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Abstract: The scope of this paper is to present an optimization methodology for tuning 
fuzzy logic controllers used in suspension system for ground vehicles. The proposed 
optimization method combines the advantages of two categories of optimization 
algorithms, deterministic and stochastic. Numerical experiments show the improvement 
in efficiency and reliability of the search for the optimum. The fuzzy logic membership 
functions are optimized such that the maximum value of vertical and rotational 
acceleration of vehicle body at the passengers seats are minimized from the view point of 
ride comfort under the geometrical constraints of the car. The simulation results of the 
proposed fuzzy logic controller show significant improvement regarding the vehicle ride 
comfort. Copyright  2002 IFAC 
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1. INTRODUCTION 

 
Advanced suspension systems play a vital role in the 
performance of modern vehicles. They must support the 
vehicle body, keep the rider’s comfort within permissible 
allowances, retain the vehicle stability during various 
handling actions, control body and wheel attitude, and 
minimise the vertical force variation of the road-to-tire 
contact. Another trade-off exists between the rider’s 
comfort and safety and the economics of producing 
advanced suspensions. Presently, advanced suspensions 
implemented in modern vehicles are often described in 
confusing and conflicting ways. Therefore a great effort 
is made nowadays to develop or perfect adaptive or active 
suspension systems for vehicles, see (Asami, 1991). 
These systems, compared to the passive ones, see 
(Koulocheris, et al., 1997; Spentzas, et al., 1995), have a 
superior performance, but are very expensive, technically 
very complicated, much less reliable, require regular 
service and some of them consume non negligible 
quantities of energy. The semi-active system achieves 
some performance capabilities of fully active systems 
with components close to passive ones in terms of cost 
and complexity. The idea was to employ a spring to 
support the isolated mass in parallel with an adjustable 
damper whose force-velocity relationship could be 

modulated. Investigation of active and semi-active 
suspensions of ground vehicles in transportation is 
recently increasing, see (Chou, et al., 1998; Yoshimura, et 
al., 1997). However the semi-active suspensions which 
are denoted as less expensive alternatives to the active 
suspensions replace the active force generators by 
adjustable suspension parts according to the dynamic 
response of the vehicles.  
 
 

2. SYSTEM DESCRIPTION 
 
2.1 Vehicle model 

 
 
Fig.1. Half car model. 
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We considered a half car model Fig. 1. The elastic 
coefficient for tyre is k1f=k1r=155900 [N/m] and the 
damping coefficient is c1f=c1r=2500 [Ns/m]. The sprung 
mass is M=580 [kg], the mass inertia JM=400[kg.m2] 
and the unsprung mass M1=M2=29 [kg].  
The system of differential equations of motion for both 
linear models can be brought in the form: 
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2.2 Road excitations 
 
Excitations by road irregularities can be considered, 
either deterministic or random. In the following, we 
focused our interest to two of them corresponding to the 
transition of obstacles: step function and harmonic 
excitation.  
 
The step function excitation that we considered is: 
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The harmonic excitation due to road irregularities is: 
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which is a cosine shaped bump of height 0.04m (peak to 
peak), with a wavelength proportional to the forward 
velocity of the car.  
 
 

2.3 Solution of Equations 
 
The system of differential equations of motion of the 
model was solved numerically on a PC-Pentium IV 
computer. The Matlab 6.1 program was used to perform 
the numerical simulations. Since it is necessary to solve 
the equations at each step of the optimization process, it 
is important to select an appropriate and fast solution 
method. Our preference was for the Runge - Kutta 
fourth order method with a variable time step. 
Convergence to the solution did not present any 
problem. 
 
 

3. FUZZY LOGIC CONTROL 
 
A semi-active suspension to be proposed here is realised 
by changing the damping coefficients of the front and 
rear dampers. Each fuzzy controller makes use of six 
inputs, three from the front and three from the rear 
suspension sensors:   
 
• unsprung mass acceleration a1i 
• sprung mass acceleration a2i 
• suspension travel x12=(x1-x2).  
• relative velocity of sprung-unsprung mass 
 
