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Abstract: This paper, the second part of our three-part contribution, is concerned with state
estimation in a discrete-time hybrid system model, described in Part | (Bredwad) 2002).

The original contributions of the paper are as follow. The observable dynamics, seen through
a measurement restriction imposed on the system, is characterised in terms of measurability
and distinguishability of transitions between activity states. Based on the characterisation, an
algorithm, to construct an Observer for estimation of the current state of the overall system
composed from its component models, is developed. The whole theory is illustrated with an
example of a heating system explined in (Bhowthl., 2002). This methodology for state
estimation is used in a companion paper Part lll (Saekal., 2002) for solving the problem

of fault diagnosis.
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1. INTRODUCTION transition graph for the process model is assumed. The
observer for the process model under measurement re-

It is well known that limitations of measurement sys- striction is constructed. Fault detection and diagnosis
tems give rise to nondeterminism in terms of uncer- based on the observer is discussed in our companion
tainty in states and transitions in the observed dynam-paper (Sarkaet al., 2002).
ics of the systems. Inferential problems under partial __ . . . :
observation for discrete event system are studied byThIS Paper 1s organized as follows. Section 2 char-
many researchers (Bhowed al, 2000),(Ozveren and acterizes the _megsurement structure_ .and the conse-
Willsky, 1990), (Sampatret al, 1995), (Zadet al, quent uncertainty in states apd transitions. Sectlon 3
1998). Inferential problem solving for hybrid systems considers the problem of es'ur_na_tlon of activity states
has started recently (Bhowet al, 2001), (Basseville under the measurement_ restrlctloq and constructs an
et al, 1997), (Mcliraith et al, 2000), (Zad, 1999). observer for the same. Finally, section 4 concludes the
In this paper, we formally introduce the concept of Paper.
measurement with respect to the activity state based
model formalism presented in our companion paper
(Bhowalet al,, 2002), and characterise the consequent 2. MEASUREMENTS
uncertainty in the states and transitions of the model.
The concept of measurement and measurement equivin real life it may not be possible to measure all
alence is introduced first in the context of activity data variables due to inadequacy of sensors or due
states and transitions. The existence of a finite activity to physical limitations. The séf of data variables,
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Table1. Activity descriptiontableof com-

positemodelof heatingsystem

therefore canbe partitionedinto two disjoint subsets,
the subsetV,,, of measuable and the subsetV,, of
unmeasuable variables.We assumethat Vv € V,,
thereis no measuremerdandVv € V,,, thereis perfect
measuremenflso V,,, N V,, = ¢.

Leto,, ando, denoteameasurablandanunmeasur
able part of a given datastatec respectiely, at ary
instantof time.

Let ¥,, andX, bethe measurablendunmeasurable
dataspacesespectiely.

Let ITy,, (IIy,) denotethe projection over the co-
ordinatescorrespondingo membersf V,,, (V,,).

ThUSEm = va (ED) andEu = Hvu (ED)

Az (Ay) isthechangdunction(internaldynamics)
of themeasurabléunmeasurablejariablesassociated
with anactiity statex.

To illustrate this concept,the heatingsystemmodel,
explainedin (Bhowal etal., 2002)is consideredThe
ADT (setof variablesandtheir datastatesrepresented
in atatularform) is showvn againin Table 1. If any of
the variablesis unmeasurabldan the ADT it may be
seenthat, with the setof measurableariablesall the
activity statescannotbe distinguishedThis happens
asthe measurabeataspaceof someof the activity
statedbecomedentical.

In Table 1 if the statusvariableis not measurablethe
pairsof actiity stateS(z1,xs), (z2, zs), (3, %7),
(z4,z3), arenotdistinguishable.

Also it can be seenthat due to constraintaof mea-
surementsomeof the transitionsbecomeunmeasur
able.In thecompositemodelof heatingsystem;rss is
unmeasurableTheremay also be caseswhere,even
amongthe measurabldransitions,somecan not be
distinguishedrom othersonly by monitoringthe oc-
currenceof thetransition.Sucha case however, does
notoccurin the heatingsystemexample.

2.1 Transitionsundermeasuementestriction

Definition1. : Measurabletransition
A transitiont =< z,zT > is saidto be measurable
iff (Ve NV # 0)V (Ape # Appzt)

This meansthat, either values or rates or both of
somemeasurablevariable are changingduring such
atransition.

