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Abstract: In this paper, dynamic sliding surface design combined with recursive
backstepping algorithm is introduced. The high frequency, high amplitude chattering
effects associated with high gain properties of the backstepping algorithm are
eliminated by using compensator dynamics introduced in sliding mode through a
class of switching surfaces which has the interpretation of linear operators.
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1. INTRODUCTION

The robust stabilization of uncertain systems
with both matched and unmatched modeling un-
certainties and unknown disturbances has been
an important research area in control. Sliding
mode control theory has been extensively ap-
plied to stabilize the uncertain systems satisfying
matched uncertainties, (Utkin, 1992). In the pres-
ence of unmatched uncertainty, recursive back-
stepping based on Lyapunov design (M. Krsti'c
and Kokotovi¢, 1995) has been applied for certain
classes of systems. Recursive backstepping com-
bined with robust sliding mode performance has
been studied widely in recent years (Haskara and
Ozgiiner, 1999), (Koshkouei and Zinober, 2000).
The Lyapunov function used to stabilize the un-
certain systems may lead to high gain and un-
desirable high frequency, high amplitude chatter-
ing. A new Lyapunov function has been proposed
to design softer control laws to eliminate the
chattering effects (Freeman and Kokotovi¢, 1993).
Basically they decomposed the disturbances and
designed the Linear Quadratic (LQ) smooth con-
troller making principle minors dominant for pos-
itive definiteness.

This paper introduces recursive backstepping
combined with dynamic sliding surface design.

Lyapunov based recursive backstepping design is
applied to robustly stabilize the linear system
in the presence of both matched and unmatched
uncertainties and the recursive smooth state feed-
back control laws are generated by forcing the
sliding manifold through compensator dynam-
ics. The compensators are designed to attenuate
the frequency contents of the sliding mode dy-
namics such that high frequency, high amplitude
chattering effects are eliminated (Acarman and
Ozgiiner, 2001), (Young and Ozgiiner, 1993). Two
design methods are presented, the first method is
based on pole placement techniques satisfying de-
sired transient performance specifications during
sliding mode by using the free parameters of the
dynamic compensator and the second one is based
on frequency-shaped LQ design techniques, which
have been used to minimize high frequency chat-
tering effects associated with the high gain sliding
mode and backstepping control algorithms. This
paper is organized as follows: In Section 2, dy-
namic switching surface has been designed for the
error dynamics derived based on recursive back-
stepping control. In Section 3, frequency-shaped
optimal sliding mode has been designed to elim-
inate chattering effects. In Section 4, simulation
results and comparisons are presented. Section 5
gives some conclusions of this work.



2. DYNAMIC SLIDING MODE CONTROL
COMBINED WITH RECURSIVE
BACKSTEPPING DESIGN

Let the plant be given in the regular form,

Ty | _ A Apg Tl 0 u
T2 Aoy Ap T2 B,

[ o | 0

where 1 € R™, 2 € R™, u € R™, the matrices
are real, of compatible dimensions, By is of full
rank and the functions D1 (x1,t), Da(z1, 22, ) rep-
resent the system nonlinearities and uncertainties.
The control goal is to make asymptotically glob-
ally stable the state x; using sliding mode control
design methodology. The switching surface is

o = Cx +£(.’L‘2) (2)

where C is a R™*"™ constant matrix to define the
desired dynamics of the sliding mode and L(e)
is a linear operator which has a realization as a
transfer function

(SI—I—F)Z = [K1 +K28] X9 (3)

where Ky, Ko € R™*™ F € R™*™_ And the
linear operator is defined L(e) as a dynamic
system

2=—Fz+ KyAo1z1 + (K1 + KaA2) 22 + K2 Bou
y=Hz+ x9 (4)

The composite system is given,

%1 = A1121 + A12x2 + Di(21,1) (5)
To = A1 + Axas + Boz + Da(x1, 22,t) (6)

2=—Fz+ KoAs121 + (K1 + K2A2) zo
+ KoBou + KoDo (1, 22,1) (7)

We have assumed that £(e) has an equal number
poles and zeros, here the number of poles and ze-
ros is equal to one to be able to introduce the first
derivative of the state xs and the discontinuous
control signal to the augmented state z. And z is
the continuous input to the plant given in Eqn 1.
The disturbances are assumed to satisfy,

|1D1(z1,t)ll2 < dilz1 |2
1 D2(@1,32,t)||l2 < | D11, )2 + [[Di(@2,t) |2
<dif|z |2 + daf[z2]2 (8)
where ||z||o=(zTxz)'/? for all 2 € R".
Step 1: Define the error variable y; = z; and

