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DESIGN OF ROBUST STABLE MASTER-SLAVE
SYSTEMS WITH UNCERTAIN DYNAMICS AND
TIME-DELAY
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Abstract: Master-slave and teleoperation systems with kinesthetic feedback enhance
the dexterity of an operator performing manipulation tasks in remote, not accessible,
or scaled environments. Kinesthetic feedback is achieved by closing bi-directional
control loops between the operator and teleoperator site. This article proposes a
method for the synthesis of robust bi-directional control loops in parameter space.
Using the approach of singular frequencies a method for the synthesis of Hurwitz-
and I'-stable bi-directional controllers is developed and its application is shown by
simulation. Robust performance is achieved w.r.t. parameter uncertainties of the
operator and teleoperator dynamics and the bi-directional communication time delay.
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1. INTRODUCTION

The design of telemanipulation systems for teler-
obotics applications calls for robust control meth-
ods to cope with critical uncertain system param-
eters (typically time-delay and environment stiff-
ness). Several approaches are proposed, including
the scattering matrix and “wave variable” based
theory, (Anderson and Spong, 1989; Niemeyer
and Slotine, 1991).

In this paper we propose a method for the syn-
thesis of robust bilateral position controllers to
achieve kinesthetic feedback with master-slave
systems despite time delay and other system pa-
rameter uncertainties. In the context of robust
control (Ackermann et al., 1993), we use the ap-
proach of singular frequencies to solve symboli-
cally for the Hurwitz- and I'-stable regions taking
into account the uncertainty of the parameters
describing the interaction stiffness at the operator
and environment port, and the signal delay time.

1 The address for references is naim.bajcinca@dlr.de
2 The author acknowledges DAAD for supporting this
work.

The model and control structure of the master-
slave system is presented in section 2. In Section
3 the method of singular frequencies is described
and partial differential transformation equations
are derived for the nonlinear parameter depen-
dence. These equations are solved for the bilinear
parameter dependency in Section 4. An algorithm
for the detection of active regions in parameter
space is presented in Section 5. In Section 6 a
design of a robust controller using the proposed
method is presented and verified by simulations.

2. MODEL AND CONTROL STRUCTURE OF
A MASTERSIIEWE S

Moadlde . In this paper we will base our discussion
of the parameter space on one degree-of-freedom
systems in Cartesian space. The signals of the
control system, such as position, velocity and force
are scalar variables.

Figure 1 depicts a general structure of a master-
slave system. The operator generates a command
T, to the muscle system based on the difference
between a desired anticipated position and the



current position of the slave system. The arm of
the operator thereby exerts an external force f,,
on the master-arm. The bilateral controller cou-
ples the master and slave system by commanding
the forces 7., and 7, to the master and slave ma-
nipulator respectively. The slave manipulator mo-
tion generates a force f; via the slave-environment
contact stiffness. In Figure 1 and in the model
equations the operator and the environment are
represented as impedances.
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Fig. 1. General structure of a master-slave system.

The operator arm is modeled as a linear mass-
damper-spring model of second order,

To = MoTm + boTm + Com + fm- (1)

We thereby assume that the operator firmly
grasps the master arm during task execution with
the system. The operator arm can be seen as a
passive system with spring-like behavior, although
neural feedback may modify muscle impedance
(Hogan, 1989). The damping b, and stiffness ¢,
of the arm vary in a certain range according to
the contraction of the muscle apparatus.

The dynamics of the master and the slave system
is described by

fm =MpEm + bnZm + T, (2)
Ts =Mgis + bsTs + fs (3)

with my,, b, and mg, bs, the mass and damping
of the master and slave arm, respectively. The
environment contact dynamics is represented by

fs =Mels + beds + Cels, (4)

where me, b., and ¢, are the mass, damping, and
stiffness of the environment, respectively.

Control. The bilateral controller shown in Fig. 1
consists of a master and a slave part. Note that
the delayed signals are marked by a bar, e.g.
Tm(t) = 2 (t — T1).

As outlined above bilateral PD position control
will be considered throughout this paper

Tm = _kmmxm

- dmmmm + ksmi.s + dsmj:s:
Ts = _kssxs - (5)

dSSj’IS + kms'i.m + de':LL.’ITL

with Emm, dmm, kEsm, dsm and kss, dss, kms, dms
the master and slave control parameters respec-
tively.