HereV, is the setof targetvariableswhich changes
while the transitiontakesplaceand A, is the mea-
surabledynamicsof the activity statez.

Definition2. : Unmeasurabletransition
A transitionr =< z, 2T > is saidto beunmeasurable
iff (V‘r n Vm = d)) A (Amz‘ = Amw"’)

Thesetof measurabléransitionds denotedasS,,, and
the setof unmeasurablé&ansitionsis denotedas S ,;
thus, S = S, U Sy andS,, NSy, = ¢

2.1.1. Exit dataspaceof a transition Theexit data
spaceof atransitiont =< z,z+ > is the setof data
statesof the actvity statexz wherethe transitionis
eligible for taking place thatis e, = true.

The limiting enabling condition e,; of a transition
T is obtainedby restrictingthe inequalitiesin e, to
respectie equalitiesof the variablesto its minimum
or maximum value, dependingupon increasingor
decreasinglynamicsof thevariablesFor example for
ane, of theform (3 < T < 5), e, = 3if £¢ > 0, or
er = 5if £ <0.

Letr =< z,z%,e,, h,,l;,u; > beatransition.The
exit dataspaceof 7 is thedataspace

Pr = [erl + Azlry er; + Awur]

Under measurementestriction, the measurablesxit
data spaceof a measurabldransitionr is the data
space

Pmr = [e'rl/zm + Amzlﬂ erl/Em + Amwur]

wheree; /X, is therestrictionof e;; onthe measw
abledataspaceandthe measurablexit dataspaceis
denotedasp,, -

2.1.2. Exit dataspacecomputatiorunderpartial def-
inition ofe,  For thevariablesvhicharenotdefined
in the expressionof e, the exit dataspace(for the
undefinedvariable) shall be the entire range of the
variable.Theis illustratedby the Fig. 1. In thisfigure
thex-axisrepresentsemperatur@andthey-axisrepre-
sentspressuree;, [, u, andA, of thetransitionsare
givenas

form e, : (T>2),l, =0,ur =2,A,: 3L =1
andp,, =< (T'=2AP>0),(T=4AP>0)>
fOsz:e.,-:(TZ4),lT=0,uT=2,Az:%=

andp,, =< (T=6AP>0),(T=8AP>0)>

forrms e, : (P <10),l; =0,u, = 1,A, : AA—ItD =
—10
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Fig. 1. Exit dataspacecomputation
andp,, =< (T >0AP =10),(T > 0AP =20) >

Theexit dataspace®f thetransitionsarerepresented
in Fig. 1 asshadedareaslt canbe seenthat the exit
dataspacef 7 andr, arenotoverlapping.But the
exit dataspaceof 73 is overlappedvith thoseof ; and
T2.

Definition3. : Distinguishability of measurabletran-
sitions

Two measurabléransitionsr; < z;, 2] > andm <
T2, 23 > aredistinguishablef ary oneof the follow-
ing conditionsis satisfied

() hry/Zm # by [T

(@) (Amz, # Ama,) V (Amzf # Amz;)

3) (Umdz1 # Umdwz) \ (Umdzj' # Umda:;')

@) pmr N pmrs = @

(5) ur, <l when(er, = e,)A(Amzr = Apzz =
0). This conditionis importantfor discretesys-
tem. For systemswith continuousdynamicsthe
effectof timing constrains capturedy claused.

Definition4. : Nondistinguishability of measurable
transitions

Two measurabléransitionsr; < a:l,a:f >andn <
T2, 24 > arenon-distinguishabléf all the following
conditionsaresatisfied

1) hn/zm = hTz/Em

) (Omdzy = Omdzs) A (Umd;cf = Umdw;)
(4) me1 mme2 # ¢

) (Ir, < ur)

Two non-distinguishabléransitionshowever, canac-
tually be distinguishedif their exit data spacesare
not equalor the timing constrainsare not matching.
Therefore the notionsof strict non-distinguishability
is introduced.

Definition5. : Strict nondistinguishability of mea-
surable transitions

Two measurabléransitionsr; < z1,z > andm <
T2, 74 > arestrict nondistinguishabléf all the fol-
lowing conditionsaresatisfied

(1) hry/Em = hey [Em
2 (Amwl = Amwa) A (A +=A +)

) (Omde; = Omdaz) N (Umdacl+ = Umdwg')

(4) pmr, = pmr, [* perfectmatchingof dataspace
*

(5) (- =1y) A (ur, = ur,) I* perfectmatchingof
time space/

Since the strict nondistinguishabilityconditions are
subsumedy nondistinguishabilityconditions(Defi-

nition 4). For diagnosis,strict nondistinguishability
neednotbeconsidered.