Y2 = Lo — a1 (x1) where o = aq(x1) with a1 (0) =
0 is a smooth stabilizing state feedback control of

the system given in Eqn 5 included to compen-
sate for the uncertainty D;(z1,t). A Lyapunov
function, V; = ly{y; and its first-order time
derivative along the trajectory of Eqn 5

oy .
Vilyh) = a—yiyl =yl (A11y1 + A1222 + Dy (21, 1))

< Amin (A1 — (K = d)lyall3 + dallyall3
< —kllyall3 9)

for all z; € R™, z2 € R™ and k; > 0 is satisfied
by using the state feedback,

o = —AE(/C - dl)yl (10)

where \pin(A11 — (K —dy)) < —dy < 0 and AT
is the pseudo-inverse of the matrix A. Then the
time derivative of the error variable y; and the
error variable y, are given by

U1 =Auy + Ai2(y2 — a1(x1)) + Di(y1,t) (11)
= (A11 — (K —d1))y1 + Ar2y2 + Di(y1, 1)
yo2 = xa + ALK — di)x1 = 22 + a1 (1)
Step 2: Define y3 = z — ag(xy,x2) where z =
as (1, 22) with a3(0,0) = 0 is a smooth stabiliz-
ing state feedback of the system given by Eqn 5

and Eqn 6 included to compensate for the uncer-
tainties D1(z1,t) and Da(x1,xo,t). The Lyapunov

function Va(y1,y2) = Vi(y1)+3¥3 y2 and its time
derivative along the trajectories of Eqn 5, Eqn 6
is given by

Vo =y] [(Ann — (K — d1))y1 + A12y> + Di(y1,1)]
+ 9T [A21x1 + Agazs + Baz + Do(x1,z0,t)  (12)

+ AL (K — di)(A1n1 @1 + A1axa + Di(21,1))]

using the state feedback,

z=—BF [Aly1 + An1z1 + Ao (13)
+ AE (IC - d1) (AH.'L'l + A12.’132) - kzyg]

the time derivative of V2(y1, y2) is obtained,

Vo < —killyall3 — k2lly2ll3 + llyzll2 (1D2 (21, 22, 8)ll2
+ 145 (K = d1)ll2[| D1 (21, 1)]|2) (14)

and using disturbance inequalities Eqn 8

Va < —kllyall3 — kallyall3 + llyzllz (|22
+ da|z2|l2) + di|| AL (K — di)|l2[|21]]2) (15)

The change of coordinates (y1,y2,¥3) < (%1, T2, 2)
is well defined (Freeman and Kokotovié¢, 1993),
and using a change of coordinates (z2) <> (y1,y2)
and the triangle inequality,

z2ll2 < [ly2ll2 + [|AF (K — di) 2|yl

the time derivative of Va(y1,y2) is given



Vs < —klly1ll3 — kally2ll3 + dally2ll3 + llyall2(da
+ (di + do) | AT (K — di)|2) lly2l2 (16)

define

ALK — d)ll2 = Pnas (Ao (K — )T
(Af, (K—d))F =4 (17)

by inserting the above definition into Eqn 16,

Vo < —killyall3 — (ko — da)||y2 I3
+ ly1ll2(dy + (d1 + d2)d)||y21l2 (18)

__ [||Z/1||2] [ kq -L ] [ llyll2 ]
llyz2(l2 L ke —ds [ly2]l2
where £ = dy + (d1 + d2)d, the time derivative

of V2(y1,y2) is negative when the state feedback
gain is chosen

di + (d1 + d2)5

ko > do + 1k

(19)
yields,

Va < —c[[lnall3 + lly2l13] (20)

for some ¢ > 0. Then the time derivative of the
error variable y, and the error variable y; are
given by

Yo = As1z1 + Asoxo + Bz + D2(1’1; Za, t) (2]_)
+ AE(’C —di) [Anizr + Araza + D1(z1,1)]

Yys=z+ B;[Afzyl + Aoz + Asoxa + kayo
+ Aii_z (K —d1)(An1z1 + Ara22)]
=z 4+ aa(z1,22) (22)

inserting the state feedback (z = y3 — as(z1,z2))
Eqn 22, the error variable equation becomes,

U2 = —Aly1 — kays + Boys + Da (21,72, t)
+ AE(IC — dl)Dl (wl,t) (23)

and the third error variable equation is given by
taking the first derivative of Eqn 22,

. 8&2 80&2
g3 =—(F — 8—56232)3/3 + (K1 + KaAs + a—xlAn
Oa O
+ 6—3321421)(2/1 —a1(21)) + (K242 + 6—a:fA12
Oa O
+ 8—2;A22)(2/2 — az(z1,72)) + 6—a:D1($1,t)
0
+ ﬂ.DQ(.’L'l, T, t) + K> Bsu (24)
6332

2.1 Sliding backstepping control

Define sliding surface in terms of the error dynam-
ics using

oc=Hys+y>+Cy1 (25)
where H and C are defined in Eqn 2 and Eqn 4.

