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Abstract : This paper presents a neural model of a Diesel engine and its use for
con trol. It describes the method used to design the neural model, from the plysical
equations that concern the engine. This model is then used in a specialized training
scheme to control the engine. A trajectory tracking of the engine speed with and
without pollution constraints is simulated.
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1. INTRODUCTION

Neural techniques are used in many automatic
domains like modeling (Pham, 1995) (Chen et
al., 1990) (Narendra and P arthasaratly, 1990),
control (Adetona et al., 2000) (Chen et al., 1999)
(Hafner et al., 1999), vision and diagnosis. In-
deed, neural netw orksbring important benefits
by suppressing some theoretical difficulties that
appears when applying some classical techniques
on complex systems. As they include themselves
nonlinearities in their structure, they can describe
or control complex nonlinear systems with preci-
sion. Thanks to neural techniques, a large class of
nonlinear systems can be modeled or con trolled
with a priori few theoretical knowledge compared
to classical techniques.

In this paper, w e applied neural techniques to
model and control a turbocharger Diesel engine.
Our objective is to construct a model that can be
used to control the Diesel engine. Particularly, we
want to control the engine speed and the opacity
of the exhaust gas that characterize one type of
pollution. More precisely, the control should allow
to reduce the peaks of opacity that occur du-
ring engine acceleration. Neural netw orks are used
because they can replace the complex and non-
linear thermodynamic, mechanical and chemical
equations that describe the Diesel engine (Blanke
and Andersen, 1985). This paper is presented as
follo ws. section 1 preserts the neural netw ork for
modeling the behaviour of the engine. Section 2
presents some the neural control simulation re-
sults using the model presented in section 1.



2. NEURAL NETWORK MODELING
2.1 Structure of the engine model

It can be decomposed into subsystems as presen-
ted in figure (1). The atmospheric air goes through
the compressor, the air intake manifold, and the
combustion chamber. The injection pump inject
fuel in the combustion chamber while the valves
are closed, and the mixture burns. The gases pro-
duced by the explosion passe through the exhaust
manifold and the turbine and are ejected out away.
Five states have been modeled : the engine speed
R (rpm), the intake manifold pressure P (kPa),
the inlet air flow v (kg/s), the fuel flow s (kg/s)
and the opacity of the exhaust gas O, (%). This
work mainly concerns the engine speed and the
opacity. The only command that we consider is
the position signal of the injection pump rack, T
(V).
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FiG. 1. Turbocharged diesel engine plant

The physical relations that describe the internal
combustion engine (see for instance (Blanke and
Andersen, 1985) (Kao and Moskwa, 1995)) are
used to design the neural model of the engine.
Among the different possibilities, the Diesel en-
gine speed, the intake manifold pressure and the
exhaust gas opacity can be described with the
following relations :

dR

E = fR(R,P,T)

ar_ ey
dt - fP(RaP)

Op = fOp(Rv m7mf)

It can be noticed that on one hand the dynamic
of speed is mainly due to the engine inertia and
that the speed value naturally depends on the
injected fuel rate and thus on the injection pump
position 7. On the another hand, the pressure
derivative depends on the intake manifold air
flows. In the present case, as no external load
is applied to the engine, the turbocharger as a
weak influence on the engine. This explains that
the air flows, and thus the pressure derivative,
mainly depends on the engine speed and on the

pressure. As regards the opacity, it depends on
the ratio between the air and the fuel quantities
used in the combustion. This partially explains
why the opacity depends on the air flow and the
fuel injection pump position.

These relations are used to construct the neural
model used to estimate the speed, the pressure

and the opacity. The first step consists of the first
order discretization of the previous equations :

R(k) = NNgr (R(k—1),...,R(k —ngrgr),
P(k—-1),...,P(k—npgr),
T(k)—l),...,T( —TLTR)) (2)

P(k) = NNp (R(k—1),...,R(k—ngrp),

P(k)...,P(k)—in))
Op(k) = NNop (riny(k), R(k), rin(K))

where ngg, nTr, nrRP, NPpRr, npp and npp are the
model orders that must be identified and where
NNpg, NNp and NN,, represent the functions
modeled by the neural networks for respectively
the estimation of the engine speed, the pressure
and the opacity.

Concerning the opacity model, some modifications
are needed. Firstly, the opacity is measured at
the exhaust of the Diesel engine. This means that
there is some delay between opacity and the other
variables and that there is some dynamics due
to the transportation of the gas. Secondly, the
opacity depends on the injected fuel flow. Some
works (Blanke and Andersen, 1985) shows that
this quantity mainly depends on the engine speed
and on the injection pump position :

rg (k) = f(R(k), T(k)) 3)

With these considerations the opacity can be
expressed as below :

Op(k) = NNop (Op(k —1),...,0p(k — nop), (4)
T(k —d), R(k — d),m(k — d))

where d is the delay mentioned above and n,, the
order of the opacity model.