3. THE METHOD OF SINGULAR
FREQUENCIES

Introduction. Let p(s,q,k) be the polynomial
family of a system, where ¢ = [q1,¢2," ", q,]7 is
the vector of parameter uncertainties and k =
[k1, k2, -+, kT contains the controller parame-
ters. The vector of uncertainties g is assumed
to be constant but unknown up-to a so-called
uncertainty @—box which encloses all the possible
operating points and is defined as ¢; < ¢; <
qu"7 Z:17277p

The basic eigenvalue problem of robust control
is to find the set of all controller parameters
K, s.t. the set of eigenvalues of each operating
point within the @—box lie inside a prespecified
I'—region in the complex s—plane. It is said that
the @—box is robustly I'—stabilized,

Kr ={k : p(s,q,k) is robust T — stable Vq € Q},

General items. Usually a simple controller struc-
ture is assumed in the first step. The process
of controller design goes through several design-
analysis steps. In a first design step, the boundary
of the eigenvalue I'—region, 0T, is mapped into the
controller parameter space for a multi-model (i.e.
for several operating points {¢!") : ¢ € Q —
box}, usually vertices of the @—box). The map-
ping equation is the characteristic equation of the
system itself,

p(s,q"), k) =0 (6)

During the analysis step, the contrary is done,
i.e. the boundary of the resulting (intersection)
stable region in the controller space, 0K is
back-mapped to the uncertainty parameter space,
Qr. This feedback design-analysis procedure, with
new critical operating points included is repeated
until Qp C Q. Otherwise the I' region has to
be redefined. The mapping and back-mapping is
usually done in the two-parameter plane, with
the rest of parameters fixed, see (Ackermann et
al., 1993).



Singular frequencies. In the following we con-
centrate on the method of singular frequencies,
which is shown to be convenient for the design
of master-slave systems in parameter space. A
necessary step of the method is to move to a new
controller parameter space r, i.e.,

k = k(r). (7)

For the sake of simplicity, we concentrate our
further discussion on two-parameters r; and 7.
The mapping equations, that is, the real and
imaginary part of the characteristic equation are,

h(s,q(l’),Tl,’f'z) = 0;
g(S,q(V),Tl,TQ) =0

(8)

Complex frequencies on 9I' usually map to a
point (ry,73). However at some certain peculiar

frequencies s° = ¢° + jw° the so called rank-
condition,
9(h,9)
rank go=1 9
6(’!‘1,'[‘2)| ( )

is met. Given that 1 and ry enter linearly in (8),
two things can happen: s° is mapped to a singular
line, or s° is under no-(r1,r2) combination an
eigenvalue of the system. In the first case, s° is
said to be a singular frequency, i.e.

p(So,q(”),T‘l,'f'2) = 05 (]‘0)

which is the root-condition for the singular fre-

quencies. For the special class of singular T'—regions,

the rank-condition is fulfilled at each frequency
s € dl, i.e.

rank Ohg). =1, Vsedl. (11)

8(7‘1,7‘2)

Geometrically, the rank-condition guarantees that
for each frequency s € OTI', (8) map to two
parallel lines in (r1,rs)-plane, while the root-
condition identifies the singular frequencies at
which these lines are identical. The eigenvalues
of the system can enter/leave the I'—region, at
singular frequencies only. Thus only the singular
frequencies have to be mapped and not the whole
boundary OT'.

Parameter transformation. The basic problem
of the method of singular frequencies is to find the
transformation equations (7) s.t. a given I'—region
in the new parameter space r turns into a singular
one. We define such a parameter space as singular
parameter space of the I'—region. Unfortunately,
not every I'—region can turn to singular. In addi-
tion, the set of singular I'—regions is determined
by the controller structure.

Solution of (7) depends heavily on how controller
parameters appear in the mapping equations (8).
The affine parameter dependency is solved in
(Bajcinca, 2001; Ackermann et al., 2001).

We consider here the general case of nonlinear ap-
pearance of controller parameters in the mapping
equations. Let

a = a(kla k?; k37q(u))

be the vector of coefficients ag,as,---,a, of the
characteristic polynomial (6) and (k1, k2, k3) three
free controller parameters. The rest of controller
parameters and uncertainties are included in g).

