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Abstract: A neural-network-based synthesis of an optimal midcourse guidance law is 
presented in this study. We use a set of two neural networks; the first network called a 
“critic” outputs the Lagrange’s multipliers arising in an optimal control formulation and 
second network, called an “action” network, outputs the optimal guidance/control. The 
system equations, the optimality conditions, the costate equations are used in conjunction 
with the network outputs to provide the targets for the neural networks. When the critic 
and action network are mutually consistent, the output of the action network yields 
optimal guidance/control. Numerical results for a number of scenarios show that the 
network performance is excellent. Corroboration for optimality is provided by 
comparisons of the numerical solutions using a shooting method for a number of 
scenarios.  Copyright © 2002 IFAC
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1. INTRODUCTION 

 
Midcourse guidance considered in this study deals 
with scenarios wherein a surface launched missile 
seeks to intercept an airborne target. In an optimal 
setting, the resulting trajectory seeks to maximize the 
pursuer velocity at the time of intercept. Two types 
of guidance laws have been popular in the midcourse 
guidance literature (Ohlmeyer, 1994); they are the 
Kappa guidance and “explicit” guidance approaches. 
A linearized Kappa guidance (Serakos and Lin, 
1996) is proposed in which a coordinate 
transformation is used. All of these guidance laws 
use some sort of approximations to the equations of 
motion, which is basically nonlinear. The use of 
neural guidance laws as used in this study, however, 
allow the use of the nonlinear equations directly 
without the need for any approximation. 
 
In this paper an “adaptive critic” neural-network-
based guidance law is proposed which: 1) solves any 
system (linear or nonlinear) without any 
approximation; 2) yields a guidance law in a 
feedback form as a function of current states; 3) 
maintains the same structure regardless of the type of 
system; 4) and when implemented in practice, it 
generates the guidance law almost instantly. Such a 
formulation is afforded by the “adaptive critic” 

architecture. The reason for choosing this structure 
for formulation the optimal control problem are that 
this approach needs no external training as in other 
form of neural controllers. This is not an open-loop 
optimal guidance law, but a feedback guidance law. 
Balakrishnan and Biega have shown the usefulness 
of this architecture for infinite-time linear problem 
(Balakrishnan and Viega, 1996). Han and 
Balakrishnan further applied this method to the agile 
missile control problem (Balakrishnan and Han, 
1998), (Balakrishnan and Han, 1999a), (Balakrishnan 
and Han, 1999b). This study is very different in the 
sense in that this is the first time such an approach is 
used in the midcourse guidance literature and this is 
also the first guidance example with vector inputs 
and variable final flightpath angles. 
 
 
2. PROBLEM FORMULATION AND SOLUTION 

DEVELOPMENT 
 
 
2.1 Midcourse Course Guidance Scenario in A 

Vertical Plane 
 
Derivation of Optimal Guidance Law 
In seeker coordinates shown in Figure 1, a parameter 
κ is defined as 
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where: 
 
γ - flightpath angle 
V - velocity 
s - arc length along the trajectory in Figure 3. 
R - relative range between missile and predicted 
impact point (PIP). 
θ - elevation angle of range vector measured from 
local horizontal. 
δ - heading error 
 
In this system, the equation of motion for the missile 
can be written as   
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Using the range R rather than time as the 
independent variable, we can reformulate as: 
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The main objective in a midcourse guidance is to 
maximize the final velocity at the predicted impact 
point. Hence, an appropriate cost function J is 
defined as 
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where the subscripts 0 and f denote initial and final 
condition respectively. 
From Eqn.(15), we get: 

J
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So maximizing Vf  is equivalent to minimizing J. 
After some algebra the cost function can be obtained 
as 
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T  is the thrust of the missile,ρ, the air density, S ,the 
reference area of the missile,m, the mass,CD0, zero lift 
drag coefficient, CNα, normal force coefficient 
derivative with respect to angle of attack,α. ω is a 
parameter representing the missile characteristics. It 

is common in midcourse guidance literature to treat 
ω as a constant. 
 
Application of the Minimum Principle: 
In our case, we use p  as independent variable rather 

than R . p is the distance from the missile position to 

launch point.  The relation between p  and R is 

pRR −= 0
                 (14) 

 
 In order to use adaptive-critic based neural network 
to get the optimal solution to above problem, it is 
necessary to use a discrete state equation and the 
associated optimal control: 
 
1. state equations: 
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2. Cost function: 
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Define the Hamiltonian: 
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3. The costate equations are 
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4. The optimality control condition is 
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5. The boundary conditions are:
000 ,,0 γδ=p  are 

known 

NNN Rp γδ ,0,0 ==  are fixed values. Note that Ðp 

is the stepsize and k denotes the stage. 
 
