
EXPLOITING MODULARITY FOR SYNTHESIS AND VERIFICATION
OF SUPERVISORS

K. Åkesson, H. Flordal, M. Fabian

Corresponding author: ka@s2.chalmers.se
Department of Signals and Systems

Chalmers University of Technology, Gothenburg, Sweden

Abstract: Efficient algorithms for synthesis and verification of supervisors in the Supervisory
Control Theory framework are presented. The presented algorithms solve the controllability
problem. In many real-world applications both the plant and specification is given as a set of
interacting automata or processes. In this work, we exploit this modular structure to reduce
the computational effort. First, we present an algorithm that verifies if a given supervisor is
controllable with respect to a plant. Second, we show how to synthesize a set of modular
supervisors that while interacting with the original supervisors guarantees that the closed system
is controllable. Third, we show how the verification algorithm can be used as an efficient language
inclusion algorithm. The presented algorithms are benchmarked on a real-world application.

Keywords: Discrete-event systems, Supervisory Control, Verification, Synthesis

1. INTRODUCTION

The Supervisory Control Theory (SCT) as intro-
duced by Ramadge and Wonham presents a frame-
work for synthesizing supervisors satisfying closed-
loop specifications. For a detailed overview of the SCT
see (Ramadge and Wonham, 1989). The SCT consists
of two main components, the plant and the super-
visor. The task of the supervisor is to dynamically
disable events generated by the plant so that a given
specification is fulfilled. The plant events are divided
into two disjoint sub-sets, the controllable and the
uncontrollable events. The supervisor is only allowed
to disable controllable events, that is, the supervisor
must be controllable with respect to the plant. In ad-
dition, the supervisor must also be such that from any
state reachable in the closed-loop system, some state
out of a set of designated states must be reachable.
This is known as the non-blocking problem, and is a
generalization of the deadlock problem. The deadlock
problem has been studied extensively in the computer
science literature (Corbett, 1996).

To transfer the SCT from academia into industry it
is crucial to have efficient algorithms for synthesis
and verification of supervisors. A major problem with
the SCT is the computational effort, see (Gohari and
Wonham, 2000). One approach to handle complex-
ity is to use an efficient representation of the state-
space. Binary Decision Diagrams (BDDs) (Bryant,
1992) are widely used for this purpose. BDDs and
its variants have been used for supervisory synthesis

in (Hoffmann and Wong-Toi, 1992; Zhang and Won-
ham, 2001; Tronci, 1997). To the authors knowledge,
the current BDD-based implementations do not take
advantage of the modular structure of the plant and the
specification. Thus, BDD based approaches rely on
an exhaustive search of the global state-space. Since
this state-space might be very large due to the state-
explosion problem, even BDDs have their limits. An-
other approach to handle the complexity is to exploit
the inherent modular structure of the problem. Algo-
rithms can take advantage of the structure to solve
smaller sub-problems that together solve the entire
problem. Modular approaches to supervisory control
have been presented in (Brandin et al., 2000; Wonham
and Ramadge, 1988; Wong and Wonham, 1998). It is
our belief that BDD-based approaches should be com-
bined with modular approaches to efficiently handle
even larger systems than currently.

In this paper, we attack the controllability verifica-
tion and synthesis problem by exploiting the mod-
ular structure of both the supervisor and plant. Par-
ticularly, we show how it is possible to exploit the
fact that the alphabets of the different sub-systems
might be unequal. This differ from the approach
in (Brandin et al., 2000), where is is assumed that
all sub-systems have the same alphabet. Efficient al-
gorithms for verification and synthesis, both optimal
and sub-optimal, are presented. The presented algo-
rithms are implemented in the verification and synthe-
sis tool Supremica. The algorithms are applied to a
real-world central-locking system, and we present the
computational effort needed for verifying and synthe-
sizing the system.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



2. MATHEMATICAL PRELIMINARIES

The notation used in the following sections is intro-
duced in this section. First, the modeling framework
is presented then fundamental properties of systems
are presented.

2.1 Modeling Framework

Finite automata and regular languages, (Hopcroft and
Ullman, 1979), are used as our modeling framework.