In Fig. 2-8 are shown the initial membership functions 
for the eight inputs and the output. The data that define 
these fuzzy sets compose the initial vector for the 
optimization procedure. The abbreviations at the input 
membership functions stand respectively for: large 
negative (L-), small negative (S-), very small (VS), 
small positive (S+) and large positive (L+). The use of 
two-sided Gaussian membership functions instead of 
standard trapezoidal ones achieved a smoother response 
and eliminated a problem of slight unsteadiness in the 
region of “small” excitations. 
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Fig.2 Input fuzzy sets-vertical acceleration. 
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Fig. 3 Input fuzzy sets-sprung mass acceleration. 
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Fig. 4 Input fuzzy sets-relative position. 
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The proposed optimization method (hybrid) applied to 
the tuning of the fuzzy controller is based on a 
combination of a stochastic and a deterministic 
algorithm. The objective of this combination is the 
interrelation of the diverse characteristics of each 
category as well as the exploitation of their advantages 
at the same time. 

 
Fig.5 Input fuzzy sets-relative velocity. 
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From the category of stochastic algorithms we chose the 
one parent-one offspring Evolution Strategy and from 
the category of deterministic algorithms the Steepest 
Descent method. Fig.6 Output fuzzy sets-damping coefficient. 

 

Each non-symmetric side of the Gaussian membership 
functions is a parameter for the optimization procedure. 
The main objective in designing and optimizing the 
fuzzy controller was increasing passenger comfort i.e. 
minimising the sprung mass linear and rotational 
acceleration. The fuzzy rules for the front half–car 
controller and the rear half-car controller, shown in 
Table 1, describe strategies to handle each case.  
 

Table 1: Fuzzy Rules 
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4.  OPTIMIZATION METHOD 
 

 
It is well known that stochastic algorithms are very 
efficient in avoiding local optima, see (Baeck, 1996; 
Michalewicz, 1996; Schwefel, 1995) but there is no 
indication regarding to their convergence rate. On the 
other hand, deterministic algorithms cannot avoid local 
optima but they converge very rapidly towards 
stationary points (Nocedal, 1999), this means points 
with zero gradient. 
 



The proposed hybrid algorithm has been thoroughly 
tested, see (Kanarachos, et al., 2001), with satisfying 
results. In particular, it has been proved statistically that 
the new proposed algorithm yields better vectors with 
decreased number of exact evaluations of the objective 
function, always compared with the Evolution Strategy. 
 
 
4.1 Description of the method 
 
Each vector produced by the Evolution Strategy is 
tested whether it satisfies the inequality: 
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where . In the case that it does satisfy it, Steepest 
Descent takes over and yields the nearest local 
minimum. This way the proposed algorithm finds the 
best vector in the region of the random vector produced 
by the evolution strategy, feature that permits more 
frequent adaptation of the search space, via the 
adaptation of the standard deviation parameter, than that 
of the 1/5 rule, which is applied to the Evolution 
Strategy. In addition, convergence of the standard 
deviation of the evolution strategy to zero is not 
necessary because of the convergence of the norm of 
the gradient to zero through the Steepest Descent, thus 
we skip the most time-consuming phase of the 
Evolution Strategy. Once the standard deviation 
parameter of the Evolution Strategy becomes smaller 
than a prescribed value that is not close to zero, the final 
Steepest Descent phase takes place, in which the best 
vector so far becomes the initial vector for a 
deterministic search with increased accuracy. The 
stochastic nature of the Evolution Strategy, which is the 
feature that avoids local optima, is not affected. 
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4.2 Wolfe condition 

The Wolfe condition ensures that the step length 
evaluation yields sufficient decrease in the objective 
function  by satisfying the following inequality f
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where  is the step length in the steepest descent 
direction: 
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and  is a constant in the interval . It can be 
proved that there exist step lengths that satisfy the 
Wolfe condition for every function that is smooth 
and bounded below. The benefit of using the Wolfe 
condition is the certainty that the gradient sequence 
converges to zero. 

c ( )1,0

f

4.3   Backtracking step length evaluation 
 

This procedure evaluates the acceptable step length 
according to the Wolfe conditions. Starting from the 
initial step length a , we reduce to aρ  iteratively until 
the sufficient decrease condition (5) holds. The 
contraction factor ρ  is taken here as a constant in the 
interval ( )1,0 . 
 
