available a priori knowledge
on the physical bounds of unknown parameters, along
with preset adaptation rate limits, to construct projection
type parameter estimation algorithms with rate limits
for a controlled estimation process. By doing so, regard-
less of the specific adaptation law to be used (the gradi-
ent method or the least square method, with or without
normalization), a guaranteed transient performance and
final tracking accuracy is achieved even in the presence
of disturbances and uncertain nonlinearities, which is
very important in applications. In addition, the theo-
retical performance of the adaptive designs–asymptotic
output tracking in the presence of parametric uncertain-
ties only–is also preserved in the proposed IARC.

2. PROBLEM FORMULATION

The system under consideration is described by

��� � ���� � ������ ��
� � �������� ��

� � �

��� � ���� ������� ��
� � �������� �� (1)

where �� is the system output, ��� � ���� ���� ���
� is

the vector of the first � states, �� is the unknown input
gain of the �-th channel, � � ���� ���� ��� �

� represents
the vector of other unknown parameters, � ������ �� is
the uncertain nonlinearity in the ��� channel, and � is
the control input. For notation simplicity, let �� � 	�

be the vector of all unknown parameters, i.e., � � �
��� � ��� � � � � ���

� . The following nomenclature is used
throughout this paper: 	� is used to denote the estimate of
�, 
� is used to denote the parameter estimation error of
�, e.g., 
� � 	���, �� is the ��� component of the vector �,
��� is a column vector of the first � components of �, e.g.,
��� � ���� ��� ���� ���

� , ��	
 and ���� are the maximum
and minimum value of ���� for all � respectively. The
following practical assumptions are made:

Assumption 1. The unknown parameter vector � � is
within a known bounded convex set ��� . Furthermore,
within ��� , the input gains ��� � � �� � � � � 
� are of
known signs and do not converge to zero. Without loss
of generality, it is assumed that ��� � ��� , ����� �
�� � ���	
 and 
 � ����� � �� � ���	
, where �����,
���	
, �����, and ���	
 are some known constants.

Assumption 2. The uncertain nonlinearity� ������ �� can
be bounded by

�������� ��� � Æ������������ �� (2)

where Æ������ is a known positive function, and ����� is
an unknown but bounded positive time-varying func-
tion.

3. IARC USING Z-SWAPPING IDENTIFIER

In this section, an indirect adaptive robust control
(IARC) based on the modular adaptive backstepping
design with z-swapping identifier (Krstic et al., 1995)
is developed. Due to the appearance of the uncertain
nonlinearities�� in (1), a fundamental different view of
the problem has to be taken in achieving the separation
of controller and identifier designs. Specifically, we will
use available knowledge of the physical bounds of the
system parameters, along with preset adaptation rate
limits to construct projection-type parameter estimation
algorithms with rate limits for a controlled estimation
process. By doing so, parameter estimates and their
derivatives are guaranteed to be within certain known
bounds, regardless of the specific estimation algorithm
to be used and the appearances of disturbances or un-
certain nonlinearities. Additionally, the known ranges
of the variations of the parameter estimates and their
derivatives can be incorporated into the controller de-
sign to synthesize robust controllers that achieve a guar-
anteed transient performance and final tracking accu-
racy without the use of strong nonlinear damping terms
in (Krstic et al., 1995).



Due to the space limit, only outline of the designs are
presented below. The design details and the proofs of
all lemmas and theorems are given in the full version of
the paper (Yao and Palmer, 2002) and can be obtained
from the first author.

3.1 Projection Type Adaptation Law with Rate Limits

As in (Yao, 1997), the widely used projection mapping

��� ������ will be used to keep the parameter estimates
within the known bounded set ���� , the closure of the
set ��� . The standard projection mapping is (Krstic et
al., 1995):
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where � � 	�, ���� � 	���,
Æ

��� and ���� denote the
interior and the boundary of ��� respectively, and 
���
represents the outward unit normal vector at 	�� � ���� .
For any � � 	�, define a saturation function as:
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where ��� is a pre-set rate limit. Using the properties
of the projection operator in Lemma E.1 in (Krstic et
al., 1995) and noting that �� is a positive scalar, it is
easy to verify that the following lemma holds:

Lemma 3. Suppose that the parameter estimate 	�� is
updated using the following projection type adaptation
law with a pre-set rate limit ��� :


�
� � ��� ���

�
�������

����
�
� �
���� � ���

(5)

where � is any adaptation function and ���� � 

is any continuously differentiable positive symmetric
adaptation rate matrix. With this adaptation law, the
following desirable properties hold:

P1. The parameter estimates are always within the
known bounded set ���� , i.e., 	����� � ���� � ��. Thus,
from Assumption 1, ��, ����� � 	����� � ���	
 and

 � ����� � 	����� � ���	
.