Definition 1. (Deterministic Finite Automata). A de-
terministic finite automaton is a 4-tuple defined as
A � �

Q � Σ � δ � qi � where Q is a nonempty finite set of
states; Σ is a nonempty finite set of event-symbols,
the alphabet; δ : Q � Σ � Q is the partial transition
function and qi � Q is the initial state.

In this paper the term automata will be used to refer
to deterministic finite automata. A string is a finite
sequence of events. A language is a set of strings. Let
Σ � be the language that contains all strings that can be
constructed with events from the alphabet Σ, including
the empty string ε. The prefix closure of a string s,
denoted s, is the set of all initial sub-strings of s, i.e.,

s �	� t � Σ ��

 � t 
 � Σ � s � t � tt 
 � s �
Let L � A � be the language generated by the automaton
A. L � A � is prefixed-closed, that is, the prefixe closure
of all strings in L � A � are also in L � A � . For a state q,
Σ � q � is the set of events defined from q.

In this paper we use full synchronous composition
(FSC) (Hoare, 1985) to model interaction between
automata.

Definition 2. (Full Synchronous Composition). The full
synchronous composition of two automata A1, A2 is
defined as A � A1 ��� A2 where Q � Q1 � Q2; Σ � Σ1 �
Σ2; qi

� �
q1

i � q2
i � , and the transition function is

δ ��� q1 � q2 � � σ � ����� ���
�
δ1 � q1 � σ ��� δ2 � q2 � σ � � σ � Σ � q1 ��� Σ � q2 ��
δ1 � q1 � σ ��� � q2 ! � σ � Σ � q1 �#" Σ2� � q1 ! � δ2 � q2 � σ � � σ � Σ � q2 �#" Σ1

undefined otherwise �
The FSC has a useful property – the composition is
associative and commutative with respect to the gen-
erated languages. This property implies that composi-
tion is easily extended to more than two automata at
a time, something that can be very efficient compared
to synchronizing automata two and two. The reason is
that a potential blow-up of the intermediate state-space
is avoided.

The projection operator, Proj, is used to restrict a
string to an event set Σ, by removing all occurrences
of events not in Σ. Formally, the projection operator is
defined as follows.

ProjΣ � ε � � ε

ProjΣ � σ � �%$ σ if σ � Σ
ε if σ &� Σ

ProjΣ � sσ � � ProjΣ � s � ProjΣ � σ � (1)

Proj ' 1
Σ � s � is the inverse to Proj,

s � σ1σ2 ���(� σn )
Proj ' 1

Σ � s � � Σ � σ1Σ � σ2Σ � ���(� Σ � σnΣ � (2)

Note that s � Proj ' 1
Σ � s � . The projection and inverse-

projection operators are extended to work on a lan-
guage by applying the operator to all strings in the
language.

In an automaton the inverse projection operation can
be implemented by adding self-loops with events from
Σ to all states. We assume that Σ in the inverse projec-
tion is disjoint from the alphabet of the automaton that
generated the original language. For two automata P
and S, the language of their FSC is L � P �*� S � � L ' 1 � P �+�
L ' 1 � S � , where

L ' 1 � P � � Proj ' 1
ΣS , ΣP � L � P �(�-�

L ' 1 � S � � Proj ' 1
ΣP , ΣS � L � S ����� (3)

Note that when ΣP
� ΣS then L � P �*� S � � L � P �#� L � S � .

2.2 Controllability

Let P be the automaton modeling the plant, and
let S be the supervisor. We will assume that P
and S is composed of a set of sub-plants and sub-
supervisors, respectively, i.e., P � P1

�*� P2
�*�/.(.�.0�*� Pm and

S � S1
�*� S2

��� .(.�.0�*� Sn. Both the sub-plants and the sub-
supervisors might have different alphabets. A crucial
requirement for S to function properly with the respect
to the plant, is that it never tries to disable (or prevent)
an uncontrollable event that can be generated by the
plant; that is, that S is controllable with respect to
P. The controllability condition can be written as a
language inclusion test.

