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Abstract: In this paper a systematic procedure for the choice sampling period in
sampled-data control is suggested. The procedure is based on an optimization scheme,
where both low frequency performance, mid frequency stability margins and high
frequency control activity are taken into account. The proposed evaluation method
is applied to a pole placement controller for an integral plant with time-delay and a
third order stable plant model. The results show that, especially when an antialiasing
filter is included, a significantly shorter sampling period can be motivated compared
to existing rules of thumb. As a second result an optimal pole location for the integral
plant with time delay is achieved.
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1. INTRODUCTION

Since the introduction of sampled-data control the
question of a proper sampling period has been
discussed. Very few systematic approaches have
been introduced. Typical rules of thumb are re-
lated to the desired closed loop bandwidth, see
e.g. (Åström and Wittenmark, 1990; Powell and
Katz, 1975). In (Lennartson, 1990) closed loop
performance (compensation of load disturbances)
was investigated for different sampling periods
keeping the control activity at a fixed level inde-
pendent of the sampling rate. The results showed
that control strategies having a continuous-time
counterpart can be recommended. Hence, control
design methods where poles are forced at the
origin cannot be recommended (often suggested
in the control literature), since shorter sampling
periods implies increased control signal activ-
ity. This investigation was based an a stochastic
framework.

More recently an evaluation procedure based on
frequency response andH∞-criteria has been used
for synthesis and evaluation of PI and PID con-
trollers, see (Lennartson and Kristiansson, 1997;
Kristiansson and Lennartson, 2000). This ap-
proach includes minimization of performance with
constraints on control activity but also stability
margins. This general and systematic evaluation
procedure is now generalized to sampled-data sys-
tems and applied to the choice of sampling period.
The resulting constrained nonlinear optimization
problem is solved by MATLABs Optimization
Toolbox and TOMLAB (Holmström, 1999), an
alternative optimization tool including global op-
timization routines. Note that the minimization
is non-convex and ill-conditioned, and hence the
choice of initial values in the optimization routine
is a tricky task.

Buffer systems occur in many different application
areas, such as transportation, chemical plants and
data communication. A reasonable model for a
buffer system is often just an integrator with
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time-delay. One example is the Internet TCP/IP
protocol implementation, where communication
buffers are modeled in that way and controlled by
a Smith-predictor structure, see (Mascolo, 1999).

In this paper we examine a standard digital pole
placement design as an alternative control strat-
egy for integral plants with time-delay. As a result
of our evaluation procedure both a suitable sam-
pling period and an optimal pole placement loca-
tion is suggested. When an antialiasing filter is in-
cluded in the design a suitable sampling frequency
is found to be around 50 times the closed loop
bandwidth ωb, which can be compared to recom-
mendations like 10–20 times ωb in the literature,
see e.g. (Åström and Wittenmark, 1990; Lennart-
son, 1990). This choice of sampling period is also
verified for a third order plant model.

2. EVALUATION METHOD

It is a well known fact that improvement of a
controller design in one respect will very often
bring deterioration in another. Different system
qualities are not independent of each other. Espe-
cially we note that changes of some character in
one frequency region usually will have influences
in other frequency ranges. Therefore a method for
comparison of two controllers must, if it claims to
be fair, guarantee that all aspects that are not im-
mediately compared are equally restricted during
the comparison. The method proposed here will
fulfill this demand. It is based on three criteria,
each of them related to essential performance and
robustness qualities of the actual system and also
roughly related to different frequency ranges.

Consider the sampled-data SISO system in Figure
1, where a continuous-time plant with transfer
function G(s) together with an antialiasing filter
Gf (s) is controlled by a digital controller Kd(z).
The sampling period is h and the hold function
is assumed to be of zero order. A corresponding
discrete-time model for the plant including the
antialiasing filter is denoted Gd(z).