The Lyapunov function of the composite error
system (Eqn 11, Eqn 23, Eqn 24) is given

_]‘T 1T ]'T _ ]'T
V3—2y1y1+2y2y2+20 a_V2+20 o

the time derivative of the Lyapunov function
Vs =y [(A1x — (K — d1))y1 + A12y2 + D1(y1,1)]

+y3 [-ATy1 — k2yz + Bays + Da(x1, 22, 1)
+ AB(IC —d1)D1(z1,8)] + or (—H(F

14] o] 14]
- ﬂB2)y3 + H(K1 + K2A21 + ﬂ1411 + ﬂ.'421)

Oz ox1 Oxa
da oo

(y1 — a1(z1)) + H((K2A422 + 22 Agp + —2A22)
3.’61 3382
da da

(y2 — a2(z1,22)) + K2As2 + 2 A + (—2A22)
ox1 Oxa

oo oo
(y2 — az(.’l:1,.’t2)) + —2D1(.’E17t) + =2
ox1 Oxa

Do (z1,22,t) + K2Bou)) — AT,y1 — kaya + Bays
+ Da(z1,%2,t) + Al5(K — di) D1 (z1,t)
+ C((A11 — (K —d1))y1 + A12y2 + D1(y1,1))) (26)

A discontinuous control input can then be formu-
lated as:

u=—(HK,Bs)™ " [M||yll2 + A] sign(o) (27)

where y = [y1 y2 y3]7 and A > 0,M > 0 are
fairly high gains such that a sliding mode on the
sliding surface ¢ = 0 is guaranteed.

If the sliding mode exists: 0 = 0, y3 = —H 1y, —
H~'Cy, and the time derivative of the Lyapunov
function given in Eqn 26 can be derived (};hrough
straight-forward algebraic manipulations)

Vs < —(k1 —di —m)lly1l3 — (k2 — d2 — 72)l|v2 13
+ [lyall2vslly21l2 (28)

where 7;, ¢ = 1,2,3 denotes the Euclidean norm
of the derived terms in Eqn 26 when o = 0.

If the sliding mode exists: ¢ = 0, the state
feedback gains k; and k2 can be chosen such that
Eqn 28 yields

Vs < —¢llyall3 + lly2l3] < =W (y1,92) (29)

where W (y1,y2) is a continuos positive semidefi-
nite function and ¢ > 0. Then the error system
(Eqn 11, Eqn 23) is exponentially stable. From
Barbalat Lemma, W(y;,y2) = 0 as t — oo
This implies y; = 0, ¢« = 1,2,3 as t & o
and ¢ =0 as t = oo Therefore, the stability of
the composite system along the dynamic sliding
surface o = 0 is guaranteed.



Now consider the error dynamics, the switching
surface is defined as o = Hys + y2 + Cy1 where
ys is given in Eqn 22. If sliding mode exists on
o = 0, then the equation of sliding mode is

g1 Al — (K —di)I A2 Y1
92|~ | AL —ByH 'L —kiI—-ByH™! Y2
(30)

and the poles of the error dynamics can be placed

by the selection of %K, H, L} if (A1, Arn) is
a controllable pair. The above system may be
written as,

1] [ Ain O
IR
1 0 Y1
-AT, - BoH™L,  —kiI— ByH™! Y2

*[A32 é][(ﬁfdl) H[Zi]

and its poles can be placed, if the pair

(1% 21 [% 8]

is controllable. The controllability of the above
pair is evidently the same as of (Aj1,A12) as
claimed.

Remark : The constant matrices K1, and K5 do
not affect the dynamics of the sliding mode. They
may be considered as a Lead, Lag controller de-
sign parameters to improve transient performance
response of the dynamic compensator.