One objective of the modeling is to control the
engine. However, the model is not easy to use
in control due to the interlocking of the models
of speed and pressure. This explain why some
simplification was proceeded. On one hand, the
speed at time k depends on the command 7', on
the speed at previous times, and on the pressure.
In the other hand, this pressure depends on speed
at previous times. Thus we considered that this is
possible to express the speed as a neural function
depending on the command and speed only.

For the model to be complete, the orders and
the number of nodes in each hidden layer, have
to be identified. For each order value, the neural
network is trained for a given node number and a
criterion is calculated. The criterion values allows
to select an optimal order. The neural network is
then trained with this order, but for several values
of the node number in the hidden layer. A criterion



analysis give the final node number and thus the
final network. This process is repeated for each
network, what leads to the final models of speed
and opacity :

R(k) = NNu (R(k —1),R(k —2),T(k — 1))

Op(k) = NNoy, (Op(k —1),T(k — 4), )
R(k — 4),m(k — 4))

P(k) = NNp (P(k—1),R(k—1))

The complete model (shown by figure 2) consists
then of several interconnected multilayer percep-
trons composed of several inputs, an output and a
single hidden layer. One of them reconstructs the
engine speed from the command 7. The neural
model of speed, pressure, air flow and opacity
respectively contains 4, 3, 2 and 5 hidden neurons
in their hidden layer. These numbers give an idea
of the model complexity. It is not surprising to
find that the air flow model contains only 2 nodes,
since the air flow is almost a linear function of
speed (when no external load is applied to the
engine). On the other hand, the opacity model
includes 5 nodes, since the opacity is generally
described by complex functions. These recurrent
neural networks have to be trained using data of
the command 7', the speed R, the air flow 7 and
the opacity O,.
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2.2 Ezperimental results

The following figures present some estimation
results. The method of training used is the
Levenberg-Marquardt algorithm (Soberg et al.,
1995) (Bloch et al., 1996), which is not detailed
here. Figures (4), (5) and (6) present the mea-
surements and estimations respectively for the
speed, the pressure and the opacity used to iden-
tify the weights of the neural networks. These
measurements were generated using the control
profile shown on figure (3). In order to validate
the model, another temporal set for the input 7'
(figure (7)) was applied to the real system and the
neural model. The corresponding measurements
and estimations of speed, pressure and opacity are
given by the figures (8), (9) and (10). It should be
noticed that the corresponding sample time of the
data is fixed to 0.1 s. Its value is chosen sufficiently
small for the model to be able to reproduce the
dynamics of the engine. However, its bottom value
is limited by the acquisition system capability.

The reducing of the sample time to a too small
value is furthermore useless because the model is
a mean-value model.
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Even if the estimations are given by a complete
simulation neural model whose the single input is
the position T, the estimates of speed, pressure
and opacity are near the measurements. The en-
gine model reproduces the static and the dynami-
cal behaviour of the system with a good precision.
Figures (6) and (10) show that peaks and static
levels of opacity are well estimated, despite the
dynamics and nonlinearities.
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3. NEURAL CONTROL
3.1 Introduction and theory

The benefits of neural networks for modeling
and control are of the same order. They allow
to control complexes non-linear processes, in an
optimal manner. Several control schemes using the
neural networks are presented in literature, like
predictive control (Eaton et al., 1994) (Soloway
and Haley, 1996), internal model control (Rivals
and Personnaz, 2000) (Hunt and Sbarbaro, 1991),

inverse control (He et al, 1999) and optimal
control (Plumer, 1996). Several strategies of the
controller training have been proposed. In our
application, the approach used for constructing
the control is the "specialized training", credited
to (Psaltis et al., 1988) and whose the principle is
given in figure (11) :
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It uses a direct neural model of the process and
the residual between the reference and the system
output to update the controller weights. More
precisely, the training consist of minimizing a cri-
terion using the Jacobians of the system estimated
by the neural model of the system. In the first
step, only the speed is controlled. The criterion
thus contains only the engine speed variable. In
the second step, the opacity is taken into account
by the controller. In this case, the criterion to mi-
nimize contains the engine speed and the opacity :

13 o

k=1

ref - Y(W7 k))2+

12 (Zyey (k) — Z(W,k))?)

N | =

(6)

where the variables are Y and Z and the res-
pective references Y.y and Z,.r. 1, and 7. are
weighting factors.