The loop transfer function then becomes Ld(z) =
Gd(z)Kd(z). Hence, the discrete-time sensitivity
and complementary sensitivity functions are
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Fig. 1. Closed loop SISO system with continuous-
time plant G(s), antialiasing filter Gf (s) and
discrete-time controller Kd(z).
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2.1 Stability margins

Two classical measures are common to character-
ize the mid frequency (MF) robustness, the phase
margin ϕm and the gain margin Gm. However, in
recent years a restriction of the maximum sensi-
tivity function

‖Sd‖∞ = max
ω

|Sd(ejωh)| ≤ MS (1)

has been more and more accepted as an exclu-
sive robustness measure, (Åström and Hägglund,
1995; Langer and Landau, 1999). The reason is
that ‖Sd‖∞ is equal to the inverse of the minimal
distance from the loop transfer function Ld(ejωh)
to the critical point (−1, 0) in the Nyquist plot.
In many situations it is also a fully sufficient MF
robustness measure.

When further damping of the step response or in-
creased phase margin is required, without slowing
down the system response too much, a restriction
on the maximum complementary sensitivity func-
tion

‖Td‖∞ = max
ω

|Td(ejωh)| ≤ MT (2)

should be added, especially for plants with inte-
gral action, see (Kristiansson, 2000). Hence, the
proposed mid frequency robustness criterion, the
Generalized Maximum Sensitivity GMS is defined
as

GMS = max(‖Sd‖∞, α‖Td‖∞) (3)

where α = MS/MT . The two restrictions in this
criterion correspond to two circles in the complex
plane, inside which the Nyquist plot of Ld(ejωh)
is not allowed to come. In Figure 2 these circles
are shown for the default values throughout this
article, MS = 1.7 and MT = 1.3. When there
is equality in at least one of the restrictions (1)-
(2), as for the loop in the figure, this means that
GMS = MS . Hence the GMS criterion converts
the restriction (2) to a corresponding MS level.

2.2 Sampled-data frequency response

Before we introduce relevant performance mea-
sures we note that the frequency response for
a sampled-data system from a continuous-time
input signal can be defined in different ways, see
(Lindgärde and Lennartson, 1997). One approach,
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Fig. 2. The MS-circle (MS = 1.7) and the MT -
circle (MT = 1.3) which together define
GMS .

suitable for performance analysis, is to assume
that the input is a continuous-time periodic signal

v(t) = v0e
jωt |v0| < ∞

Then introduce the square root of the signal power
averaged over time, i.e.

‖v‖P = lim
τ→∞

√√√√√ 1
2τ

τ∫
−τ

‖v(t)‖2 dt

Assume that the closed-loop operator Ψzv for a
sampled-data system from the continuous-time in-
put v to the continuous-time output z is internally
stable, piecewise continuous and h-periodic. The
performance frequency gain (PFG) for Ψzv is then
defined as

γzv(ω) = max
‖v0‖=1

‖z‖P
‖v‖P

2.3 Disturbance rejection

Introduce the integrated output Z(s) = Y (s)/s.
The systems ability to handle low frequency load
disturbances v is then measured by the criterion

Jv = max
ω

γzv(ω) (4)

For Jv to be finite the controller must include inte-
gral action. In practice this criterion also happens
to be related to the closed loop bandwidth ωb for
Ψyr, cf. (Kristiansson, 2000), and hence it can be
regarded as a general performance measure.

2.4 Control activity

When reasonable stability margins are fulfilled,
design of a control system is typically a question
of trade off between performance and control
activity. The sampled-data systems sensitivity to
sensor noise w in the control signal u is measured
by the control activity criterion

Ju = max
ω

γuw(ω) (5)

This PFG from w to u typically has its maximum
around or slightly above the closed loop band-
width. The control criterion Ju is therefore a mid
to high frequency measure.

In (Lindgärde and Lennartson, 1997) it is shown
how PFG can be computed. For the kind of plant
models considered in this paper it is also shown
by Lindgärde that the corresponding ordinary
discrete-time frequency gain is an appropriate ap-
proximation. Hence, this simplification is utilized
in this paper. For a general procedure, however,
we recommend to compute the more complex
PFG instead.

2.5 Evaluation procedure

To evaluate a sampled-data controller for different
sampling periods we assume that there are one or
more free parameters available for tuning. These
parameters are represented by the vector ρ. Based
on the proposed criteria we then suggest the fol-
lowing evaluation method. Solve the optimization
problem

min
ρ

Jv(ρ) GMS ≤ C1 Ju ≤ C2 (6)

for different values of h. The default value of
C1 in this paper is 1.7, while C2 is related the
specific model. To get a fair comparison between
different sampling periods it is important to have
the same control activity Ju for sampling periods
of interest.