Definition 3. (Controllability).
S is controllable with respect to P if

L � S � Σu � L � P �21 L � S ��� (4)

We do not assume by definition that the supervisor is
controllable with respect to the plant. Instead, we want
to restrict the behavior of the supervisor in order to
make it controllable. Thus, it is also possible to think
of the supervisor as a specification. This is discussed
in detail in sections 3 and 4.

Note that Definition 3 presupposes that P and S have
the same alphabet, which is a natural assumption.
However, in a modular setting, the individual sub-
plants and sub-supervisors do not in general have the
same alphabets. Since we want to exploit the modular-
ity in verifying controllability and synthesizing con-
trollable supervisors, we have to take the non-equality
of the alphabets into account. In this case, Defini-
tion 3 does not capture the necessary requirements as
is illustrated in Example 1. It might seem natural to
extend the alphabets by introducing self-loops such
that the alphabets become equal. This operation does
not change L � Pi

��� S j � , but unfortunately it not useful for
modular controllability verification or synthesis, as is
also shown by Example 1.



PSfrag replacements

q1

q2

q3

c1c2

u1u2

PSfrag replacements

q1

q2

q3
c1

c2

u1 u2

PSfrag replacements

q1

q2 q3

c1 c2

u1 u2

Fig. 1. The leftmost automaton is sub-plant P1, the middle au-
tomaton is sub-plant P2, and the rightmost automaton is the
supervisor S. The plant is P � P1

� �
P2. The alphabets are:

ΣPi ��� ci � ui � , ΣS ��� c1 � u1 � c2 � u2 � , Σu ��� u1 � u2 � .

EXAMPLE 1. In Fig. 1 two sub-plants, P1 and P2
(the leftmost automata), together with a supervisor
S (the rightmost automaton) for the composed plant
P � P1

��� P2 are depicted.

Clearly, ΣP � ΣS and S is controllable with respect to
P. However, since ΣP1 &� ΣS, we cannot directly use
the normal definition of controllability, (3), to verify
controllability of S with respect to P1. The usual way
to defeat this problem, is to augment ΣP1 with the
events of ΣS " ΣP1 . This is effectively done by intro-
ducing self-loops into P1 on the missing events, thus
creating P 
1, and then use the standard controllability
verification algorithm to verify that S is controllable
with respect to P 
1. As this example shows, though,
this may surprisingly create the new problem that S
is deemed not to be controllable with respect to P 
1.
The reason for this is that the uncontrollable event u2
will be self-looped in P 
1 at both its states, and thus
the strings u2 and c1u2 both belong to L � P 
1 � . On the
other hand, those strings do not belong to L � S � , while
their prefixes ε and c1 do. In the total plant P, the
strings on which S fail controllability will not arise,
since P2 will only allow u2 after c2. Not being able to
handle non-equal alphabets is clearly a problem when
trying to do modular verification since the sub-systems
might not look controllable when the total system is,
or vice versa. Note also that the the same type of
problems manifest themselves when ΣS � ΣPi , as well
as when projecting out events not in both alphabets,
see (Flordal, 2001).

As Example 1 shows, in a truly modular setting we
need to redefine controllability to handle automata
with different alphabets. These new definitions will
be presented in two forms. First, a definition based
on automata is presented. This definition is similar to
what the actual implementation looks like. Second, the
controllability definition is formulated as a condition
on the languages L � P � and L � S � . This definition is
similar to the standard controllability definition for
equal alphabets. In the following definitions P and
S are not necessarily the total supervisor and plant,
respectively, but rather may be compositions of sub-
supervisors and/or sub-plants.

Definition 4. (Controllability - Automata).
Let P be a plant and let S be a supervisor. No re-
strictions are placed on the alphabets of P and S. S
is controllable with respect to P if for each string
s � L � S ��� P � the following relation holds,

σ � Σ � p �#� Σu � ΣS ) σ � Σ � q � (5)

where
p � δP � qP

i � Pro jΣP � s �(�
q � δS � qS

i � Pro jΣS � s �(�

That is, p is the state in P after observing the string
s, and q is the corresponding state in S. Sometimes
the term completeness is used to denote controllability
between two automata.

The definition of controllability in terms of languages
becomes more complicated with non-equal alphabets,
forcing us to use inverse projection in order to be able
to intersect languages.