We are looking for a transformation into an
r—parameter space

ki = k1(7‘177‘2;7‘3);
ky = ka(ry,72,73), (12)
ks =ks(ri,re,73),

under the rank-condtion. Since the rank-condition
applies over the entire o—axis (s = o + jw), it
follows that 3,

d(h, +9) da
8(7’1,7“2) - 77(0: UJ) 6(7’1,7‘2), (13)
with
loo?—w?... Rs”
ne@) =151 95 .. Lgem| 4
w
and
Oa _ da B(kl, kQ, kg) (15)
8(7'1,7'2) B 6(k1;k27k3) 6(T17T2) '

If the rank-condition is applied on (13), a curve
family in the complex s—plane results, which is
called the family of singular curves. These curves
define the boundaries 9I" of singular I'—regions.

The family of singular curves is described by the
equation,

Oa da

Ac— =i+ 272+ ... + On_17n—1,(16)

o o,

where A = A\(a) and p; = p;(a), i =1,2,...,n—1
are arbitrary functions defined on the boundary
OI' and « is used as the parameter of the singular
curves OI'. The vectors ~;,

M Zgsitt — Rsit! ]
w
——gsitl
w
0
T .
v = . , 1=1,2,...,n—1(17)

1

L 0 A

span the null-space of the matrix 1, which we call
~vy—space. In order to solve for explicit equations

3 The singular frequency at w = 0 is not considered.



of the singular curves, the arbitrary functions A
and ¢; should be eliminated in (16). The resulting
singular curve (the I' region, too) is said to get
singularized by a specific set of the y—vectors. It
can be shown that a I'—region is singularized by
a unique set of v vectors. We will show later on
that our assumed controller structure for design
of the master-slave system results in a I'—space
spanned just by the vector ;. Other I'—spaces are
analyzed in (Bajcinca, 2001). It has been shown
there that the solution for the singular v, family
is,

A(o® +w?) +2Bo+C =0 (18)
with
o 6(11 6&2 Baz 6(11
T 9r drs 9ry Oy’
B = ita_a; _ iéa_ag (19)
- 67‘1 67’2 6’!‘1 67‘2,
_ 9a09a1 _ a; dag
- 67‘1 67’2 6’!‘1 67‘2 )

Eq. (18) suggests that the v — singular I'—region
family contains the set of circles with the cen-
ter on the real o—axis and an arbitrary radius
(A # 0, circle stability) and the lines parallel to
imaginary axis (A = 0, o—stability). Note that
A =0 and C = 0 correspond to Hurwitz-stability.

Substitution of (15) in(19) (after some obvious
steps) yields the following PDE system,

Oky Oky  Oky Ok
arion omon, L @)

Oky Oks Oks
H—-G—+F—= 21
67’1 G6r1 + 6’!‘1 07 ( )
a2 pOks g (22)

67’2 B 6’!‘2 6—7“2

Its solution depends heavily on the functions F,
G and H. However we do not have to solve
for the general solution, since we aim to find
just a singular parameter space, i.e. a particular
solution.

Robustness. Assume the characteristic polyno-
mial of the system in the form,

p(s,q,k) = A(s,q) a(s,k) + B(s,q). (23)

The plant parameters g are free to appear ar-

disturb the singularity of a I'—region. However,
uncertainties effect the singular frequencies on the
boundary OI'. An important consequence is that
the gridding orientation planes, r3 = const, in the
transformed parameter space does not depend on
the plant parameters.

4. BILINEAR PARAMETER DEPENDENCE

The characteristic polynomial of a linear master-
slave system with the controller structure (5) is,

p(s,q,k) = a(s, k') e~ T1FT2)5 4 b(s, q,k"),(25)

with

a(s, k') = ag + ars + ass’, (26)
b(s,q, k") =bo + bis + bas® + bzs® + bss* (27)

k’ contains the coupled controller parameters
ksms kms,dsm, k" the local ones k,m,kss, dmm
and dgs and g the plant parameters. Given that
k" parameters are designed, i.e. fixed, (25) gets
the typical form (23) for the method of singular
frequencies. Note that the y—space of this polyno-
mial is spanned just by the vector vy, i.e. circle-,
o— and Hurwitz stability design requirements are
realizable.