3. OPTIMAL POLE PLACEMENT AND
ANTIALIASING FILTER

The optimal controller design strategy described
above is general and independent of any specific
controller design principle. In this paper we choose
the closed-loop pole configuration as tuning pa-
rameters. To make the closed-loop pole configura-
tion as independent as possible of the chosen sam-
pling period h, it is considered in continuous time.
We have chosen a pair of well-damped complex
conjugate poles and the remaining poles spread
out on the negative real axis. The characteristic
equation in the continuous transform domain then
becomes

P (s) = (s2 + 2ζωns+ ωn
2)

(s+ a)(s+ a/β) . . . (s+ a/βν−1) (7)

where ζ > 0, ωn > 0, a > 0, 0 < β ≤ 1.
Hence these tuning parameters, included in the
vector ρ = [ ζ ωn a β ], are tuned in the
minimization of Jv subject to the constraints on
GMS and Ju, see (6).



3.1 Pole placement

The discrete-time model Gd(z) takes the form
Gd(z) = B(z)z−d/A(z) where

A(z) = 1 + a1z
−1 + . . .+ ana

z−na

B(z) = b1z
−1 + . . .+ bnb

z−nb

Integral action in the controller means that
Kd(z) = D(z)/((1− z−1)C(z)) where

C(z) = 1 + c1z
−1 + . . .+ cnc

z−nb−d+1

D(z) = d0 + d1z
−1 + . . .+ dnd

z−na

Discretization of P (s) yields

Pd(z) = 1 + p1z
−1 + p2z

−2 + . . .+ pnp
z−np

The poles at the origin in Gd(z) due to time
delay shall not be moved. On the other hand
the rest of the poles shall not be forced at the
origin. Taking the integral action into account this
means that np = na + nb and ν = np − 2 in
(7). The parameters in C(z) and D(z) are derived
analytically by the Diophantine equation

A(z)(1− z−1)C(z) +B(z)z−dD(z) = Pd(z)

With the plant including the antialiasing filter and
the controllerKd(z), the performance criterion Jv,
the control activity Ju and the stability margin
GMS can be computed in the optimization pro-
cedure described above. The optimal closed-loop
pole configuration is then achieved as a result of
the optimization procedure (6). Note that both
the controller Kd(z) and hence the criteria de-
pends on the tuning parameter vector ρ.

3.2 Antialiasing filter

The antialiasing filter is chosen as a fourth-order
Butterworth-filter, with two complex pole pair.
The damping ζ = 0.38 and 0.92, and the natural
frequency ωbf for both pole pair is

ωbf =
0.56π
h

This means that the filter reduces the measure-
ment noise by a factor 10 at the Nyquist frequency
π/h. In the poleplacement design the antialiasing
filter is simplified as a time-delay

Gf (s) = e−1.5h

In this way the dimension of the resulting con-
troller Kd(z) is restricted. However, in the final
evaluation of Jv, Ju and GMS in the optimization
procedure the complete fourth order filter is used.

4. CONTROL OF INTEGRAL PLANT
INCLUDING TIME-DELAY

The evaluation procedure in (6) is now applied to
the plant model

G(s) =
e−s

s
(8)

This model is normalized in the sense that the
time scale is chosen as the length of the time delay,
and the control signal is normalized such that the
integral plant gain is set to unity.

When the time-delay is not a multiple of the
sampling period, three non-zero poles have to
be assigned (nb = 2 = na + 1). Solving the
optimization procedure (6) for different sampling
periods h then gives the optimal performance
criterion Jv, the control activity Ju, the optimal
closed-loop pole parameters ζ and ωn as shown
in Fig. 3-7. Four cases are considered, with and
without antialiasing filter, free Ju and a constraint
on Ju ≤ 1. In the figures the curves including
antialiasing filter are denoted Gf = B4 (4th order
Butterworth filter).

The following results can be noted

• An optimum is achieved when no constraint
on Ju is introduced. The optimal Ju is some-

0 0.2 0.4 0.6

10

12

14

16

18

Gf=B4

Gf=1

J
v
 

h

Fig. 3. Performance Jv as a function of the
sampling interval h. Solid lines Ju = 1,
dashed lines no restriction on Ju. Gf = 1
means no antialiasing filter, and Gf = B4

means a fourth order Butterworth filter.
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what above 1, but decreases when h in-
creases, cf Fig. 4.