Definition 5. (Controllability - Languages). The same
assumptions as in Definition 4. S is controllable with
respect to P if their languages fulfill the following
relation.

L ' 1 � S �-� Σu � ΣP �#� L ' 1 � P ��1 L ' 1 � S � (6)

where L ' 1 � P � and L ' 1 � S � are as in (3).

Note, that Definitions 4 and 5 are equivalent to Defi-
nition 3 when ΣS � ΣP.

Definition 6. (Configuration).
A configuration is a finite set of automata.
We will regard the sets of sub-plants and sub-supervisors,
as well as respective sub-sets thereof, as configura-
tions. Thus, it becomes meaningful to define what
we mean by controllability of one configuration with
respect to another.

Definition 7. (Controllability - Configurations).
Let F1

� � F1
1 �(���(�(� Fm

1
! and F2

� � F1
2 ���(�(� � Fn

2
! be two

configurations. F1 is said to be controllable with re-
spect to F2 if F1

1
�*�/.(.�.0�*� Fm

1 is controllable with respect
to F1

2
�*�/.�.(.���� Fn

2 .

If F1 is empty then it is controllable by definition.
To make the notation easier we will introduce the
function Controllable � F1 � F2 � , which is true if F1 is
controllable with respect to F2, and false otherwise.
We also want to consider controllability for a subset,
Σ 
 1 Σu, of the uncontrollable events. This is written
as Controllable � F1 � F2 � Σ 
 � . To include this case (5) is
changed to

σ � Σ � q 
*��� Σu � ΣS � Σ 
 ) σ � Σ � q 
 
��-� (7)

Note, that when implementing this function only one
synchronization, if more than two automata are al-
lowed in the synchronization, is needed.

3. CONTROLLABILITY VERIFICATION

Definition 4 together with FSC, Definition 2, can be
used to implement a controllability verifier. For each
new state found by the FSC algorithm, it is checked
if (5) is fulfilled. If it is fulfilled for all, from the
initial state, reachable states, then the (sub)system is
controllable, otherwise it might not be controllable.

We assumed that the plant and the supervisor were
composed of sub-plants and sub-supervisors. This
modular structure will be exploited to be able to ver-
ify controllability of the global system, i.e., P ��� S by
verifying controllability for a set of sub-systems. How
to construct the sub-systems will be presented later,
first some more definitions. First, we will introduce
a function that given a configuration returns another
configuration.



Definition 8. (Event Dependence).
Let F � � F1 �(���(� � Fm

! be a configuration. Let Dep � F � Σ 
 � �� Fi
� � σ � Σ 
 � ΣFi ! .

Thus, Dep � F � Σ 
 � , is the subset of the automata in F ,
that have an event from Σ 
 in its alphabet. Specifically,
Dep � P� � σ ! � is the set of sub-plants, i.e. all Pi’s, that
have σ in its alphabet.

Definition 9. (Global-, local-, and sub-states).
Let F � � F1 �(�(����� Fm

! be a configuration, and F 
 �� F1 � ���(����� Fm �
! a subset of F . With the term local-state

we will refer to a state in one of the automata in F .
With the term global-state we will refer to a state in
F � F1

�*�/.�.(.���� Fm. With the term sub-state we will refer
to a state in F 
 � F 
1 �*�/.�.(.���� F 
m � . Given a global-state
q � F the function SubState � q � F 
 � returns a sub-state
that only refer to automata in F 
 1 F .

We are now ready to present a sufficient condition for
controllability.

THEOREM 1. Given a supervisor S � � S1 �(���(��� Sm
! ,

and a plant P � � P1 �(�(����� Pm
! . S is controllable with

respect to P if
�

Si � S

σ � Σu � ΣSi )
Controllable � � Si

! � Dep � P� � σ ! �(� (8)

Proof: Let s be an arbitrary string in L � S �*� P � . Let
q 
 � δP � qP

i � Pro jΣP � s ��� and
q 
 
 � δS � qS

i � Pro jΣS � s �(� . To prove the theorem we need
to show (from (7))

σ � Σ � q 
 �#� Σu � ΣS ) σ � Σ � q 
 
 ��� (9)