We introduce the notation ky = ksp, ke =
dsm, k3 = dsm and fix dpps = d, 4, s0,

ap = kiks,

a; = kld:ns + k‘gkg, (28)

as = de:ns'
Now we will try to solve the problem of nonlinear
parameter transformation (7) for this special case.

Solving for F,G, H in (25) and substituting them
in (21) and (22) results with the solution,

Bkoks — Ak1ks + Bd:nskl - Cd:nsk‘g = U(’I‘3)(29)

with U(r3) being an arbitrary function of r3. Since
we are looking just for a particular solution, we
assume U(r3) = r3. In addition, we assume the
simple condition ks = ry/d%,,. Now (29) is solved
for k3, and subsequently substituted in (20). A
PDE solvable in closed form results,

6k1 (BTQ — Ad:nsk‘l)z

bitrarily in the polynomials A(s,q) and B(s,q). = = .(30)
A(s,q) and B(s,q) can also (con‘Zain exp(oner)l- Ir1 s (=T2r3 + 2Bdy, ;raky — Cr3 — Ady2 k)

tial terms with time-delays, that is they can be
quasipolynomials. This matches exactly with our
master-slave system.

The parameters A, B, C define the singular I'—region.

Hurwitz region (¢ < 0) turns singular for A =
0,C = 0,B = 1. A Hurwitz singular parameter

The Sylvester inequality about the rank of the
v q Y space is then defined by,

product of two matrices applied on (23) yields,

ap da Ok ki = (rs + \/?)/2d:ns’
rank 5 = rank "a_ka_r (24) ko = Tz/d:ns,
ks = diy(rs — /J)/2r2, (31)

Note that the plant uncertainties g in (23) have no

effect on the rank-condition (24), i.e. they do not f =r2—drr,.



o— Singular regions (o < —o, < 0) result if A =
0,B =1/2,C = 09,00 > 0. The transformation
equations are,

ki = (rs + aors — /f) /b,

kz = 'I“z/d:ns,

ks = (r3 + oors + /f)d, /12, (32)
f = 7‘?2, + 209T2r3 + agrg —rire/2.

Note that, the condition f > 0 restricts the space
of controllers in r—parameter space.

5. DETECTION OF ACTIVE REGIONS IN
PARAMETER SPACE

In this section we state a theorem which we use for
automatic detection of the I'—stable regions in pa-
rameter space. Consider a singular r—parameter *
space and a singular curve

oT : F(o,w) = 0. (33)

It can be shown that the condition r3 = const gen-
erates a set S = {s9,s3,...} of singular frequen-
cies. Each singular frequency generates a singular
line in the (ry,r2)—plane and consequently a set
of convex polygons results. If r3 is gridded then
the whole (r1,r2,73)—space is divided in 3D re-
gions. The boundary surface between two regions,
S(r1,m2,73) = 0, is called a singular surface. We
search for the active ones, i.e. those that bound
the parameter space region(s) with a maximal
number of system eigenvalues inside the I'—region.

Theorem 1. Let S(ri,rs,73) = 0 be a singular
surface and r° = (r{,r3,7$)T a point on it. Let
s° be the corresponding singular frequency on
the singular curve (33). If the singular surface
S(r1,72,73) = 0 is crossed at r° with,

_ 87'1 6'[‘2 6'[‘3 T
dr = <6p; apa 3P>Todp

(dp > 0), a pair of eigenvalues crosses the singular
curve (33) at s° with,

do dw\"
=== 4
p (dp, dp)so,ro (34)
with
do|  _ 23: O(hyg) | Ors
dp |0 o B —0(w,Ti) |, Op o (35)
do| i d(h,g) | Ori
plgo o = 10(riy0) |0 Op |0’

4 1t is assumed that parameters r1,72,73 enter linearly in
the transformed characteristic polynomial.

To conclude whether the eigenvalues leave or enter
the I'— region, one should compute,

e = sign (uT - N) (36)

where N = (g—f, g—i)so is the normal vector on
(33) at s°. If e = +1, the eigenvalues leave the

I'—region, while for ¢ = —1 they enter it.

6. DESIGN OF THE ROBUST CONTROLLER

Our aim is to find the set of all robust stabilizers
for the master-slave system in 3D r—parameter
space. The typical and most critical uncertainties
in a teleoperating system are the operator stiff-
ness, ¢,, environment stiffness, ¢, and bi-lateral
communication time delay T' = T} + T». The data
for the master and slave robot used in this article
correspond to those of the force controlled DLR
light-weight-robot.