P2. 
���
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� 
� ��

P3. The parameter update rate is uniformly bounded by

�
�	������ � ��� � �� �

3.2 Adaptive Robust Control Law

With (5), the parameter estimates and their derivatives
are bounded with known bounds, regardless of the esti-
mation function � to be used. Thus, similar to (Yao and
Tomizuka, 2001), one can use backstepping to construct
an adaptive robust control (ARC) law for the system
(1) that achieves a guaranteed transient and final track-
ing accuracy, independent of the specific identifier to

be used later. The resulting ARC controller is outlined
below.

Following the standard backstepping design procedure,
at each step � � �� � � � � 
, a virtual control law �� will be
developed in order that �� will track its desired virtual
control law ���� that was synthesized in step �� � with
a desired transient performance. For this purpose, let
�� � ������� be the transformed tracking error at step
� and define the following terms recursively for step �,
� � �� ���� 
� from the previous steps
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in which ����� � ��
��� is the desired output trajectory.
From Assumption 2, �������� �� is bounded by

� �������� ��� � �Æ������ �� ������ (8)

where �Æ� is any smooth function satisfying �Æ� �
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. Similar to (Yao and Tomizuka,
2001), the following lemma and theorem can be proved.

Lemma 4. For each � � 
, choose the following virtual
control function for ����
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(9)

where �� is a positive constant and ��������� �� is a
nonlinear feedback gain chosen to be large enough
so that the following robust performance condition is
satisfied
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where ��� and �
� are positive constant design parame-
ters. With the virtual control function (9), the � �� error
equation can be written as
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and the derivative of the augmented positive definite
function �� � ���� � �

�
��� is given by
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Theorem 5. Consider the ARC law given by

� � ������� �
�
����� �� (13)

where �� is given by equations (9) with � � 
 and the
parameter estimates are updated through (5), in which �
could be any adaptation function. In general, all signals
in the resulting closed loop system are bounded. In
addition, the tracking errors are bounded by
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where�� � � ����������������
� and ����� �
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Remark 6. P1 and P3 of Lemma 3 guarantee that the

parameter estimation error 
�� and its derivative �	�� are
bounded with known bounds. Thus, how to choose
the nonlinear feedback gain ��������� ��� � � �� � � � � 
�
to satisfy the robust performance condition (10) can
be worked out in the same way as in (Yao, 1997).
Furthermore, 	�� is guaranteed to be non-zero, which
makes the control law (9) free of singularity. �

3.3 Parameter Estimation Algorithm

In the above subsection, an adaptive robust control
law which can admit any estimation function � has
been constructed and a guaranteed transient and final
tracking performance is achieved even in the presence
of uncertain nonlinearities. Thus, the reminder of the
paper is to construct suitable estimation functions �
so that an improved final tracking accuracy–asymptotic
tracking or zero final tracking error in the presence of
parametric uncertainties only–can be obtained with an
emphasis on good parameter estimation process as well.
As such, in this subsection, we assume the system is
absence of uncertain nonlinearities, i.e., let � � � 
� � �
�� ���� 
� in (1).

From (9) and (11), when �� � 
, as in (Krstic et al.,
1995), the error dynamics can be put in the following
concise form:

��� � ������� �
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� 
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where the matrices ��, � and  are defined in the
same way as in (Krstic et al., 1995) with �� being
an exponentially stable matrix. Construct the following
filters:


�� � ���
� ��� (16)


�� � ���� ��� �
� ��

�
� (17)

Define the prediction error as ! � ��� � �� � �� 	��,
which is calculable. It is shown in (Krstic et al., 1995)
that ! can be written as:

 � �� 

� � 
 (18)

where 
! is governed by �
! � ��
! which exponentially
converges to zero. Thus we have a static model (18)
that is linearly parameterized in terms of 
��, with an
additional term 
! that exponentially decays to zero.
With this static model, various estimation algorithms

can be used to identify unknown parameters, of which
the gradient estimation algorithm and the least squares
estimation algorithm (Krstic et al., 1995) are given
below.