A setof nondistinguishableneasurabléransitionsis

denotedas). ) isalsoasix-tuple,i.e., < ¥,y T, ex, hx, In, ux >

where,

y represents setof actvity states,definedasy =
{z|r <z, 2t >e€ A}

yT representa setof actiity state,definedasy™ =
{zt|r < 2,27 >€ A}

ey istheenablingcondition,definedas

ex=(\ e)/Zm

TiEA

hy is the transformationfunction, definedas h) =
h. /EZm (It is to be notedthat by the definition
of non-distinguish-abilityof measurabléransitions
V1 € A, h. /T, isidentical).

I, isthelowertimelimit, definedasl, = min(l;,)|r; €
A

uy istheuppertimelimit, definedasu) = maz(u,;)
A

The set of all such nondistinguishablemeasurable
transition classesis denotedas A, where A =
{/\1, )\2/\n} A|SO,

Sm U(Un € Aj) and \;N\; need not be ¢,

J

for i#j

A measurabldransitionr, which is distinguishable
from all other measurabldransitions,may also be
consideredas a nondistinguishableneasurabldran-
sition A, (say),i.e. Ay = {7 }.

The setof all nondistinguishableneasurabldransi-
tions(A) is denotedasA.

3. STATE ESTIMATION UNDER
MEASUREMENTRESTRICTION

Having definedthe measuremenstructureand the
consequentincertaintyin actiity state,thatarise,of

T; €



is naturalto considetthe problemof actity stateesti-
mationundermeasurementestriction. The estimates
aregeneratedvith the help of anautomatecalledthe
obsenrer, definedbelow.

3.1 Constructionof observer

An obsenreris anactiity stateestimatorundermea-
surementrestriction. It is representedas a digraph
O =< N, A >, whereeachnoden € N represents

setof actvity statesandeacharca € A represents

setof nondistinguishableneasurabléransitionsEach
noderepresentsheuncertaintyaboutthe states Simi-

larly, eacharcrepresentsheuncertaintyof occurrence
of ameasurabléransition.

The obsener is constructedstarting from the initial
stateof the processmnodel. The constructionis based
onthefollowing definitions.

Definition6. : Unmeasurablesuccessofl)
The unmeasurablesuccessoinf a setn of actvity
stateds definedas

Un) = {zTVz €n, 7 < z,2+ >€ I, }

Definition7. : Unmeasurablereach (/*)

The unmeasurableeachof a setn of actiity states
is thetransitive closure(Kleeneclosure)of unmeasur
ablesuccessorsf n andis denotedasi/*(n)

Vn € N,In. Cn s.t. n=U"(n);
n. is calledthe entrysetof n.

Definition8. : Measurable successor®f a setn for
X (n)
the measurablesuccessorset of a setn for a non-
distinguishableneasurabléransition\ = {r, 7...},
denotedas nj\L is defined by the following set of
entities

(i) M={r|7eNT=<z,27 > and T €d)
(73) nx={z |z =initial(1), T € Ay} 2
(i) nf ={z* |2t = final(r,7 € A\,} 3)

A, representanarcof theobsererbetweerthenodes
nandn*, whereny C nandn{ C n*. Thisis shavn
in Fig. 2. Actually n™ = U*(n}).

More specifically given an uncertaintynoden, nTis
obtainedusing the following steps.For eachset A
of measurablaon-distinguishabléransitions,obtain
An C X (having initial statesof the transitionsin
n); next, from ny and\,, n{ is obtained Finally, a
new uncertaintynodent = #(n}) is obtainedand
An =< n,nt >= aisputin arcsetA of theobsener.