(31)

3. FREQUENCY-SHAPED OPTIMAL
SLIDING MODE

The idea of frequency shaping, which was pro-
posed by (Gupta, 1980), is to introduce fre-
quency dependent weighting matrices in a Linear
Quadratic optimal regulator design formulation.
The performance index,

J=/[m*(jW)Q(w)w(jW)+u*(j1U)R(w)u(jw)]dt

(32)

where Q(w) > 0 and R(w) > 0 for all frequencies
w and z*, u* are the complex conjugate transposes
of x and w respectively. The frequency-shaping
matrices are chosen based on the argument that
if R(w) is chosen to be large over a certain fre-
quency band, and small outside this band, the
control action whose frequencies lie in this band
would be penalized more. Effectively, a reduction
of the loop gain of the closed loop system at
high frequencies is achieved over this frequency
band. If high frequency in the control action is
undesirable, by selecting high-pass characteristics
for the elements of R(w), high frequency control
action is minimized. Equally, choosing low pass

characteristics for Q(w) to penalize the low fre-
quency motion of the system produces a similar
effect on the optimal feedback control.

Following the work (Young and Ozgiiner, 1993),
which converted the frequency-dependent perfor-
mance index (Eqn 32) into a standard constant
weighting matrix through an augmentation to the
original state-space with additional compensator
states and dynamics which are defined by the
frequency shaping matrices (Gupta, 1980), the
quadratic cost is given for the error dynamics
derived to stabilize the system given in Eqn 1,

g1 =[A11 — (K —d1)]y1 + A12y2 + D1(z1, 1)
g2 = [Ao1 + ALK — d1)An ] wi (33)
+ [A22 + A (K — di) Ar2] [y2 — a1 (11)]
+ Bou + AlL(K — dy) [D1(1,1)]
+ Da(z1, 22, 1)
3= [2 [y Gw)Quy (jw) + y3(jw)Qaz(w)y2(jw)] dw
in which, without of loss generality, the cross
state and control term has been removed. The

frequency-shaped optimal switching surface is
given by,

o(y1,y2,2) =y + R (BI P + N[ [ yzl ] =0(34)

where z is the state of the dynamic compensator
realizing the transfer function Q22(s),

2=Fz+ Gy (35)
n=Hz+ Dys

Qun(s)=D+H(sI-F) 'G  (36)
where P, is the solution of the Riccati equation

AT P, + P A, (37)
—(P.B.+ N,)R;' (P.B, +N.)" +Q. =0
with A, = diag(F, A1 — (K — d1)),

G HTD
o= ] =[]
Qe = diag(H"H,Qu),R. = D'D, (38)

The frequency-shaped optimal sliding surface
(Eqn 34) is a linear operator on the states and
depending on the weighting matrices, certain fre-
quency band is penalized. Define sliding surface
in terms of the error dynamics using

o =y2+ci1yr + 22 (39)

where ¢; and c¢; are determined by the transfer
function Q22(s), by the error dynamics, Eqn 33,
and the solution of the Riccati Equation given
in Eqn 37 The Lyapunov function of the system



given in Eqn 33

_1,T 1,T7,, 1T
Vo=syimm+s2 2+50 0

the time derivative of the Lyapunov function

Va < [(A11 — (K — d1))y1 + A12y2 + D1(y1,1)]
+ 2T [Fz + Gyz] + o7 (c1((A11 — (K — d1))y1 + A12y2
+ Di(z1,t)) + [A21 + AL (K — d1) Ay
+ [A22 + AL (K - d1)A12] ly2 — a1(y1)]
+ Byu + ATy (K — dy) [D1 (21, )] + Da(1,72,1)
+ c2(Fz + Gyz)) (40)

a discontinuous control input to

w= =By [Mlyls +A] sign(e) ~ (41)

where y = [y; y2]T and A > 0, M > 0 are fairly
high constants such that a sliding mode on the
sliding surface o = 0 is guaranteed. If the sliding
mode exists: ¢ = 0, yo = —c1y1 — 22 and the
time derivative of the Lyapunov function given in
Eqn 40 can be derived (through straight-forward

algebraic manipulations)

Vo < —(k1 — d1 — ¢1)llwall3 + 2llzll3 + lyill2dsl2ll2

=k L™ el Tl ]

2
Choosing k; > dy + ¢1 + ﬁf; yields

Vo < —cllplly + l1213] < ~W(yr,2) (42)

where ¢;, ¢ = 1,2,3 denotes the Euclidean norm
of the derived terms in Eqn 40 when o =0,¢ > 0
and W (y1, 2) is a continuos positive semidefinite
function.