3.3.1. Gradient Estimator With the gradient type es-
timation algorithm, the resulting adaptation law is given
by (5), in which � can be chosen as a constant positive
diagonal matrix, i.e., � � ���"�#�� ���� #��, and � is
defined as

� � �
� 

	 � !����
�

� ! � � (19)

where by allowing $ � 
, we encompass unnormalized
adaptation function, and ���� represents the Frobenius
norm of�, given by ����� � ������
, in which ����

is the trace operation.

3.3.2. Least Squares Estimator When the least squares
type estimation algorithm with co-variance re-setting
and exponential forgetting is used, the resulting adap-
tation law is given by (5), in which ���� is updated by


� � ��� �
���

	 � !��������
�� ����� � � "��� ! � � (20)

where ��
� � �� �
� � 
, $ � 
 leads to the
unnormalized algorithm, and � is defined as

� � �
� 

	 � !��������
(21)

In (20), � � 
 is the forgetting factor, �� is the covari-
ance resetting time, i.e., the time when ���������� �
%� where %� is a pre-set lower limit for ���� satisfying

 � %� � %�. In practice, the above least square estima-
tor may lead to estimator windup (i.e., ��	
 ������ ��
�) when the regressor is not persistently exciting. To
prevent this estimator windup problem and take into
account the effect of the rate-limited adaptation law (5),
(20) is modified to


� �

���
��

���
�����

	 � !��������
� if ���� ������ � "�

and ��������
���� � � 

�

� otherwise

(22)

where %� is the pre-set upper bound for ������ with
%� � %�. With these practical modifications, %�& �
���� � %� &� ��. It can thus be shown that the fol-
lowing lemma and theorem hold when these estimation
algorithms are used:
Lemma 7. When the rate-limited projection type adap-
tation law (5) with either the gradient estimator (19) or
the least squares estimator (21) is used, the following
results hold:

 � 	����
� � 	����
� (23)


�
� � 	����
� � 	����
� (24)

Theorem 8. In the presence of parametric uncertainties
only, i.e., �� � 
, � � �� ���� 
, by using the control
law (13), filter (16)-(17), adaptation law (5) with either
the gradient type estimation function (19) or the least
squares type estimation function (21), in addition to
the robust performance results stated in Theorem 1, an
improved final tracking performance, asymptotic output
tracking, is also achieved, i.e., ��� � 
 as ���. �



Remark 9. In (Krstic et al., 1995), although only the
ideal case of no disturbances and uncertain nonlinear-
ities is considered, for closed loop stability, it is neces-
sary to use the normalized estimation algorithms ($ � 

in (19) or (21)) and/or strong nonlinear damping. In the
proposed IARC, the design is the same for normalized
and un-normalized estimation functions. �

4. IARC USING X-SWAPPING IDENTIFIER

The prediction error model (18) is obtained from the
transformed tracking error dynamics, which are prone
to be corrupted by neglected factors such as the mea-
surement noises. As a result, the quality of parameter
estimates is usually poor, even with estimation algo-
rithms having better parameter convergency property as
observed in experiments (e.g., the least square estimator
(20). To overcome this problem, in this section, the x-
swapping adaptive backstepping technique in (Krstic et
al., 1995) will be used to construct an IARC controller
whose prediction error model is based on the system
physical model rather than the transformed tracking er-
ror dynamics. Such an IARC design totally decouples
the estimator construction from the robust control law
design. Furthermore, as only the measured system states
and actual system model are used in implementing the
estimator, the effect of neglected factors such as the
measurement noises is reduced, which makes the accu-
rate parameter estimation possible in practice.
The construction of underline ARC law is the same as
in section 3. So as in subsection 3.3, the reminder of
the section is to construct suitable estimation functions
� that is based on the original system model (1), rather
than the transformed tracking error dynamics (11), to
achieve asymptotic output tracking. For this purpose,
note that, when �� � 
, the system dynamics (1) can
be re-written as


��� � #������ �� � $� ����� ��
� (25)

where the matrix ' is defined as

$� ����� �� �

�
� ��� �� � % % % % % % �

...
...