Procedure Backtracking 
set ( );1,0,,0 ∈> ca ρ set ;aa ←  

r
while ( )( ) k

T
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rrrr
∇⋅⋅+>⋅+ )()(

;aa
 

ρ←  
end (while) 
set a ak ←  
 
The vector to be optimized contains the data of the two-
sided non-symmetric Gaussian membership functions. 
Geometrical constraints were applied, regarding the 
relative displacements of the different masses of the 
model, in order not to have design incompatibilities in 
the working space of the suspension: 
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4.4 Objective function 
 
The objective function for fitness evaluation is formed 
by the summation of the ratios of the current values of 
the vertical and rotational acceleration to the 
corresponding initial values plus the penalty terms. 
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are the constraint functions derived from the 
corresponding inequalities (7) and (8). 
 

 
5. TEST FUNCTIONS 

The stochastic feature of both the presented hybrid 
algorithm as well as the evolution strategy suggests a 
statistical way of testing their efficiency. A thousand 
different initial pseudorandom vectors were produced 
for each optimization algorithm and the results as well 
as the number of evaluations of the objective function 
until convergence were compared. Statistical procedure 
shows that both algorithms are capable of resulting in a 
vector that is very near the optimum, regardless of the 
pseudorandom initial vector. The advantage of the 
proposed hybrid algorithm is the ability of better fine-
tuning in the area of the optimum, ability that is based 
in its deterministic feature, as well as the reduction of 
the number of the objective function exact evaluations. 



The Griewangk’s function has the following analytic 
form: 
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The Rastrigin’s function has the following analytic 
form: 
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The Griewangk’s Function as well as the Rastrigin’s 
Function for n=2 are presented graphically in Figure 7 
and Figure 8 respectively. It is obvious that the multiple 
local minima provide very difficult test cases for 
minimization. 

 

Figure 7: Graph of the Griewangk’s Function. 

 

Figure 8: Graph of the Rastrigin’s Function. 

The statistical procedure shows that in 80% of the total 
number of tests for the Griewangk function and in 70% 

for the Rastrigin function, the hybrid algorithm resulted 
in a better vector than the Evolution Strategy did. The 
most significant statistical result is that the proposed 
algorithm needs 25% and 35% less evaluations of the 
objective function respectively in order to converge and 
satisfy the termination criterion, always compared with 
the Evolution Strategy. The efficiency of the proposed 
algorithm in respect to the Evolution Strategy regarding 
the Griewangk and Rastrigin functions are presented in 
Table 2. 

Table 2: Statistic results 

Statistics of Hybrid 
E.S -S.D. 

Griewangk 
Function 

Rastrigin 
Function 

Reduction in number 
of evaluations 

25% 35% 

More efficient tests 
per cent 

80% 70% 

 
 

6. NUMERICAL RESULTS 
 
In Fig. 9 & 10 we present numerical results to quasi-
impulse excitation. The vehicle velocity is kept constant 
at 10m/s and the cosine frequency 8 Hz. 
 

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (s) 

Optimal Fuzzy 
- - - - Optimal Passive 

 
Fig.9 Sprung mass vertical acceleration. 
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Fig.10 Sprung mass rotational acceleration. 
 
In Fig. 11 & 12 we present numerical results to step 
excitation. The vehicle velocity is kept constant at 
10m/s. 
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Fig.11 Sprung mass vertical acceleration. 
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Fig.12 Sprung mass rotational acceleration. 
 
As can be seen, the peak value of the suspended mass 
linear and rotational acceleration is neatly improved in 
the case of the semi-active half car model with fuzzy 
controller, compared to the optimized passive one. The 
semi-active model achieves equivalent or even better 
results in other performance criteria, such as peak 
pitching angle and settling time. 
 

7. CONCLUSIONS 
 
This paper proposed the construction of a fuzzy logic 
controller used in ground vehicles. The sprung and 
unsprung mass acceleration, the suspension travel and 
its time derivative were treated as the input variables 
and the damping coefficient of the suspension was 
adjusted as the output variable in the fuzzy control rules 
at every suspension location. 
 
The performance of this suspension system was 
evaluated by considering a half car model and was 
proved to contribute greatly to the reduction of the peak 
acceleration of the suspended mass. The simulation 
results indicate that the proposed semi-active 
suspension is much improved in vertical and rotational 
acceleration. A future extension is planned by 
considering full car model with preview. 
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	The objective function for fitness evaluation is formed by the summation of the ratios of the current values of the vertical and rotational acceleration to the corresponding initial values plus the penalty terms.