Operator: mo = 0, do =0, ¢, = uncertain
Master robot: mps = 1.5 kg, bar = 16.5 N/m/s
Slave robot: mg = 1.5 kg, bg = 16.5 N/m/s
Environment: me = 0, de = 5N/m/s, ce = uncertain,

We assume the following uncertainty Q-box:

Time delay T=01s...05s
Operator stiffness: ¢o =50 N/m...500 N/m
Environment stiffness: ¢ = 1000 N/m...10000 N/m.

The local controller parameters are assumed to be
K,,=K;=20N/m and D,, = D; =5 N/m/s.

Hurwitz-stability. If (31) is substituted in (25)
the characteristic polynomial transforms to

p(s,r) = (ros®> +r3s +11) + b(s)eTs, (37)

where b(s) is a polynomial of order = 4. Note
that the necessary principle term condition for
the stability of the quasipolynomial is fulfilled,
(Pontryagin, 1955).

The analysis of (37) is especially elegant since the
imaginary part, r3 = —A(w)/wsin(wT + ¢(w))
generates the singular frequencies, while the real
part, r1 —w?ry = —A(w) cos(wT + ¢(w)) generates
the corresponding singular lines, where A(w) =
b(jw)| and ¢p(w) = arg b(jw).

As discussed in section 3, a practical procedure
for the robust control of the Q—box is to find
simultaneous stabilizers for a finite number of
critical operating points. Usually the vertices of
the Q—box are chosen as the critical operating
points.

The execution of the algorithm in the interval
—20000 < r3 < 420000 and for w < 100,
yields the region of candidate stabilizers shown in
Fig. 2. The controllers in —11492.48239 < r3 <
11480.43529 are equistable, i.e. the stability of
the whole region can be concluded based on the
stability of any controller in that region. For the



Fig. 2. Robust Hurwitz-stable region.

sake of simplicity we chose the controller r; =
0,70 = 0,73 = 1. According to the theorem of
Pontryagin, (Pontryagin, 1955) a quasipolynomial
p(jw) = h(w) + jg(w) with principle term is Hur-
witz stable if all roots {w,} of h(w) are real and
at each w,, g(w) w, < 0 applies. Substitution
of our controller in (37) yields,

h(w) = A(w) cos(wT + ¢(w))

g(w) = w+ A(w) sin(wT + d(w)).

Note that A(w) has no real roots. Also d¢/dw >
0,Yw > 0. Thus the roots of h(w) are real and
they are defined by the condition ¢(w) = (k +
1/2)w, k=0,1,2,.... At each root w,,

dh d
o) L ’

Wo

where ay,(w,) = a(w,) sin(k + 1/2)r. Since for all
operating points of the system, a(w) > w, Yw >
0, the condition g(w)4 W, < 0 is valid, ie.
the controller 11 = ro = 0, r3 = 1 is stable.
This shows that the region in Fig. 2 stabilizes
simultaneously all vertices of the Q@—box of the
master-slave system.

Fig. 3. Step response of z,, for 24 operating points
of the @—Box, 7, = 5 (N).

The rigorous robustness analysis of the whole
Q—box of our system is not done in this article.
Instead we analyze the stability of a finite set
of operating points. Consider a controller inside
the region in Fig. 2, e.g. r3 = 3751.86992,r1 =
785.13565, 79 = 38.71231. In Fig. 3 we show the
step response of xz,, for 24 operating points (8

= —ap(w,) (T - E) (wo + atk(wo)),

vertices + 8 centers of the edges + 8 centers of
the surfaces of the Q—box).

o-Stability. An analogous design in parameter
space can be done also for the o—stability spec-
ifications, performing faster decaying system re-
sponses. In Fig. 4 the resulting region of robust
stabilizers is shown for o, = 2.

Fig. 4. Robust o—stable in parameter space.

7. CONCLUSION

In this paper a method for the synthesis of bilat-
eral master-slave controllers in parameter space
has been proposed. The design takes into account
the parameter uncertainty in the signal delay, the
operator and the environment contact stiffness.
Using the approach of singular frequencies, the
synthesis of robust Hurwitz- and I'—stable con-
trollers has been shown and validated by simula-
tions.
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