Eacha € A is alsoasix tuple

a=< n7n+aea7haalaaua >

az}\n +

e

Fig. 2. Transitionundermeasuremerrestriction
where

n representsheinitial node,from wherethearca is
defined

nT representshefinal nodeof arca.

e, istheenablingcondition,is definedas

ea = ( \/ er,)/Zm

Ti€a

h, is thetransformatiorfunction,is definedash, =
hr,/Sm. It is to be noted that by the definition
of non-distinguish-abilityf measurablé&ansitions,
V71; € a, hg/E, isidentical.

l, is the lower time limit, is definedas I, =
min{l,,|r; € a}

u, is the upper time limit, is definedas u, =
maz{ur|7; € a}

Algorithm1. : Algorithm for construction of ob-
sewer O for the processnodel M

begin

Cl Let xo betheinitial actiity stateof the process
modelM .

ng = U*(mo)

let N < {no}; A+ ¢
c2.
foralln € N do
for all non-distinguishablset\ of
measurabléransitionsdo
compute),,,ny,ny andn* [def: 8]
if n' =U*(ny) € N,
N« NuU{nt}
A—AUu{\}
end/*end of for loop */
end/*end of for loop*/

end

Termination of the Algorithm The algorithm con-
structs subsetsof actiity states.Since the com-
posite model hasfinite numberof actvity states,
their subsetswill be finite in number Hencethe
algorithmwill terminate.

3.2 Example:Heatingsystem
The constructionof obsenrer is illustratedby the ex-

ample of heatingsystemhere. It is consideredthat
only the temperatureandits ratevariable(i.e. T and



Fig. 3. Satesreachabléby non-measurabl&ansitions

(Tu)

Fig. 4. Obsenerfor heatingsystem

%) is measurable Theunmeasurabl&ansitionsare
shawn by dottedline in the Fig. 3.

The setof nondistinguishableneasurabléransitions
aredo = {7s1,7s5}, At = {7s3}, A2 = {76, 7510},
A3 = {758}
The setof nodesareng = {z1,z5}, n1 = {z2,%6},
ny = {x3,27},n3 = {4, 78}
The obsenrer constructedaccordingto the Algorithm
1is shownin Fig. 4. In this examplethe arcsarecor-
respondto the setof nondistinguishableneasurable
transitionsthatis (ap = Mo, a1 = A1, a2 = Ao,
as = Az ).

O

In the previous section,the constructionof obsener
O, under measurementrestriction was discussed.
someof theimportantpropertieof theobsenerO are
statedbelow.

Lemmal. For ary two nodesn; and n., if their
correspondingentry setsny. and ns, are different,
thenn; andn, aredifferent. Thussymbolically

Nie # Noe = N1 7 N2
Proof by construction

Lemma2. Any transition betweentwo nodesof the
obsenerO is a setof measurabléransitions

Proof By stepC2 of obsener constructioralgorithm

Lemma3. All unmeasurabléransitionsare within a
node.For atransitionr < z,zt >,if z,zT € n then
T € Gy

Proof By contrapositiity of Lemma2.

Lemmad. All the activity statesin an obsenrer node
n, haveidenticalmeasurablelynamics Symbolically

VZ1,22 €1, Ay = A,
Proof .
Either n =U*({zo})
[*initial uncertainty*/
Or  n' =U*(n}) for somen € N
[*n' is createcby some\ */
Again
Casd:
Casdll:

z; € U*({zi})
{zi,z;} arefinal statesof two
membersof A

For Casel, Az, = Ame, by definitionof
unmeasurablgansition
Casell,Apz; = Az, by definitionof
non-distinguishableneasurable
‘ transition
[Proved]

Lemmab. It is possibleto have two distinct nodes
ni,ne € N, with samemeasurablelynamics.

Proof Two distinctnodesn,n’ € N mayhave same
measurablelynamics.

For example, consider two subsets)\; =<
nl)\l,u*(nf)‘l) > and )\, =< ngAl,L{*(n;)‘l) >
of aset) of non-distinguishableneasurablé¢ransi-
tions.

ThereforeA;, Ao C A, Apmngy, = Amnogy, and
Amu*(nul) = Amu*(nQAZ)

4. CONCLUSION

In this paperwe have introducedthe conceptof mea-
surementrestriction on a hybrid systemmodel dis-
cussedin (Bhowal et al., 2002). The actvity state
estimatiorproblemundermeasurementstrictionhas
beendiscusse@ndanobsenerfor themodelhasbeen
developed.Thepropertiesof theobsenrerarealsodis-
cussedThe conceptsof measurementestrictionand
constructionof obsener are explainedwith the help
of anexampleof aheatingsystemFaultdetectionand
diagnosisusing thesereasultsis discussedn one of
our companiorpaper(Sarkaretal., 2002).

Acknowledgement: Thanks are due to the anory-
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