Let σ � Σ � q 
 � � Σu � ΣS, i.e., σ is an uncontrollable
event enabled by P and in the alphabet of S. To
show that σ is enabled in S we have to show that no
Si will disable it from its local-state after observing
s. From Definition 2 we can immediately rule out
those S j where σ &� ΣS j . For the other S j, let q 
 
j �
δS j � qS j

i � Pro jΣS j � s �(� , i.e. q 
 
j is the local-state of S j

after observing string s. From (8) we know that for
all reachable states in S j, S j never tries to disable an
uncontrollable event that is enabled by P and included
in ΣS, thus σ � Σ � q 
 
j � . Note, that all automata in P
that included σ were selected in (8). Hence, it is not
possible to find a σ such that (9) does not hold.

In an implementation it might in some situations be
faster to verify all uncontrollable events for a Si at
once, i.e. change (8) to check if

Controllable �/� Si
! � Dep � P� Σu � ΣSi �(� (10)

is true. Theorem 1 can be extended to also handle this
case.

If (8) does not hold then there exists an event σ,
and sub-states, q 
 and q 
 
 , such that (7) does not
hold for σ. Let q be a state in S �*� P such that q 
 �
SubState � q � Dep � P� � σ ! �(� and q 
 
 � SubState � q � � Si

! � .
If q is reachable from the initial state in S �*� P then the
system is not controllable. Thus the only possibility
for the system to still be controllable is when q is
not reachable from the initial state. When verifying
if such q exists, we may also find a path from the
initial state to q. This path is of great importance to
the user who wants to use this information to get

an idea of what is wrong. In case it is not possible
to find a state q reachable from the initial state we
have a false-alarm situation. These situations can be
resolved by FSC with some of the other sub-automata,
making the uncontrollable state unreachable. In our
implementation, we use the following simple heuristic
rule for selecting these automata. They are selected
based on how many common events they have with
the problematic configuration. Due to limited space
we refer the reader to (Flordal, 2001). The bottom line
is that the heuristics work well for those cases we have
tried, but there exists pathological cases where these
heuristics force FSC of all sub-supervisors and sub-
plants, although these situations should be rare.

4. CONTROLLABILITY SYNTHESIS

In this section, we will use insights gained from the
previous section to construct modular synthesis algo-
rithms. There are two main advantages with the algo-
rithms presented in this section. (i) They are computa-
tionally efficient in many practical applications. This
is important since it allows us to solve large synthesis
problems faster. (ii) They do not destroy modularity.
First, this allows us to use a modular deadlock/non-
blocking algorithm after the system has been made
controllable. Second, a modular supervisor is easier
to understand, than a monolithic supervisor. Third, a
modular structure might represent a very large num-
ber of states with little memory. If the supervisor is
implemented on a device with limited memory, e.g. a
PLC, this is important.

Definition 10. (Monolithic Synthesis Algorithm).
Let S � � S1 �(���(� � Sm

! and P � � P1 ���(����� Pn
! be two

configurations where S is the supervisor and P is the
plant. Let Synt � S � P � be the monolithic controllability
synthesis algorithm. More specifically,

Synt � S � P � � S1
�*�/.(.�.0�*� Sm

��� P1
�*�/.�.(.���� Pn

where all states that violate (4), and those states that
can reach these states by a sequence of uncontrollable
events, are removed.

The synthesized supervisor is more restricting, in the
sense of disabling events, than the original supervisor.
The previously outlined synthesis algorithm will be
our basic synthesis algorithm. We will now introduce
the modular synthesis algorithms. First, we present
a straightforward modular synthesis algorithm, which
unfortunately, may result in a non-maximally permis-
sive supervisor.

THEOREM 2. Extend the set of supervisors accord-
ing to the following rules. For each Si such that

� Controllable �/� Si
! � Dep � P� Σu � ΣSi �(��� (11)

synthesize a supervisor S 
i such that

S 
i � Synt � � Si
! � Dep � P� Σu � ΣSi �(�-� (12)

Then extend S by adding all the newly constructed
supervisors, resulting in a configuration, of sub-
supervisors, S 
 . Then S 
 is controllable with respect to
P.