. . .
. . .

. . .
...

��� � % % % % % % � �

�
� (26)

and the vector of known functions (� � 
� is added for
generality and represents the lumped effect of all known
nonlinearities, which is zero for (1) for simplicity of
presentation. Construct the following filters:


�� � ��� � $�


�� � ���� � ����� #� (27)

where � is an exponentially stable matrix. Let ) �
��� ���. From (25) and (27),


& � #� � $� 
� � ���� � ����� #�

� $� 
� ����� � ���� (28)

Let 
! � ��� ��� ��� ��. As in (Krstic et al., 1995), it
is easy to verify that ) can be written as

& � �� 
� � 
 (29)

where 
! exponentially decays to zero and is governed by
�
! � �
!. Now define the estimate of ) as

�& � �� �
� (30)

and define the prediction error as ! � 	) � ) � �� 	�� �
��� ���. The resulting prediction error model is

 � �� 

� � 
 (31)

Thus, we have a static model (29) that is linearly pa-
rameterized in terms of 
��, with an additional term 
!
that exponentially decays to zero. With this static model,
various estimation algorithms can be used to identify
unknown parameters. For example, the gradient type
estimation algorithm would be given by (19) but with
the prediction error ! calculated from (31) instead. Sim-
ilarly, the least squares type estimation algorithm would
be (22) but with the prediction error ! from (31).
With the above estimators, it can be shown that the same
results as in Lemma 7 and Theorem 8 hold.

Remark 10. In (Krstic et al., 1995), although only the
ideal case of no disturbances and uncertain nonlineari-
ties is considered, for closed loop stability, it is neces-
sary to use the normalized estimation algorithms ($ � 

in (19) or (21)) or complicated nonlinear damping in the
filter matrix� in (27). In the above proposed IARC, the
filter matrix � can be any exponentially stable constant
matrix and the design is the same for normalized and
un-normalized estimation functions. �

5. IARC PRECISION MOTION CONTROL OF
LINEAR MOTOR DRIVE SYSTEMS

The proposed two IARC designs have been applied to
the precision motion control of a linear motor drive
system (Xu and Yao, 2000). The details on how the
IARC control laws are implemented are given in (Yao
and Palmer, 2002). This section only gives some typical
experimental results for illustration purpose.

A typical high-speed/high-acceleration motion trajec-
tory for the pick-and-place operations in industry is used
in all experiments. The desired trajectory has a moving
distance of 
��� with a maximum speed of ��*� and
an acceleration more than ���*�+,�. The following
controllers are implemented: (1) DCIARCzg, desired
compensation IARC (DCIARC) with z-swapping iden-
tifier and gradient type update law, (2) DCIARCzls,
DCIARC with z-swapping identifier and least squares
update law, (3) DCIARCxg, DCIARC with x-swapping
identifier and gradient update law, and (4) DCIARCxls,
DCIARC with x-swapping identifier and least squares
update law.

The experimental results for no-load situation are shown
in Figs.1 and 2, which has an off-line estimated actual
value of �� � �
���� �� � ����, and � � ���
�. The
tracking errors of all four DCIARC controllers are com-
parable and within �
-� over the entire run as shown
in Fig.1. However, as seen from Fig.2, the parameter
estimates of both DCIARCzg and DCIARCzls do not
converge at all. In fact they drift away to wrong values.
In contrast, the parameter estimates of both DCIARCxg
and DCIARCxls approach their true values. These re-
sults verify the claim that the x-swapping identifier has
a more robust parameter estimation process than the z-
swapping identifier.



6. CONCLUSIONS

In this paper, indirect adaptive robust control (IARC)
designs have been developed to synthesize nonlinear
controllers that achieve not only good output tracking
performance but also accurate parameter estimates for
other secondary purposes such as machine health moni-
toring. Experimental results have been obtained to show
the improved parameter estimation process of the pro-
posed IARC designs.
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Fig. 1. Tracking error for (a)DCIARCzg,
(b)DCIARCzls, (c)DCIARCxg, and
(d)DCIARCxls with no load.
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Fig. 2. 	� for (a)DCIARCzg, (b)DCIARCzls,
(c)DCIARCxg, and (d)DCIARCxls with no
load.