• The performance criterion Jv increases with
the sampling interval h as expected. Note
however that a fair comparison between dif-
ferent sampling periods means that the con-
trol activity has to be fixed. The choice of
sampling interval is therefore based on the
constrained solution when Ju = 1.

• It can be seen that the introduction of the an-
tialiasing filter deteriorates the performance
Jv significantly, in the sense that Jv increases
much more rapidly as a function of the sam-
pling period. The reason is that the filter
implies an extra phase shift, which increases
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Fig. 5. Closed loop bandwidth ωb as a function
of h. Solid lines Ju = 1, dashed lines
no restriction on Ju. Gf = 1 means no
antialiasing filter, and Gf = B4 means a
fourth order Butterworth filter.
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Fig. 6. Natural frequency ωn in (7) as a
function of h.
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Fig. 7. Damping ζ in (7) as a function of h.
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Fig. 8. Load disturbance step responses for the
controlled time-delayed plant.

with h (the filter is modeled as a delay equal
1.5h).

• A reasonable strategy for the choice of sam-
pling period could be to choose a value when
Jv has increased 10%—20% compared to the
almost continuous-time solution. From Fig. 3
20% increase, based on Jv = 12.1 for h ≈ 0,
gives the following result

Jv h ωb ωs/ωb

Gf = 1 14.5 0.19 1.3 25
Gf = B4 14.5 0.08 1.3 58

• The table shows that introduction of an an-
tialiasing filter motivates more than doubling
of the sampling frequency. Typical rules of
thumb in the literature suggest ωs/ωb =
10− 20.

• When no limitation on the control activ-
ity is required Fig. 6 and 7 illustrate opti-
mal closed-loop pole parameters ζ and ωn

(dashed lines). The damping ζ is quite invari-
ant; an average value could be ζ = 1.15. For
the suggested sampling interval in the table
a possible choice of the natural frequency ωn

is slightly above 0.4.
• The third free pole is put at the origin in
the discrete-time domain, where it cancels a
zero. Hence, only ωn and ζ are necessary to
include in the optimization parameter vector
ρ.

• Figure 8 shows the step response from a load
disturbance for three different sampling peri-
ods, when the antialiasing filter is included.
Compared to the short interval h = 0.02, the
choice h = 0.1 gives a reasonable degrada-
tion, while h = 0.2 implies an unnecessary
large deterioration compared to the result
with ten times higher sampling frequency
(h = 0.02). These step responses confirm the
suggested choice of sampling period h = 0.08
according to the 20% degradation rule.
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sampling interval h for the plant (9) when
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Fig. 10. Closed loop bandwidth ωb as a func-
tion of h for the plant (9).

5. CONTROL OF A LAG PROCESS

To show that the results for the integral plant with
time-delay was not just a special result for that
plant, we end up this paper by a brief investigation
of the following third order lag process

G(s) =
1

(s+ 1)3
(9)

Now there are six poles to assign, implying that
ν = 4 in (7). Optimal Jv is shown in Fig. 9
when the control activity is restricted to Ju ≤ 20.
Corresponding bandwidth ωb is shown in Fig.
10. The 20% degradation rule for the choice of
sampling interval based on continuous-time Jv =
0.5 gives the following result

Jv h ωb ωs/ωb

Gf = 1 0.6 0.21 2.15 14
Gf = B4 0.6 0.06 2.27 50

6. CONCLUSIONS

A systematic procedure for evaluation of suit-
able sampling periods for sampled-data control
has been suggested. The procedure results in a
nonlinear performance optimization problem with

constraints on stability margin and control activ-
ity.

The framework is applied to an integral plant with
time-delay, where also an optimal pole placement
strategy is achieved. When an antialiasing filter
is included in the design a suitable choice of
sampling frequency is

ωs =
2π
h

= Nωb where N = 50− 60

This implies a degradation of about 20% com-
pared to a corresponding continuous-time solu-
tion. This rule is confirmed also for a third order
lag process. Hence, the introduction of antialiasing
filters motivates a significantly higher sampling
rate than what is normally recommended in the
literature (N = 10− 20).
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