Proof: To show this theorem we will rely on (8). First
examine Si together with S 
i. Note that ΣSi 1 ΣS �i . Now
repeat the check for controllability according to (8).
Let q 
 
 
 � δS �i

� qS �i � Pro j
ΣS �i

� s �(� . (4) can now be modified
to look like.

σ � Σ � q 
 �#� Σu � ΣS � Σ � q 
 
 
 � ) σ � Σ � q 
 
 � (13)

From this we can conclude that the system is control-
lable.

Note that the synthesis algorithm might remove sub-
states that were not reachable from the initial state.
Removing such states are unnecessary but perfectly
valid. The problem with Theorem 2 is that it does
not give a maximally permissive solution. This is due
to that the sub-plants in Dep � P� Σu � ΣSi � might have
uncontrollable events not included in ΣSi . Call these
events Σ 
 . The synthesis algorithm has to follow un-
controllable events backward from the initially uncon-
trollable states. Since not all sub-plants that have Σ 

in its alphabet are included in the synthesis, uncon-
trollable events might be removed when synchronized
with these automata. Fortunately, this is fixed by a
relatively simple modification.

PROPOSITION 1. Extend the set of supervisors ac-
cording to the following rules. For each Si such that

Controllable �/� Si
! � Dep � P� Σu � ΣSi �(� (14)

is false. First initialize Σ � 1 � and P � 1 � to

Σ � 1 � � Σu � ΣSi

P � 1 � � Dep � P� Σ � 1 � ��� (15)

Then repeat the following statements until Σ � n � 1 � �
Σ � n � .

Σ � n � 1 � � Σ � n � � � Σ � P � n � � � Σu �
P � n � 1 � � Dep � P � n � � Σ � n � � (16)

This iteration will always terminate in a finite number
of steps, say k. k will always be less than the number
of automata in P.

THEOREM 3. Synthesize a supervisor S 
i such that

S 
i � Synt �/� Si
! � P � k � ��� (17)

Then extend S by adding all the newly constructed
supervisors. Call the new supervisor set S 
 . Then S 

is controllable with respect to P. Note, k is equal
to the number of steps to terminate in the previous
proposition.
Proof: This proof is similar to the proof of Theorem 2.
The major difference is that each new sub-supervisor
is synthesized from a larger set of sub-plants.

PROPOSITION 2. Theorem 3 will result in a maxi-
mally permissive supervisor.
Proof: To show this we will make an argument for
each sub-state that were removed by the synthesis
algorithm. We have two alternatives, to remove or
to keep the forbidden state. In Theorem 3 the set of
sub-plants were extended until there did not exist a
sub-plant outside the set that had an uncontrollable

event in common with the sub-plants in the set. This
property implies that no uncontrollable event could be
prevented from occurring by FSC with another sub-
plant. From this we conclude that all sub-states that
could uncontrollably reach one of the initially for-
bidden states must also be forbidden. Since we start
the supervisor construction by synchronizing with the
plant we know that removing uncontrollable states
in the supervisor candidate is equivalent to remov-
ing uncontrollable strings from the maximally permis-
sive language as generated by the standard Ramadge-
Wonham algorithms. This gurantees the maximally
permissiveness of the synthesized supervisor.

5. LANGUAGE INCLUSION CHECK

Language inclusion is a general problem that has been
studied extensively in the computer science literature.
In verification applications language inclusion can
be used to check if an implementation contains a
specified behavior. Another application is to check for
language equality, where L1 1 L2 � L2 1 L1 ) L1

�
L2. In this section, we will show that we can use the
modular controllability verification algorithm to check
for language inclusion of prefixed-closed languages.
Assume that we want to check if L1 1 L2.