 

3. DEVELOPMENT OF A NEURAL NETWORK 
SOLUTION 

 
In this paper, neurocontrollers are obtained for both 
fixed final flightpath angle and flexible flightpath 
angle. After discretizing the system equation, the 
independent variable p will be divided into 
appropriate steps. During each period, two neural 
networks, namely the “action” network which 
represents state feedback guidance law and output 
control κ, and another network called “critic” 
network which represents the supervisory model will 

output costate 21,λλ . The trained action networks 
which are cascaded together will form the optimal 
guidance law when implemented in-real time. 
 



 

     

 
3.1 Procedure to Train Neural Networks 

 
For “finite time” (or finite-horizon) problems, the 
“time” is fixed. In our case the independent variable 
p is a value which is determined by tactical 
requirements. Here, according to Navy’s 
specification,

Np  is chosen as 60 miles. Assume p is 

divided into N-1 fragment periods. Then, there are 
totally N steps. The networks are synthesized 
backwards in this formulation. This procedure 
includes two stages: 
 
Synthesis of the Last Network: 
1. Randomly pick 

1−Nδ , since 0=Nδ , given 
1−∆ Np , 

from state Eqn.(15a), *
1−Nκ is obtained. 

2. Since Nγ  is fixed, so input 1−Nδ and 1−Nκ  into 

Eqn.(15b), 1−Nγ  can be obtained. 

3. Train a network denoted as )1( −Nκ :inputs are 

state 
1−Nδ and 

1−Nγ , target is *
1−Nκ . Train this 

network until error performance is satisfied. 
4. Pick 

N1λ or 
N2λ , together with

1−Nκ , input into 

Eqn.(18) to obtain N2λ or 
N1λ . 

5. Input 
N1λ , N2λ ,

1−Nκ ,
1−∆ Np ,

1−Nδ ,
1−Nω  into Eqns. 

(19) to obtain *
12

*
11 , −− NN λλ . 

6.Train a network called )1( −Nλ : inputs are state 

1−Nδ and 
1−Nγ , targets are *

12
*

11 , −− NN λλ . Train this 

network until a specified error performance is 
satisfied. 

 
Synthesis of Other Networks: 
7. Determine 

2−∆ Np , pick 
22 , −− NN γδ , input into 

)1( −Nκ  network to obtain 
2−Nκ . 

8. Input 
22, −− NN γδ ,

2−Nκ  and 
2−∆ Np into Eqns.(15a), 

(15b) to obtain 
11, −− NN δγ . 

9. Input 
11, −− NN δγ into )1( −Nλ  network to obtain 

1211 , −− NN λλ . 

10. Input 
1211 , −− NN λλ into Eqn.(19) to obtain *

2−Nκ . 

11. Train a )2( −Nκ  network with inputs 
22 , −− NN γδ  

and targets *
2−Nκ , until convergence is reached. 

12. Input 
22 , −− NN γδ into )2( −Nκ  network to obtain 

2−Nκ . 

13. Input 
22 , −− NN γδ  and 

2−Nκ  into Eqns.(15a), (15b) 

to obtain 
11, −− NN δγ . 

14. Input 11, −− NN δγ  into )1( −Nλ  network to obtain 

1211 , −− NN λλ . 

15. Input 
1211 , −− NN λλ ,

2−Nκ ,
22 , −− NN γδ into Eqns.(19) 

to obtain target *
21 −Nλ , *

22 −Nλ . 

16. Train a )2( −Nλ  network with inputs 

22 , −− NN γδ and targets *
21 −Nλ , *

22 −Nλ , until 

convergence is reached. 

17. Repeat the process 7 – 16 with N=N-1 until 

0p =0 is reached. A schematic of the network 

development is presented in Figure 2. 
 
 
 
4. USE OF NETWORKS AS CONTROL LAW IN 

REAL-TIME 
 
Assume any 

00 ,γδ (within the trained scope), use 

)0(κ  network to find 0κ  and integrate to get 

11,γδ until 1p is reached. Then input 11,γδ  into )1(κ  

network to get 1κ  and integrate to get 22 ,γδ  until 

2p is reached. Continue until 
0RpN =  is reached. 

 
 

5. SOLUTION WITH A SHOOTING METHOD 
 
In order to verify the optimality of the solutions 
obtained with neural networks, The two-point 
boundary value problem (TPBVP) resulted from 
optimal control formulation are also solved with a 
shooting method (Bryson and Ho, 1975). 
 