Following Theorem 2.2, the state feedback gains
k1 is chosen such that Eqn 42 is satisfied then
the error system (Eqn 11) is exponentially stable.
From Barbalat Lemma, W(y;,2) = 0 as t = oo
This implies y; =0, ¢ = 1,2 as t = oo and
o0 = 0 as t = oo Therefore, the stability of
the composite system along the dynamic sliding
surface o = 0 is guaranteed.

4. SIMULATION RESULTS

For simulation purposes, the following plant is
chosen.

BN
1 5in(10t)

" [ 1c08(10t)+22sin(20t) ] (43)

The eigenvalues of the system are A= {-1, 3}. The
discontinuous input to the error dynamics is

u = —(Mllz|[ + A)sign(s) (44)

where M and A are positive constants.

4.1 Dynamic switching surface design

For dynamic switching surface design, the linear
operator is chosen,

(s +1000)z = (s + 1)z2 (45)

Following the recursive (Eqn 1 thru Eqn 24), the
error variables y; = x1, y2 = 2 + 2z; and
y3 = z + 61 + 5x2 + 8(x2 + 2x1), and the error
dynamics of the plant given Eqn 43 are derived,

71 = —3y1 + 2y» + y18in(10¢t) (46)
Y2 = —6y1 + 5y2 + y3 + y1cos(10t) + y2sin(10t)
g3 = —4016y; + 12890y> — 987y + u
+ 14y cos(10t) + 14y2sin(10t) — 6y, sin(20t)
The Lyapunov function of the error system
(Eqn 46) V = L(y} + y3 + ¢?) and the sliding

manifold o = 1.995y; + 5y2 + y3 are chosen and
using the discontinuous input

u = —(625|z| + 3750|ya| + 250|y1| + 10)sign(o)

finite time convergence to the sliding manifold is
guaranteed. During the sliding mode, dynamics of
the closed loop system are at {—1.5 + 53.7}. The
time responses of the states, the continuous plant
control input (Fig.1, Fig.2) have been simulated.

Fig. 1. The time response of the states — (Dynamic
switching surface design)

4.2 Frequency-shaped sliding mode design

Defining the error variables y; = z; and y =
z2 + 2x1 and following the recursive backstepping
steps, the error dynamics are obtained,

g1 = —3y1 + 2ys + y15in(10t) (47)
U2 = —6y1 + 5y2 + u + y1c0s(10t) + y2sin(20t)

A high-pass characteristic for Qa2(w) with corner
frequencies of 1 and 10 rads~!, and a 40dB per



decade slope is selected, whereas a unity weighting
for Qq1, i-e.

(jw + 2.25)?

Qu =1, Qnw) = w5

(48)

Fig. 2. The time response of the input to the
plant (Eqn 43) — (Dynamic switching surface
design)

0 1 2
time [seconds]

Fig. 3. The time response of the states —
(Frequency-shaped sliding mode design)

The gain value is chosen such that a 40 dB
weighting is applied to the high frequencies in
2, and a 0 dB weighting for low frequencies to
ensure that the optimal control action avoids the
high frequency disturbances and eliminates high
frequency, high gain chattering due to the high
gain controller design. The system matrices for
the Riccati equation Eqn 37 are:

0 1 0
A, = | 25 -10 0
0 0 -3
30.25 109.65 0
Q.= | 109.65 397.51
0 0 1
0 5.5
B.=| 1|, Re=1x10*N, = | -19.93
2 0

The resulting shaped optimal switching surface is
0 =1y2—4.7221 x 21 —0.0011 x 29 4+0.3224 xy; =0

The states 21 and z» are defined by a state-space
realization of Q22(s),

= le ]2 ] [1]e

The Lyapunov function of the error system
(Eqn 47) V = 1(y} + 0?) using the discontinuous
input

u = —(10|y1| + 5|y2| + 100|21| + 34|22| + 10)sign(o)

finite time convergence to the sliding manifold is

guaranteed. During the sliding mode, dynamics of
the closed loop system are at {—2.83, —3.64, —7.35}.
The time responses of the states (Fig 3) have been
simulated.

5. CONCLUSIONS

This paper contributes to the elimination of high
frequency, high amplitude chattering caused by
large state feedback gains derived by Lyapunov
based recursive backstepping controller design.
Transient performance improvement and finite
time convergence to the switching surface have
been assured by this proposed backstepping dy-
namic sliding mode methodology. The proposed
controllers and conventional sliding mode con-
troller combined with recursive backstepping de-
sign have been applied to linear systems in regular
form with both matched and unmatched time-
varying disturbances and simulation results have
been presented.
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