THEOREM 4. Let L1 and L2 be two prefixed-closed
regular languages, i.e. A1 and A2 can be constructed
such that L1

� L � A1 � and L2
� L � A2 � . We can

safely assume that ΣA1 1 ΣA2 . Then it holds that
L ' 1 � A2 � ΣA1 � L ' 1 � A1 � 1 L ' 1 � A2 ��� L � A1 ��1 L � A2 �
Proof: We are to show that L ' 1 � A2 � ΣA1 � L ' 1 � A1 � 1
L ' 1 � A2 ��� L � A1 � 1 L � A2 � assuming that ΣA1 1 ΣA2 .
When this holds then L ' 1 � A2 � � L � A2 � since no events
remain to be inserted. Thus we can rewrite the ex-
pression as L � A2 � ΣA1 � L ' 1 � A1 � 1 L � A2 �	� L � A1 � 1
L � A2 � . Let us also note that the right-hand side is
equivalent to L � A2 �-� ΣA1 �(� � L ' 1 � A1 ��1 L � A2 � .
Assume first that the right-hand side holds, that is
that L � A2 � � ΣA1 � � � L ' 1 � A1 � 1 L � A2 � . Since L � A2 � is
prefix-closed ε � L � A2 � and in that case the expres-
sion becomes � ΣA1 �(� � L ' 1 � A1 � 1 L � A2 � . Now, when
intersecting � ΣA1 �(� with L ' 1 � A1 � , only the ΣA1 events
are significant, and we have that � ΣA1 ��� � L ' 1 � A1 � �
L � A1 � . Obviously, this means that L � A2 � � ΣA1 �(� �
L ' 1 � A1 ��1 L � A2 � ) L � A1 �21 L � A2 � .
Assume now that L � A1 � 1 L � A2 � and pick a string sσ �
L � A1 �+� L � A2 � . Since sσ � L � A1 � it holds that s � L � A1 �
and that σ � ΣA1 . It also means that sσ � L ' 1 � A1 � .
That sσ � L � A2 � means that s � L � A2 � and therefore
sσ � L � A2 � ΣA1 . Thus, sσ � L � A2 � ΣA1 � L ' 1 � A1 � and
therefore it holds that L � A1 � 1 L � A2 � ) L � A2 � ΣA1 �
L ' 1 � A1 ��1 L � A2 � .
The intuition behind the theorem is to consider A1
to be the plant and A2 to be the supervisor. Since
all events in A1, the plant, are uncontrollable the
supervisor, A2, is never allowed to prevent any of them
from occurring. Since ΣA1 1 ΣA2 , the only way this can
happen is if A2 can follow all events generated by A1.

6. EXAMPLES

The presented results have been implemented in
Supremica, a tool for supervisory control 1 . To show

1 A website with more information about Supremica can be found
at www.supremica.org.



Name States
basic c 1319
basic u 2005

Name States
basic c 258
basic u 280

Table 1. Left: Verification examples. Right: Synthe-
sis examples.

that the results are usable on real-world examples
we have a variant of the central-locking system used
in the Korsys project. The central-locking examples
are based on a example distributed with Valid, by
Siemens Corporate Research. Due to limited space
we cannot present the details of the example here but
instead show some numbers that give an indication
to the reader about the efficiency of the presented
algorithms. The used example consists of 53 automata,
18 sub-plants and 35 sub-supervisors. All sub-plants
are two-state automata that only communicate through
the supervisor, i.e. their alphabets are disjunctive. The
sub-supervisors are of different sizes, from 1 to 27
states. The system has approximately 7 � 5 . 108 reach-
able states.

We have two versions of the problem, one that is
controllable and one that is not, these examples will
be called basic c and basic u, respectively. In Table 1,
left table, we show how many states that the verifi-
cation algorithm examines during verification. In Ta-
ble 1, right table, the total number of states in the new
sub-supervisors are presented. Note, in basic c it is
not necessary to do any synthesis since the system is
controllable before synthesis, but it is always safe to
do a synthesis. Instead of having to examine all 7 � 5 .
108 states we only had to examine a few hundreds to
a few thousand states. Somewhat surprisingly, synthe-
sis seems to be cheaper than verification. The reason
for this is that verification needs to verify if a found
sub-state is reachable from the initial state, while the
synthesis can safely proceed with the synthesis. The
necessary time for doing synthesis and verification
of this example in Supremica on a standard desktop
computer is well below one second. Even though this
is a single application, we are encouraged by the re-
sults, but it is necessary to run the algorithms on other
large examples before drawing any definitive conclu-
sions. To make it harder for the algorithms we have
modified the example by removing modularity, which
is easily done by pre-synchronizing sub-models. Our
preliminary results show that verification seems to
work efficiently in most cases. As expected, optimal
synthesis is sensitive to the degree of interaction be-
tween different sub-plants.