 

6. NUMERICAL RESULTS 
 
 

6.1 Fixed Final Flightpath Angle 
 

Results from simulations using the neural network 
approach and the shooting method are presented in 
this section. The desired final states for the 
midcourse missile were fixed at zero for the heading 
error δ, zero for the flightpath angle γ, and sixty 
miles for the range. The parameter ω was set at 4.0E-
5. A feedforward neural network with three layers 
with a hyperbolic tangent sigmoid, a log-sigmoid, 
and a linear activation function is used for the 
controller network as well as for the critic network. 
The number of neurons is 4 in the first and second 
layer and 1 in third layer. The Levenberg-Marquardt 
Backpropagation algorithm is used in training both 
the action and the critic neural networks. These 
choices for structure and training method are 
intuitive and are not necessary optimal. In the 
training process, a variable stepsize Runge-Kutta 
numerical method is used to integrate the state 
equations between the steps defined by the intervals 
in the independent variable. After training, 62 pairs 
of networks are obtained. It should be noted that this 
means that the optimal guidance law has been 
obtained with starting from any range from 0 to 60 
miles to reach the predicted impact point with 
maximum velocity and with zero heading error and 
zero flightpath angle. 
 
Three-dimensional plots of trajectories obtained with 
the neural networks are presented in Fig. 3. The two 
costates (Lagrange’s multipliers) are plotted in Fig. 
4. The corresponding history of the control variable κ 
is presented in Fig. 5. In order to verify the 



 

     

optimality of the neural network results, the same 
initial conditions were used and the shooting method 
was used 36 times by solving each single problem 
separately. Although they are not superposed with 
the neural network results (because we want to show 
optimality of the neural network results over the 
entire range and the superposition of plots will make 
them very busy), we observed that the state vector 
histories, the costate histories, and the control 
histories are almost identical to the corresponding 
variable histories obtained from neural networks. 
Note that the neural networks embed countable 
infinite optimal solutions to the midcourse guidance 
problem with an envelope of initial conditions as can 
be observed from the initial conditions in Fig. 3 or 
with any range up to 60 miles. 

 
6.2. Varied Final Flightpath Angle 

 
The results presented in previous section were 
obtained for a fixed final flightpath angle γf = 0. In 
order to capture the target in a different situation, it is 
necessary for the missile to reach the PIP at different 
final flighpath angles or from different attitudes. If 
we use one set of networks for each final  flightpath 
angle, there will be several similar networks 
corresponding to different final flightpath angles. For 
any other final flightpath angle, one has to 
interpolate two successive neural network 
controllers. This is not practical in real 
implementation since that will result in a higher cost 
and will be less accurate. So we exploit the neural 
network’s universal learning or mapping ability. One 
single network will be used to output costates for 
different final flightpath angles at any stage. The way 
to do this is to augment final flightpath path angle as 
another input and target during neural network 
training. Here the final flightpath angle is chosen 
from 600 to 900 with the interval 50 as the training 
scope. The initial heading error and flightpath angle 
scope remain the same as above. The range and the 
parameter ω were assumed to be same as before. In 
this new design a feedforward neural network was 
chosen with all three layers with linear activation 
functions for the controller network as well as for the 
critic network. The numbers of neurons are 8 in the 
first layer and 8 in the second layer for both the 
controller and critic networks. We still used a 
Levenberg-Marquardt algorithm in training both the 
action and the critic neural networks. This time 79 
pairs of networks were used. The results of neural 
network controller for a set of initial conditions and 
desired final flightpath angles are plotted in Fig. 6-8. 
In every case the neurocontroller takes the missile to 
the desired final flightpath angle. In comparing the 
neurosolutions with the shooting method, the 
maximum error for δ is about 3.50 during whole 
procedure and the error at the end approaches zero. 
The maximum error for γ is about 4.30 and the error 
approaches zero at the end. The maximum κ error is 
about 0.016 at the end. The errors can be attributed 
to the different step-size. The larger error trajectories 
are those which have smaller initial flightpath angle 

and heading angle but larger negative final flightpath 
angle. The reason is that it is more difficult to shape a 
low, flat trajectory at the final stage. 
 
 

7.  CONCLUSIONS 
A neural network approach to solving optimal 
midcourse guidance problems has been presented in 
this study. This approach solves nonlinear 
guidance/control problems without making 
approximations to the model. The results show that 
the adaptive critic-based neural networks present a 
powerful computational approach to such class of 
problems. 
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Fig. 1.  Missile Intercept Scenario  
 
 

 
Fig. 2.  Schematic of Successive Adaptive Critic  
Synthesis 
 



 

     

 

Fig. 3.  Trajectories of δ,γ (NN) 
 

 
Fig. 4. Costate λ Trajectories 
 

Fig. 5. Kappa Trajectories (NN) 
 

Fig. 6. δ  Trajectories for Different γf (NN) 

Fig. 7. γ  Trajectories for Different γf (NN) 
 

Fig. 8. Kappa Trajectories for Different γf (NN) 
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