A possible structure for the controller can be as

follows :
U(k):NNu( ref(k+1) (k)7 O} (k_ny+1)7

Zref(k'i'l) ( )7"'7Z(k_ny+1)

Uk —1),...,U(k — nu))

The general rule for calculating recursively the
controller parameters (the weights) is :

Wi =wi-1 _ I:R(Wi—l)]*l J(Wih (8)

where W¢ denotes the ith updating of the weights
parameter vector W = (w; --- wy)? and where
the gradient of the criterion, J' is defined by :
, a7 8J a7 \T
JW) = (— oL )

ow1

Ows Own,

In the Gauss-Newton algorithm, R is an approxi-
mation of the Hessian matrix. It allows a fast
and efficient convergence of the criterion to the
minimum. The recursive algorithm is then given
by the following equalities :



wktl —wk _ p,
(ey(W’“,k+1)\Py(W’“,k+1)+
2 eZ(Wk,k+1)\I/z(Wk,k+1))
M = | P, —

9
P, \Ily(Wk,k-}-l)\IJ;(Wk,k-l—l)Pk ) )
L4+ WT(Wkk+1) Py Oy(Wk k+1)

Py =(M-
M, (Wk g+ 1) WT(Wk k+1) M )
L 14+ W (Wkhk+1) MW, (Wk k4 1)

where e, and e, are the output prediction errors
respectively for the speed and the opacity :
ey(W,k+1) = ref(k +1) =Y (W,k+1)

el(W7k+ 1) = Zref(k'i' 1) - Z(Wak"' 1)
and where the vectors ¥, and ¥ are defined by :

ey (W, k+1)  dey(W,k+1) )T

U, (W,k+1) =
o +1) ( ow1 Own,

e, (W,k+1 e, (W,k+1)\T
\Ilz(W,k-i-l):( ez(aler ) . eZ(aw + ))
n

de..
8wi

. .9
The derivatives 5+ and

3 are given by :

dey(Wok+1) Y (W,k + 1) dU(W, k)

ow; T U(W,k) dw; (10)
de.(W,k+1)  Z(W,k+ 1) dU(W, k)

ow; T U(W,k) dw;

where the total derivatives dU;K’k)

by the sum of partial derivatives :

are estimated

dU(W,k) _ OU(W,K)

dw; ow;
Z ( oU (W, k) OY(W,k — 1 — 1)) n
- YW,k —1—1) ow; (11)

UW,K)  Z(W,k—m—1)
Z(BZ(W,k—m—l) ow; )

m

In the following section, some simulation results of
the control are presented. The aim is to validate
the neural control of the engine speed and of the
opacity.

3.2 Application to the Diesel engine

This section describes the simulation of the engine
control with the use of the model presented in
section 2. In a first case, the controller is trained
to control the engine speed, while in a second
case, the controller training includes the opacity
to reduce pollution. In the controller training
scheme, the real system is replaced by the model.
The variables to control are the engine speed and
the opacity. The criterion is thus defined by :

J(W) =

N | =

N
S ((Rrept) — ROV, +
o1 (12)

Bop(Ope (k4 =1) = Op (W d = 1)?)

where R,y is the speed reference and where O, ’
represents the opacity constraint, defined such
that the opacity is reduced during the transients.
7op i the opacity constraint weighting factor.

It should be noticed that the controller structure
depends on the controlled output and is deduced
from the model in (5). For instance, a speed

controller output should be given by a function
of the following form :

T(k+1) = (Rpes(k), R(K), R(k — 1)) (13)

In the more general case where the speed and the
opacity are controlled, T is given by the following
neural function :

T(k+1) = NNt (R,.¢(k),R(k), R(k — 1),

The criterion and the controller being defined, the
training is processed. Data are previously normali-
zed to avoid the divergence of the parameters and
the default parameter values are given by a simple
off line training. The in line training phase is then
processed in several epochs, each containing the
same data set.

Engine speed control

The controller is firstly trained to control the
engine speed. This means that the factor n,, is
0 and that the controller training uses only the
engine speed model. The control becomes a simple
engine speed tracking without opacity constraint.
For the sake of space, no figure is given. We just
mention that the control performances are very
good since there is no visible speed tracking error
for the speed reference defined in figure (12). This
allow to tackle the second step which is the control
of speed with an opacity constraint.

Engine speed and opacity control

In order to take account of the opacity, 7, is not 0.
Figures (12) and (13) present the simulated speed
and opacity resulting from the neural control
where 7, = 0.8. Figure (12) presents the speed
output and its reference, while on figure (13) the
opacity curve is compared to the opacity resulting
from a control of engine speed only.
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The results show that a speed tracking error oc-
curs during the transients (acceleration), which is
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due to the opacity constraint. In fact, in order to
satisfy the opacity constraint, 7" is calculated by
the neural controller such that less fuel is injec-
ted. This leads to a decrease of the acceleration
and then to a speed tracking error during the
transients. This error increases with the weighting
factor 7,p, while in the same time the peaks of
opacity decrease.

4. CONCLUSIONS

In this article, we presented a new neural model of
the Diesel engine used to design a neural control
of speed and opacity. In one hand the neural net-
works allow to estimate the engine variables with
good precision despite strong dynamics and nonli-
nearities. This is especially the case of the opacity.
In the other hand, the results show that the use
of a neural model of the engine allows to control
the system, taking account of the nonlinearities,
what is not obvious with the classical methods.
This allows to consider with a great interest the
use of neural networks in Diesel engine modeling
and control.
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