7. CONCLUSIONS

We have shown how a modular structure of the plant
and the supervisor can be exploited to get efficient
algorithms for verifying and synthesizing controllable
supervisors. Limited usage of both time and space is of
great practical importance when dealing with practical
applications that usually have a very large state space.
In industry, a PLC is very common device for logical
controllers. Thus, it is if importance not to synthe-
size a monolithic supervisor, but instead synthesize a
number of supervisors that when interacting with each
other accomplish the same result as the monolithic
supervisor. Potentially, implementing a set of interact-
ing supervisors instead of one monolithic supervisor
requires much less memory. The presented algorithms
has been verified on a central-locking example. Both
verification and synthesis could be performed with a
standard desktop computer within a couple of sec-
onds. We believe that modular algorithms could be
combined with BDD-approaches in order to handle

problems with little modular structure or when the
sub-problems that the modular algorithms give rise too
become to large for brute-force approaches. FSC is a
special case of prioritized synchronous composition.
Extensions of this work to prioritized synchronous
composition (PSC), (Heymann, 1990), is presented
in (Flordal, 2001). PSC allows the use of broadcast
synchronization that is the mechanism used in State-
chart and State diagrams in the Unified Model Lan-
guage (UML). We are currently working on extending
the algorithms to handle arbitrary forbidden states and
sub-states, we are also working on algorithms for non-
blocking verification and synthesis.

REFERENCES

Brandin, B., R. Malik and P. Dietrich (2000). Incre-
mental system verification and synthesis of mini-
mally restrictive behaviors. In: Proc.of the 2000
American Control Conference. Chicago, USA.
pp. 4056–4061.

Bryant, R. (1992). Symbolic manipulation with or-
dered binary decision diagrams. ACM Computing
Surveys 24 24, 293–318.

Corbett, James C. (1996). Evaluating deadlock
detection methods for concurrent software.
IEEE Transactions on Software Engineering
22(3), 161–180.

Flordal, H. (2001). Modular controllability verifica-
tion and synthesis of discrete event systems.
Technical report. Department of Signals and Sys-
tems, Chalmers University of Technology.

Gohari, P. and W.M. Wonham (2000). On the com-
plexity of supervisory control design in the RW
framework. IEEE Transactions on Systems, Man,
and Cybernetics 30(5), 643–652.

Heymann, M. (1990). Concurrency and discrete
event control. IEEE Control Systems Magazine
10(4), 103–112.

Hoare, C.A.R. (1985). Communicating Sequential
Processes. Prentice-Hall International Series in
Computer Science.

Hoffmann, G. and H. Wong-Toi (1992). Symbolic
synthesis of supervisory controllers. In: Proc. of
the 1992 American Control Conference. Chicago,
IL. pp. 2789–2793.

Hopcroft, J.E. and J.D. Ullman (1979). Introduction
to Automata Theory, Languages and Computa-
tion. Addison-Wesley Series in Computer Sci-
ence, Addison-Wesley.

Ramadge, P. and W.M. Wonham (1989). The control
of discrete event systems. Proc. IEEE 77(1), 81–
98.

Tronci, E. (1997). On computing optimal controllers
for finite state systems. In: Proc. of 36th IEEE
CDC. USA.

Wong, K. and W.M. Wonham (1998). Modular control
and coordination of discrete-event systems. Jour-
nal of Discrete Event Dynamic Systems: Theory
and Applications 8(3), 247–297.

Wonham, W.M. and P.J. Ramadge (1988). Modu-
lar supervisory control of discrete event sys-
tems. Mathematics of Control Signals and Sys-
tems 1(1), 13–30.

Zhang, Z. and W.M. Wonham (2001). STCT: An ef-
ficient algorithm for supervisory control design.
In: Proc. Symposium on the Supervisory Control
of Discrete Event Systems. A Satellite Workshop
of 13th Conference on Computer Aided Verifica-
tion. Paris, France. pp. 82–93.


